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1 Overview of segmentation and tracking pipeline
In order to extract growth and protein expression dynamics from time-lapse microscopy experiments, we developed a custom
segmentation and cell tracking pipeline. Figure S1 shows an overview of this pipeline. Briefly, for each frame of the experiment,
we use the Fiji48 implementation of the Trainable Weka Segmentation plugin49 to generate initial segmentations of cell objects
using the Random Forest classification algorithm (Fig. S1A). This initial segmentation is read into Matlab (R2015b) as a mask
for further refinements using a Watershed transform. Next, unique identifiers are assigned to each segmented object and tracked
in time. Tracking is performed for each frame immediately after segmentation, as this allows information from the previous
frame to be used in cell identifier assignment (Fig. S1B). From the time-dependent contours of individually segmented cells, all
features including size, age, genealogy and fluorescence can be obtained (Fig. S1C).

2 Confirmation of balanced growth during the microscopy experiment
During steady state balanced growth, the specific growth rate and other properties of the population should remain fixed for
a duration longer than several generation times27. We confirmed this by plotting the logarithm of the total cell length of the
population as function of time and identifying a linear region, during which balanced growth occurs (Fig. S2).

During balanced growth, the total fluorescence of cells, which corresponds to the levels of a constitutively expressed protein,
should increase exponentially with time (Fig. S2). This indicates that the protein abundance changes in proportion to the total
cell volume, which in our case simplifies to proportional increase with cell length, as the cell maintain a fixed cell width (Fig.
S3). That the concentration of a constitutively expressed protein remains fixed during balanced growth can be deduced from
the differential equation of the concentration, denoted by c, which equals the ratio of the protein copy number n (assumed
proportional to protein fluorescence) and the cell volume, V ,
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indicating that n and V increase exponentially in time. From this we can conclude that during exponential growth the
concentration of the protein remains fixed, this implies that the protein copy number increases exponentially at the same rate as
the cell volume.

Another requirement of balanced growth is that the probability distributions of growth characteristics are invariant with
time, which is illustrated by Fig. S4.

3 Cell length and fluorescence data of a balanced growing E. coli population
In addition to the B. subtilis data, which we presented in the main text, we measured cell growth characteristics (Fig. S5) and
gene expression (Fig. S6) in a balanced-growing E. coli population. As for B. subtilis, the E. coli experimental data shows a
remarkable agreement with the microscopic growth theory and stochastic simulations.

4 The cell-size homeostasis mechanism as evident from our data
A single-cell growth characteristic that has since recently received a lot of attention is the mechanisms which cells use to
achieve size homeostasis during balanced growth5. Since the probability distributions for cell size are constant during balanced
growth, cells that are either smaller or larger than the average cells size compensate for their size discrepancies. At least three
mechanisms have been proposed that lead to cell-size homeostasis5. Cells can either be ‘sizers’, ‘adders’ or ‘timers’, or they
follow one of two mixed mechanisms: ‘sizer-like adder’ or ‘timer-like adder’39.

Sizer, adder and timer mechanisms can be distinguished from the slope of the relation between the average length that cell
adds during a single generation and its birth length (i.e. hDl|lBi as function of lB)5, 39, 41. The slopes we find in the hDl|lBi-vs-lB
plot (Fig. S7) are slightly negative (⇡�0.3), indicating that both B. subtilis and E. coli follow a sizer-like adder mechanism.

5 Cell length as an approximation for cell volume
During balanced growth, cell volume (and cell length when the width remains fixed) double each cell cycle. On average, the
mean volume at division is twice the mean birth volume. We measure cell growth with a time resolution of one minute, the
determined moment of cell birth and cell division deviates on average by half a minute. Within this time window minor cell
growth and deformation changes might occur, disturbing the expected hlBi= 1

2 hlDi relation. Indeed, the observed cell length
which we use as a measure for cell volume, does not double exactly in length during a cell cycle. When we use the combined
length of both daughter cells as measure for division length the expected hlBi= 1

2 hlDi relation holds.
Since the deviation in cell length is more than expected in a minute of cells growth, we consider the influence of rod-shaped

bacterial growth to bring forward a possible explanation. When the exact moment of cell division is not determined perfectly,
the mother cell might represent more of a single rod shape rather than two rods (Fig. S9). This figure indicates that a single cell
can double its volume while not doubling its length.

