
Supplementary Note 1 | Numerical modelling and simulations  

In this work, two basic simulation approaches describe in full detail the dynamic evolution of matter 

into plasma. We adopt Finite Element Method (FEM) and Magneto-Hydrodynamic (MHD) 

numerical schemes to model the transition of a metal wire from the solid to the plasma phase. The 

3D FEM simulations are performed using the commercial FEM code LS-DYNA1,2. The developed 

FEM approach combines the electromagnetic (EM), thermal, structural and hydrodynamic equations 

in a single coupled multiphysics model. The electromagnetic FEM coupling allows for the 

application of electrical currents on the wire to compute the associated magnetic and electric fields 

and determine the induced currents. The evolution of the electromagnetic fields is computed by 

solving the Maxwell equations using the Eddy-current (induction-diffusion) approximation2. The 

solution of these coupled phenomena allows for the calculation of the Lorentz force and the Joule 

heating, that are imported into the thermo-mechanical problem. Maxwell’s equations are solved by 

FEM3 for solid conductors, coupled with Boundary Elements (BEM)4 for the surrounding vacuum, 

based on discrete differential forms of Nedelec-like elements5. When the FEM simulation has 

reached the transition to the plasma phase, its output parameters are input to the 3D resistive MHD 

code PLUTO to study the plasma expansion dynamics. In particular, the results of the density, 

displacement and velocity from the multi-physics LS-DYNA analysis are coupled to the single fluid 

3D MHD modelling. PLUTO is a finite-volume/finite difference, shock-capturing code designed to 

integrate a system of conservation laws6,7. The workflow of the simulation is schematically described 

in Supplementary Fig. 1. 

 



Supplementary Figure 1 | Workflow of the simulation methods.	
  Coupling of the Finite Element Method (FEM) and 
Magneto-Hydrodynamic (MHD) numerical schemes. 
 

Supplementary Note 1.1. | FEM modelling 

The Lagrangian FEM model combines the electromagnetic, thermal and structural equations in a 

single coupled multiphysics simulation able to compute the transition of the metal wire from the 

solid to the plasma phase. The electromagnetic fields are computed by solving the Maxwell 

equations, with the Eddy-current (induction-diffusion) approximation. FEM is used for modelling the 

conductors coupled with Boundary Element Method (BEM) for the surrounding vacuum. When the 

electromagnetic fields are computed, the Lorentz force F=j×B, where j is the current density and B 

the magnetic field induction, is evaluated at the element nodes and added to the mechanical FEM 

solver that returns the deformation of the wire. The computed geometry is used for the calculation of 

the EM field evolution. The Joule heating power term (j2/σ, where σ is the electrical conductivity) is 

added to the thermal solver and the temperature is updated.  

  



Maxwell equations written in a quasi-stationary approximation and complemented with Ohm's law 

have the form: 
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where E is the electric field strength, js is the source current density and µ0 is the permeability of 

vacuum. The mechanical solver is used to solve the hydrodynamic equations (3-5) that describe the 

laws of conservation of mass, the Cauchy momentum and energy:  
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where ρ is the density, v is the velocity, σij is the stress tensor, E energy and η the electrical 

resistivity. The stress tensor is represented by the index notation σij, where the first index refers to the 

face of the element being considered, and the second index refers to the direction of the stress. In 

order to calculate the stress tensor, the strain rate tensor, which describes the rate of change of the 

deformation of a material, is calculated:  
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Stress changes are related to the strain rate through the shear modulus G: 
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where sij is the deviatoric stress tensor, the stress tensor without the contribution from hydrodynamic 

pressure and δij is the Kronecker delta function.  

Moreover, the thermal equation: 
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is solved by the thermal solver. cp is the heat capacity, T temperature, k thermal conductivity and Lm 

latent heat of melting.  