To estimate the maximal deviation between volume and length growth, we consider cells as perfect rod-shaped until the
moment of division. We observed a constant cell width during a cell cycle (Fig. S3), hence the radius of the cell is fixed. The
difference in cell length and volume growth is caused by the cell poles, which are rounded. The in length increase to double the
volume of a rod is 2Lb �a , in which a is given by:

pr2(2r�a) =
4
3

pr3

a =
2
3

r (S1)

this solves the cylindrical height to equalise the volume of a sphere (the sum of the two rounded poles) to a cylinder. This
means that the deviation in observed cell length growth can be at max 2

3 r. In table S1 we provide this minimal estimate of cell
length compared to the measured cell length for LB, LD, and DL. The measured mean lengths fall somewhere between exact
doubling of cell length and the calculated length increase based on a rod-shaped cell throughout the entire cell cycle. Given the
length statistics of B. subtilis we predicts a minimal DL of 2.19 µm. For the E. coli data the predicted minimal DL is 1.43 µm.
It is known that B. subtilis and E. coli divide using different division modes50. In E. coli the cell membrane grows inwards
while B. subtilis assembles a septal wall. Due to this differences in division mechanisms, the DL of E. coli might be more close
to LB. While the DL of B. subtilis is more close to discussed rod-shaped mother cells. Of interest, using the combined length of
both daughter cells as measure for division length, gives hDLi= 2.50 for B. subtilis and hDLi= 1.62 for E. coli.
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B. subtilis E. coli
LB DL LD LB DL LD

min 2.19 4.60 1.43 2.95
data 2.46 2.24 4.70 1.60 1.51 3.11
max 2.46 4.92 1.60 3.20

Table S1. Average cell length calculated from the birth length distribution (`B). The range is given by the perfect rod-shape model
and the double of birth length. The data indicates that the measured length falls within the expected range.

6 Growth rate of B. subtilis and E. coli along the cell cycle, in terms of cell length and
cell age

Figure S10 shows the instantaneous growth rate of E. coli and B. subtilis at particular progression extends along their cell cycle,
at a particular length (Fig. S10A and C) and a particular age (Fig. S10B and D). The conditional mean growth rate, i.e. hµ|li
and hµ|agei is fixed along the cell cycle.

7 Fluorescence concentration and fluorescence noise for B. subtilis and E. coli along
the cell cycle, in terms of cell age

The fluorescence concentration and noise hardly change as function of the progression along the cell cycle as is indicated by the
slopes of the conditional mean lines as function of cell age in Fig. S11. Only the fluorescence noise data of E. coli shows a
decrease of about 20% from birth to division.
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Figure S1. Overview of the segmentation and tracking pipeline. (A) Using Random Forest classification, pixels from raw images are
assigned to one of four classes: background, colony edge, cell interior and cell membrane. (B) Further refinement of the initial segmentaiton is achieved by a
watershed transform, using the Random Forest classified image as an input mask. Once segmentation is complete, identifiers are assigned to cell objects, using
information from the current and previous frames. (C) From the contours of segmented cell objects, all spatial and temporal features can be calculated.
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Figure S2. Linear fit of the log transformed total cell length and fluorescence of the B. subtilis and E. coli population.
The total length of all individuals in the (A) B. subtilis population increases with 0.0098 min�1 and for E. coli this rate is 0.0078 min�1 (C). The dashed lines
marks the region of balanced growth, i.e. where growth rate is fixed over multiple generations, used for data analyses. Similarly, the rate of total fluorescence
increase is fixed during balanced growth, for both (B) B. subtilis (D) and E. coli.

.

B. subtilis E. coliA B

Figure S3. Cell width as function of age for a B. subtilis and E. coli population. The width of cells remain approximately constant
during their life cycle.
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Figure S4. Balanced growth is characterised by the time-invariant distribution of growth characteristics. A defining
characteristic of balanced growth is that the probabilities to observe cells with particular growth properties – their phenotype – are fixed and the associated
probability distributions are therefore time invariant. The extant cell length (A and E), generation time (B and F), birth (C and G) and division length (D and H)
distributions sampled at three different time points (375 min, blue; 400 min, red; 425 min, black) during balanced exponential growth (see Fig. S2) are shown
for a B. subtilis and E. coli population.
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A B CGeneration time Daughter/Mother ratio Division length

Birth length Extant lengthExtant cell age

Figure S5. Growth characteristics of E. coli. Shown are results comparing the microscopic growth theory relations derived by Collins &
Richmond29, Powell28 and Painter & Marr27 and experimental single-cell growth data. This figure is the same as Fig. 2, but shows data for E. coli. The
probability distributions obtained from experimental data are shown in blue, the predicted distributions (obtained using the relations defined in eqs. 1 - 4 in Fig.
2), are shown in black in (D), (E) and (F), and the results of our simulation algorithm are shown as grey histograms. In (A), (B) and (C), black curves indicate
fits to the measured data. The sample sizes for the experimental data are 4558 extant cells, 3617 cells at birth and 1867 cells at division.
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D E F

A B C

Figure S6. Expression data of the reporter gene for E. coli. (A) Whole-cell fluorescence as function of cell length with black dots as
conditional mean h f |lE i. (B) Cell fluorescence as function of cell age with black dots as conditional mean h f |agei. (C) Whole-cell fluorescence probability
density: experimental data (blue), predicted fluorescence probability density obtained from the extant length distribution and the relation between fluorescence
and length (shown in A) (dashed, black line), predicted fluorescence probability density obtained from the age distribution and the relation between
fluorescence and age (shown in B) (black line) and the stochastic simulation (grey line). The experimentally determined distributions (blue) of whole-cell
fluorescence at (D) cell birth, (E) cell division and (F) the distribution of fluorescence concentration of extant cells, is compared to simulations (grey lines).
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B. subtilis E. coliA B

Figure S7. Cell-size homeostasis mechanisms inferred from the single-cell growth data of B. subtilis and E. coli. From
the slope of the dependency of average cell length added during a single generation on the length at cell birth (hDl|lbi-vs-lb), the cell-size homeostasis
mechanism can be inferred. The slopes of about �0.3 indicate that, under the conditions tested, (A) B. subtilis and (B) E. coli behave mostly as adders with a
small sizer effect.

B. subtilis E. coliA B

Figure S8. Relation between the cell volume at birth and division inferred from the single-cell growth data of B.

subtilis and E. coli. The length at cell division as function of the length at birth (hlD|lBi-vs-lB) of (A) B. subtilis and (B) E. coli shows a weak positive
correlation.
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Figure S9. Cell shapes at birth and division. At cell division the average cell volume is doubled compared to the birth volume. Depending on
the cell shape of the mother cell at division, the cells do not display full length doubling during a single cell cycle. The maximal deviation between volume and
length increase can be calculated and is 2

3 r.
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Figure S10. Instantaneous growth rate as function of age and cell length for B. subtilis and E. coli. The blue density
histograms give the distribution of the instantaneous growth rate as function of length (A and C) and age (B and D). The
population means are shown by the dashed black lines. A linear fit to the full dataset is shown in gray and the conditionals µ|l
and µ|age by the black dots.
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Figure S11. Concentration of fluorescence and fluorescence noise as function of age for the B. subtilis and E. coli

data. The average concentration of fluorescence remains stable during a cell cycle. The cv of the concentration of fluorescence does not increase as function
of age, explaining the similarity between the theoretically predicted and observed expression distribution (see Fig. 4C).
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Figure S12. The SSA with cell growth and division as incorporated in StochPy. The simulation starts with one daughter cell of
which we track a single lineage through time. We perform a stochastic simulation until the generation time T is reached. Then, the mother volume is
partitioned between both daughter cells. Molecules are subsequently partitioned (volume dependent) between both daughters. The light molecules are inherited
from the mother cell, darker ones are newly synthesised during the cell cycle. This procedure is repeated until either the number of generations is reached, the
desired end time is reached, the desired number of time steps is reached, or all reactions are exhausted.

8 StochPY extended with cell growth and division
The stochastic simulation algorithm that couples the simulation of molecular circuits to that of cell growth and division is
implemented in StochPy23 and available for download from http://stochpy.sf.net. Figure S12 gives an overview of
how we extended the SSA with cell growth and cell division.

We discuss the steps outlined in Fig. S12 step-by-step (the notations used are explained in Table S2):

1. Initialize simulation. In the extended SSA, containing cell growth and division, we simulate a single lineage, so we
start the simulation with a single cell. Before we can perform a simulation we have to initialize the simulation by setting
various parameters. For instance, we have to set the cell volume of the initial cell (V0). A cell can be in any cell-cycle
stage (0  a  T ) where a is the cell age and T the generation time—the time period between two consecutive cell
divisions. We parameterise the initial cell to start at the beginning of the cell-cycle stage, i.e. a = 0. During the simulation,
the cell grows deterministically, at the specified specific volume-growth rate (µ) and according to a particular type of
growth—we support both exponential and linear volume growth rates. Next, we have to determine when the tracked
cell divides. We do this by drawing a volume (VT ) at which the mature mother cell divides into two daughter cells. The
volume at which the mother cell divides is drawn from a probability density function (PDF) YD. This PDF is independent
from the volume at birth, which makes the volume at division independent from the volume at birth. Given values for V0,
VT , µ , and the growth, the generation time T can be calculated. We illustrate this here for an exponential growth rate:

VT =V0 · eµT ! T =
ln(VT/V0)

µ
. (S2)

2. SSA coupled to cell growth. Once we know T , we can start the SSA until the division event at a = T . Modeling cell
growth implies that V increases during the simulation from birth (a = 0) to division (a = T ). In a growing cell, reacting
molecules require more time to find each other, thus the reaction waiting times for these kind of reactions increases. This
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Table S2. Notations of used variables. For balanced, exponentially-growing cells the volume specific growth rate (µ) is
equal to the specific growth rate of the population (k).

Variable values pdf description
T t t(t) Interdivision time
R r r(r) Partitioning ratio
V Cell volume

VB vB YB(vB) Birth volume
VD vD YD(vD) Division volume
VE vE YE(vE) Extant volume

L Cell length
LB lB `B(lB) Birth length
LD lD `D(lD) Division length
LE lE `E(lE) Extant length

A a u(a) Cell age
k Specific growth rate of the population
µ Cell volume growth rate

means that the propensity functions of diffusion limited reactions (i.e. second and higher-order reactions) depend on V .
We therefore inserted V as a variable in the respective propensity function,

a j,V (t) =
a j(t)

V (t)order�1 with order � 2. (S3)

The propensity functions of zero and first-order reactions are unaffected by V . While we model V deterministically we
only update V at each stochastic event in the simulation. This means that we calculate the time until the next reaction
fires based on the V at the time of firing of the previous reaction; V is larger at the moment of reaction execution which
results in a underestimation of the reaction time of second and higher-order reactions. This effect is negligible if the
volume difference between the two consecutive firings, DV , is small. An alternative method could be to add volume as an
additional reaction stochastic reaction that fires frequently as was done by43, but this slows down the simulation.

3. Cell division. The SSA continues until the generation time T is reached (and V = VT ). Both VT and xT are then
partitioned between the two daughter cells. The partitioning ratio is drawn from the PDF r(r). Daughter one and
two receive a volume of Vd1,0 = r ·VT and Vd2,0 = (1� r) ·VT respectively. The r(r) distribution should be symmetric
around a mean of 0.5, otherwise a bias for one daughter is created. The partitioning of molecules between both daughter
cells—which is done next—is also a stochastic process and depends on the cell volumes of both daughters. This
partitioning of molecules is, therefore, modeled with a volume-dependent binomial distribution. More specifically, the
probability that a specific molecule is inherited by daughter one is modeled as Vd1,0/VT . This means that the number of
molecules, with copy number n, inherited by daughter one can be drawn as a random sample from a binomial distribution
with n number of trials and success probability Vd1,0/VT . The process is repeated for each species. Not all cellular
constituents should be binomially distributed between both daughter cells. DNA is an example of this; each daughter
cells receives one copy of the chromosome in a normal cell division event. These kind of cellular constituents divide
exact. Stochastic simulations also allow the definition of fixed species—species that do not change in copy number of
concentration over time—which are not divided during a cell division event.

4. Cell selection. Starting the SSA with a single cell and simulating the entire population tree is computationally difficult
or impossible. We, therefore, track a single cell lineage through time, which allows us to incorporate cell growth and
division in stochastic simulation algorithms in an efficient manner. While simulating a single lineage was also done by43,
we are also able to get the statistical properties of either the whole tree or a sample of extant cells from a single lineage
over time. This process is explained in the following section.

8.1 Stochastic simulation of single-cell growth and gene expression matches theory
Within a population of balanced growing cells, three types of samples can be distinguished: samples of extant, mother, and
baby cells; their definitions can be found in27 and in the main text. The statistics of cell age, generation time and cell volume of
these samples are interrelated, for the generation time the following relation holds:

te(t) = 2
⇣

1� e�kt
⌘

tb(t) =
⇣

ekt �1
⌘

tm(t) (S4)
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where k denotes the specific growth rate of the population and ts(t) gives the probability density function of the generation
times for the different types of samples (with s as either e: extant, b: baby, or m: mother). During lineage simulations we select
at each division the daughter cell which will be followed in such a way that the statistics of the resulting lineage corresponds to
a sample of mother cells.

To generate a lineage that is representative for a sample of mother cells, at each division the daughter to be followed by
the simulation is chosen with a probability according to the fraction of descendants it can be expected to contribute to the
population: If daughter 1 is expected to have n1 descendants at a later time point tx and daughter two n2 descendants, the
probability p to choose daughter 1 is given by

p =
n1

n1 +n2
. (S5)

Let T1 and T2 be the generation times of daughters 1 and 2, respectively. In balanced growth the number of expected descendants
at time tx is then given by n1 = ek·(tx�T1) and n2 = ek·(tx�T2). This is possible because the growth law does not depend on
molecule concentrations or previous history. Inserting these relationships for n1 and n2 in Eq. (S5) gives

p =
ek·(tx�t1)

ek·(tx�T1) + ek·(tx�T2)
=

ek·(T2�T1)

1+ ek·(T2�T1)
=

ek·DT

1+ ek·DT (S6)

where DT = T2 �T1. In short, the larger daughter cell is more probable to be chosen, because this cell will reach the next
division volume sooner and is therefore likely to have more descendants in the population at a later time point.

With as simulation result a lineage that represents a sample of mother cells, statistical properties of other defined samples
can be calculated based on the known relationships of generation time and cell age between these samples27.

8.2 Conditions to interrelate a lineage and full tree simulation
Here we state the conditions for the simulation of a single lineage that can be used to retrieve the statistics of the entire lineage
tree:

1. The volume at which cells divide has to be independent of the volume at birth, and any other cell-specific prop-
erties like concentrations of certain molecules etc. To ensure that volumes at division are independent of volumes at
birth, the distribution of division ratios (r) and the distribution of volumes at division (YD) are chosen such that the
largest possible volume at birth is smaller than the smallest possible volume at division (i.e. there is no overlap between
the two volume distributions). By default we use beta distributions for both the division ratio as well as the volume at
division. Beta distributions are bounded and symmetric if its two positive shape parameters are identical.

2. The growth law for a single cell has to be deterministic and independent of intracellular concentrations. The
current implementation allows exponential and linear growth laws for single cells. For an exponential growth law the
volume specific growth rate (µ) is equal to the specific growth rate of the population (k). Otherwise, the specific growth
rate of the population needs to be calculated. We do this by using the known relations between the volume at division,
volume at birth, the growth law, the volume distribution of extant cells (Equation (S7)27), and the fact that this volume
distribution has to integrate to one:

Z
Vmax

0

YE(V )dV =

Z
Vmax

0

e�R(V ) ·
 Z V

0

k · eR(V̄ )[2YB(V̄ )�YD(V̄ )]

g(V̄ )
dV̄ +C

!
dV = 1 (S7)

where

R(V̄ ) =
Z Vmax

0

(g0(V̄ )+ k)
g(V̄ )

dV̄ . (S8)

Here V is the cell volume, C an integration constant (which can be calculated from boundary conditions of the volume
distribution), le(V ) the volume distribution of a sample of extant cells, YB(V ) the volume distribution at birth for a
sample of baby cells, YD(V ) the volume distribution of a sample of mother cells, and g0(V ) the differential of the formula
of cell volume growth (g(V ) = µ ·V for exponential growth and g(V ) = µ for linear volume growth, with µ as the
volume specific growth rate). We know YD(V ), g(V ), g0(V ), and C from the model parameters. YB(V ) can be calculated
from YD(V ) and the partition distribution r(r) using28:

YB(V ) =
Z •

V

YD(q)
q

·r(V
q
)dq . (S9)
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A solution for Eq. (S7) is approximated by using the secant or Newton-Raphson method.
For example, we can calculate the copy number distributions for a sample of extant cells (corresponding to any experiment
that records molecule copy numbers at a fixed moment in time as for example smFISH) from the simulation of a single
lineage by using

p(Nx = n) =
Z Tmax

0

Z amax

0
g(a,T )

I(n,a,T )
Â j I( j,a,T )

dadT. (S10)

Here, I(n,a,T )
Â j I( j,a,T ) is the relative frequency of copy number equal to Nx in the simulated lineage at age a for a cell with

generation time T approximating p(Nx = n|a,T ) and g(a,T ) is the joint PDF of cell age and generation time,

g(a,T ) = ktm(T ) · ek(T�a). (S11)

The derivation of g(a,T ) is given in Eq. S13 and S14. Using Eq. (S11) we can rewrite Eq. S10 to:

p(Nx = n) =
Z Tmax

0

Z amax

0
tm(T ) · k · ek·(T�a) I(n,a,T )

Â j I( j,a,T )
·dadT, (S12)

where I(n,a,T ) is an indicator function equal to the number of occurrences of copy number Nx = n at cell age a in a cell
with generation time T . Obtaining the statistics for an extant cell population consists of two main steps. First, in order to
work with the indicator functions, the simulation time series needs to be binned. The binning needs to be performed at
regular intervals for cell age. Secondly, a double integral has to be taken which is a slow procedure for infinitesimal
small steps of a and T . We approximate this double integral by using the Riemann sum (or the 2D trapezoidal rule).

Additionally, the statistics for a sample of extant cell volumes can be calculated from the simulation of a single lineage by
re-using Eq. S12 and replacing copy numbers with volume data. Calculating the statistics for sample of extant cell volumes
requires one additional step—the continuous volume data must be binned to make the distribution discrete.

8.3 The joint distribution of cell age and generation time
In order to obtain the copy number distributions for a sample of extant cells the joint distribution of cell age and generation time
for extant cells is required which can be calculated knowing the growth rate and the generation time distribution. The derivation
presented here is analogous to the one for the distribution of extant cell generation times in27 (p. 528). With a population size
of n0 at t = 0 the rate of formation of new cells equals 2k ·n0 · ekt . The fraction of these cells with generation time smaller than
t which survive at least until time t is given by

R l
�t tb(t)dt. Therefore the total number of cells at time t with generation time

< l and age < a equals:

n0

Z l

0

Z a

0
g(t,x)dtdx

| {z }
Number of cells at t = 0 with
age< a and T < l .

=
Z 0

�a
2k ·n0 · ekt

| {z }
Number of cells with
age< a,
i.e. born after time t =�a.

Z l

�t
tb(x)dx

| {z }
Fraction of cells
with T < l .

dt

= 2n0

Z l

0
tb(x)

⇣
ekx � e�ak

⌘
dx.

(S13)

Differentiation yields:

g(a,x) = 2ktb(l )e�ak = ktm(l )ek(l�a). (S14)

8.4 Illustrations of StochPy simulations with cell growth and division
A typical StochPy modeling session consists of first creating a StochPy cell division model object from a (default) input
model. Of course, different user-defined models (in SBML or PySCeS MDL) can be loaded into the model object. Once a
model is loaded various simulation parameters that are specific for the SSA with cell growth and division can be set, e.g. µ , YD,
and r (see also Tabel S2). Kinetic parameter values and molecule copy numbers can be modified interactively, and simulations
can be performed by calling the available analysis methods for model objects. As model objects are fully encapsulated, multiple
models can be instantiated from the same (or different) input files at the same time. An example of a short StochPy modeling
session within Python is:
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1 i m p o r t s t o c h p y
2 cmod = s t o c h p y . C e l l D i v i s i o n ( m o d e l f i l e = ” I m m i g r a t i o n D e a t h . psc ” )
3 cmod . ChangeParamete r ( ” Ksyn ” , 2 )
4 cmod . ChangeParamete r ( ”Kdeg ” , 0 . 1 )
5 cmod . S e t G r o w t h F u n c t i o n ( g r o w t h r a t e = 0 . 1 , g r o w t h t y p e =” e x p o n e n t i a l ” )
6 cmod . S e t V o l u m e D i s t r i b u t i o n s ( p h i = ( ” b e t a ” , 5 , 5 ) , K = ( ” f i x e d ” , 0 . 5 ) ,
7 p h i b e t a m e a n =2)
8 cmod . D o C e l l D i v i s i o n S t o c h S i m ( end =100 , mode=” g e n e r a t i o n s ” )
9 cmod . P l o t S p e c i e s V o l u m e T i m e S e r i e s ( )

where we start by initiating the model object cmod for the immigration-death model depicted in PySCeS MDL and modifying
the kinetics parameters interactively. Next, we set volume specific growth rate characteristics and volume distributions. Then,
we generate one time trajectory with cell growth and division (100 generations) and plot the corresponding (discrete) molecule
copy number and volume time series data.

Our lineage corresponds to a sample of mother cells, so we can calculate the statistical properties of e.g. the sample of
extant cells via the following high-level functions:

1 cmod . A n a l y z e E x t a n t C e l l s ( )
2 cmod . P l o t S p e c i e s E x t a n t D i s t r i b u t i o n s ( )

Here we used the default number of bins for both age and generation times. StochPy generates a warning if the numerical
integration was not accurate enough. Choosing a different number of bins for both age and generation time typically solves this
issue.

Parameter Case Study 1 Case Study 2 Case Study 3
ksyn (min�1) 2.0 2.0 2.0
kdeg (min�1) 0.1 0 0.1

µ (min�1) 0.1 0.1 0.1
V0 (µm3) 1.0 1.0 1.0

YD (µm3) Beta(5,5)i 2 2
r 0.5 0.5 0.5

Table S3. Parameters used in the different case studies. We simulated each SSA with cell growth and division for 104 generations.

8.5 Comparing StochPy simulations with cell growth and division to analytical solutions
In the following sections, we compare StochPy simulations to theory. In each comparison, we highlight which contributions of
cell growth and division to non-genetic variability of cells were included. Besides the simulated results the derived analytical
solutions are given. We used the immigration-death model (i.e.“synthesis-degradation”) model to study single-cell transcription
with cell growth and division, because this is the only model for which we know the analytical solutions. We used the settings
given in Table S3 to—for molecule copy numbers and cell volume—compare time series, distributions at birth (a = 0) and
division (a = T ), and distributions for a sample of extant cells.

8.5.1 Case Study 1: Volume statistics are independent of the model

We first analyzed the volume statistics generated by StochPy simulations. While we used the synthesis-degradation model
we could have used any model because the volume statistics are completely independent of the model used. Using a different
model and/or parameter settings has only an effect on the run time of the simulation. The settings that we used to generate the
results are given in the second column of Table S3.

Comparison of the volume statistics generated by StochPy to analytical solutions shows an excellent overall agreement
(Fig. S13). In our stochastic simulation we took into account the following contributions of cell growth and division to
non-genetic cellular heterogeneity: imprecise, binomial, partitioning of molecules at cell division and heterogeneity in the
mother cell volume at cell division. The latter was modeled by drawing division volumes from a Beta distribution (Eq. (S2)).
Imprecise volume division from mother to daughter cells was not taken into account because we partitioned the cellular volume
exactly between both daughter cells (r(0.5) = 1). Heterogeneity in the cell volume at division has several consequences. First,
the cellular volume at a given age is variable as is illustrated in Fig. S13A for cells at division (a = T ) and at birth (a = 0). The
volume distribution of a sample of extant cells (Fig. S13C) is in agreement with theory. Secondly, the generation time T is not
deterministic as is illustrated in Fig. S13B and D. In the latter, we compare the generation time distribution of a sample of
extant cells (te) obtained by simulation with theory and found an excellent agreement.
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Figure S13. Volume statistics obtained via the SSA with cell growth and division are in agreement with analytical
solutions (black). (A) Volume distributions at a = 0 and a = T . (B) Three stochastic time trajectories of cell volume fluctuate around its analytical
solution with V0 = 1. Each of the time trajectories has a generation time that is distributed (see panel D) around its mean, hT i (dashed line). (C) The extant
volume distribution. (D) The generation time distribution of a sample of extant cells.

In Fig. S13B we simulated three distinct generations that each started with a different V0 drawn from YB(V ). We selected
the parameter values in our model such that the number of firings (reactions that occur) per generation are limited, such that
we can illustrate that StochPy updates V only when a reaction fires (Fig. S13B). Our model does not contain any second
or higher-order reactions, so this has no effect on the accuracy of the simulation. As explained, this can have an effect if
second-order reactions are included and when the rate of firing is slow (then the volume difference becomes significant).

8.5.2 Analytical solutions: Case Study 1 Volume distributions

We drew the cell volume at division (YD) from a scaled Beta distribution:

Vdivision ⇠ YD(V ) =
(V �1.5)a�1(1� (V �1.5))b�1

B(a,b )
, V 2 [1.5,2.5], (S15)

with V as the cell volume and B as the Beta function that normalizes the distribution. Since the beta distribution is defined on
the interval [0,1], we scaled this distribution to the interval [1.5,2.5]. When the division volume was reached, we divided the
mature mother cell volume equally between both daughter cells (volume partitioning distribution r = 0.5). The distribution
of the volume at birth was obtained by calculating the distribution of the product of two random variables, using YD and the
partitioning distribution r . With r as the Dirac delta distribution such that r(0.5) = 1. The cell volume distribution at cell birth
is then given by:

Vbirth ⇠ YB(V ) = 2YD(2V ) =
2a(V �0.75)a�1(2.5�2V )b�1

B(a,b )
, V 2 [0.75,1.25]. (S16)

The relationship between the mean of both distributions is given by

hVdivisioni= hVbirthi · eµhT i, (S17)

with T = ln(2)/µ thus

hVbirthi=
hVdivisioni

eln2 =
1
2
hVdivisioni . (S18)
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The volume distribution of a sample of extant cells can be calculated as function of YB and YD following the equations deduced
by29 as shown in27:

g0(V )YE(V )+Y0
E(V )g(V ) = k[2YB(V )�YD(V )�YE(V )] (S19)

with g(x) as the growth rate of cells with size V , YE(V ) as volume distribution of a sample of extant cells, YB as the volume
distribution of a sample of baby cells at birth, YD as the volume distribution at division of a sample of mother cells, and k as
the specific growth rate of the population. Assuming g(V ) = k ·V , this function can be simplified to:

Y0
E(V ) =

1
V
[2YB(V )�YD(V )�2YE(V )] (S20)

which can be solved to give the volume distribution of a sample of extant cells.
Since Vdivision and Vbirth are independent, the distribution of the ratio r = Vdivision/Vbirth can be calculated from51

Vdivision

Vbirth
⇠ r(r) =

Z +•

�•
|V |YB(rV ) ·YD(V )dV (S21)

By using the change of variable technique we can transform r(r) and obtain the distribution of the generation time:

r = eµT , (S22)

t(T ) =

����
∂

∂T

�
eµT �

����r(e
µT ). (S23)

8.5.3 Case Study 2: mRNA synthesis

In addition to predicting accurate volume statistics, we also aimed at predicting accurate molecule copy number statistics
when we include the stochastic contributions of cell growth and division to non-genetic cell variability. Unfortunately, we
do not know (yet) the analytical solutions if we include all sources of stochasticity of cell growth and division. Hence, we
used a deterministic T and simplified the model by consideration only first-order synthesis of a molecule and no degradation
(Kdeg = 0). A deterministic T was achieved by using a fixed YD and r(r) – the specific settings are given in the third column
of Table S3. This means that the only contribution of cell growth and division to non-genetic cell variability that we took into
account was the imprecise partitioning of molecules at cell division. The analytical solution for this scenario can be found
below.

The results given in Fig. S14 show that predictions made with stochastic simulation are consistent with analytical solutions.
More specifically, the mRNA copy number distributions at birth and division obtained with stochastic simulations overlap with
the theoretical distributions (Fig. S14A) and the time series output of stochastic simulations fluctuate, as expected, around the
theoretical time series (Figu. S14B). Here, the deviation is explained by inherent stochasticity in net molecule synthesis in
stochastic simulations. We also found an excellent agreement between the simulated and theoretical molecule copy number
distribution of a sample of extant cells (Fig. S14C). This result demonstrates that we can simulate a single lineage that represents
a sample of mother cells and get information about other samples such as the molecule copy number distribution of a sample of
extant cells.

8.5.4 Analytical solutions: Case Study 2 mRNA synthesis

In the second case study, we used a zero-order mRNA synthesis model in exponentially growing cells. With a deterministic
generation time, the theoretical mRNA copy number distributions of this model are known22.

Average molecule copy numbers at birth and division

The mRNA copy number in a cell at a certain age (a) is given by

na = n0 +Na, (S24)

where na is the mRNA copy number at cell age a, n0 as the mRNA copy number obtained at cell division, and Na as the mRNA
molecules synthesized since the last cell division at age a. The following relationship holds for the averages

hnai= hn0i+ hNai . (S25)

When symmetric partitioning at the end of a cell cycle (t = T ) is assumed, the average mRNA copy number at birth is half the
average of mRNA copy number at division:

hnT i= 2hn0i . (S26)

This means that cells double their average number of molecules during one cell cycle (a = 0 to a = T ). The average amount of
molecules produced at t = T equals the average number molecules obtained at t = 0.
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Figure S14. Molecule copy number statistics obtained for the mRNA synthesis model, via the SSA with cell growth
and division, is in agreement with analytical solutions. Simulation results are shown in colour, and analytical solutions in black. (A) nmRNA
copy number distributions at a = 0 and a = T . (B) three stochastic time trajectories of nmRNA. (C) the extant nmRNA copy number distribution.

8.5.5 Poisson distributed molecule copy numbers at a specific age

The waiting time distribution of a first-order synthesis process is exponentially distributed, the time between consecutive events
is:

ts ⇠ g(ts) = ks · e�tsks . (S27)

The time to make N molecules follows a gamma distribution and can be derived from the N-th convolution of g(t) using the
generating function, which is the Laplace transform (L ):

G(c = N|t) = L �1(L (g(t))N),

=
e�kstkN

s tn�1

G(N)
,

(S28)

with G[·] as the incomplete gamma function. The probability to produce more than N molecules in time t equals:

h(c � N|t) =
Z t

0
G(c = N|t)dt. (S29)

The probability mass function for the production of N molecules at time t is given by:

h(c = N|t) = h(c � N|t)�h(c � N +1|t),

=
e�kst(kst)N

N!
,

(S30)

which is a Poisson distribution with mean kst. Of course, time can be interchanged by age, t = a.

8.5.6 mRNA copy number distribution of a sample of extant cells

The molecule copy number distribution of a sample of extant cells was earlier determined by22

p(n) =
Z T

0
u(a) · p(n|a)da,

=
Z T

0
u(a) · e�ks(a+T )(ks(a+T ))n

n!
da,

=
4(ksT )n(G[1+n,ksT + ln(2)]�G[1+n,2ksT + ln(4)]) ln(2)(ksT + ln(2))�1�n

n!
,

(S31)

with G[·] as the incomplete gamma function, u(a) as the cell age distribution for a population of cells with a deterministic
generation time T , and ks as the synthesis rate constant.
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8.5.7 Case Study 3: mRNA synthesis and degradation

Proteins are actively degraded into the cell, so we decided to extent our simple model with active degradation. Except for the
degradation rate, we used exactly the same settings (fourth column of Table S3) as in the example without active degradation.
The imprecise partitioning of molecules at cell division was, therefore, again the only contribution of cell growth and division
to non-genetic variability that was taken into account.

The results given in Fig. S15 show again an almost perfect agreement between stochastic simulation and analytical solutions
(species distribution of a sample of extant cells was numerically solved). The corresponding analytical solution can be found
below. Comparison of Figs. S14 and S15 shows that, as expected, adding active degradation results in lower mRNA copy
numbers at different ages in the lineage and also in the extant cell population.
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Figure S15. Molecule copy number statistics obtained for the mRNA synthesis and degradation model via the SSA
with cell growth and division are in agreement with analytical solutions. Simulation results are shown in colour, and analytical
solutions in black. (A) nmRNA copy number distributions at a = 0 and a = T . (B) three stochastic time trajectories of nmRNA fluctuate around its analytical
solution. (C) the extant nmRNA copy number distribution.

8.5.8 Analytical solutions: Case Study 3 mRNA synthesis and degradation

In the third case study, we considered a model consisting of a zero-order mRNA synthesis reaction and first order mRNA
degradation reaction, in exponentially growing cells. When we assume a deterministic generation time, the theoretical molecule
copy number distributions at a given age of this model are known22.

8.5.9 Poisson distributed molecule copy numbers at a specific age

With a synthesis and degradation reaction, the average mRNA copy number in a cell of a given age a depends on the mRNA
copy number at t = 0 and the net synthesis until time a. For a linear model with an constant production and degradation rate the
average copy number can be written as

hnai=

R T
0

⇣
hn0ie�kda + ks

kd
(1� e�kda)

⌘
da

T
, (S32)

where T is the (deterministic) generation time (T = ln(2)/µ) and hn0i as:

hn0i=
(ekdT �1)ks

(2eksT �1)kd
, (S33)

The copy number distribution at age a is given by a Poisson distribution (see22 for derivation)

na ⇠ Poisson
h
k(a)+

p(a) 1
2 k(T )

1� 1
2

p(T )
i

(S34)

with the number of molecules produced during a cell cycle as up until age a as k(a) = ks
kd
(1�e�kda) and the survival probability

of molecules as p(a) = ekda.
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8.5.10 Molecule copy-number distribution of a sample of extant cells

The molecule copy-number distribution of the sample of extant cells was determined by numerical solving:

x ⇠
Z T

0
p(x|a) ·u(a)da, (S35)

with the p(x|a) determined by Eq. (S34) and the age distribution, u(a), taken from27 in combination with a deterministic
generation time, which then for u(a) gives:

u(a) = 2µ · e�µ·a, a 2 [0,
ln(2)

µ
]. (S36)
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