The dimensions of the wire in our simulations correspond to that of the real metal wire targets in the 

experiments.	
  In Supplementary Fig. 2 a schematic of the 3D FEM model is depicted with an inset of 

a close view to its cross-section. As presented, hexahedral 8-node elements with one-point 

integration are chosen to carry out the FEM simulation. A small element size is used in the radial 

direction in order to accurately simulate the dynamic phase change of the metallic material both in 

the region of the skin depth and in the core region, where large compressive stresses are observed. A 

small element size is also used in the longitudinal direction in order to resolve the growth of the 

instabilities. The total number of elements for a 15 mm wire with a 0.15 mm radius was determined 

from different mesh discretization test cases to produce a mesh independent solution. Approximately 

140000 elements were used (5 µm element length along radial direction and 50 µm along vertical 

direction) with 14000 BEM faces (shell elements) modelling the wire exterior. Test cases with high 

discretization densities in the mesh along the longitudinal axis direction of the wire were used so as 

to eliminate the possibility of numerical errors in the results. By increasing the finite elements 

number, along the longitudinal direction, we optimised the longitudinal discretization at 50 µm per 

element. For this element size, the wavelength of the observed instabilities remains the same in the 

range of 200 to 250 µm. With respect to the boundary conditions, the ends of the wire are at constant 

environmental temperature of 27 oC. The initial temperature of the simulation domain is also 

considered to be 27 oC and the wire is initially considered to be non-deformed. The loading source 

term is the pulsed current, as measured and recorded during the real experiments, with a peak of 40 

kA and a rise time of 60 ns. The current waveform, as depicted in Figure 1 of the paper, is applied to 

the ends of the wire. The coupled multiphysics time-dependent problem is solved with an 

incremental time step of 0.1 ns for all solvers, in order to satisfy the conditions for time step control1.  



 
Supplementary Figure 2 | Model mesh and geometry. 3D FEM model of the wire and zoomed view of the cross-
section and the Equations Of State (EOS) regions. 
 

The material properties used in the simulations are based on the analytical Gruneisen8 and 

tabular multiphase Equations Of State (EOS)9. These are coupled with a Johnson-Cook10 strength 

material model for the study of the elastoplastic effects. The Burgess11 EOS is used to determine the 

electrical resistivity as a function of temperature and density. Temperature dependent properties of 

the thermal expansion, thermal conductivity and specific heat, as well as the latent heat of melting 

are also taken into account. In the skin depth region, the pressure and temperature increase rapidly 

and the material reaches the melting or vaporization temperatures faster than the remaining part of 

the wire. Higher temperatures and lower densities are the main characteristics of this part of the wire. 

In contrast, the core region of the wire is characterized by high values of plastic strain, strain-rate, 

lower temperatures, and higher densities. Due to the wide ranges of temperature and density that 

have to be considered for the complete description of all the states of the matter, a SESAME-type 

tabular EOS is used because the Grüneisen equation has limitations in the expanded vapour zone. 

The Copper (Cu) EOS9 is multi-phase and allows for the description of all the states of the matter: 

solid, liquid, gas, plasma and their transitions. In the initial phase, the Grüneisen EOS is used for the 

whole volume of the wire. The cross-section of the wire, as shown in Supplementary Fig. 2, is 

divided into three regions as defined	
  by the feedback of preliminary numerical simulation using the 



1.113×1011	
   3.019×1011	
   2.088×1011	
  

Grüneisen EOS. In region 1, where high stresses exist and temperature gradients are not very high, 

the Grüneisen EOS is used. The SESAME-type EOS for Cu is used for the regions 2 and 3 that 

correspond to the skin depth region. In these regions, the limits of the variables of temperature, 

density and pressure when the multiphase EOS is used were also defined by the feedback of 

preliminary numerical simulation using the Grüneisen EOS. The SESAME-type EOS tabular data of 

pressure in relation to energy1 are interpolated for each density	
  by a polynomial of the form:  
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where C0 to C6 unknown set of parameters. A plot is created of the function P=P(E) for each density	
  

of the tabular data	
   and the slope is evaluated. The slopes are then fitted with a second order 

polynomial to obtain the coefficients (C4 to C6) of the thermal part PT(µ,Ε), where µ=(ρ/ρ0)-1 (ρ0	
  is 

the reference density of the non-deformed state). The curve P-µ at the lower temperature of the 

tabular data is interpolated to obtain the coefficients of the cold curve PC(µ)12. The parameters used 

in regions 2 and 3 are summarized in Supplementary Table 1.   

 C0 (Pa) C1 (Pa) C2 (Pa) C3 (Pa) C4 C5 C6 
Region 2 

-2.176×108    
1.076 1.667 -0.039 

Region 3 2 4.145 2.2 

Supplementary Table 1 | Multiphase Equation Of State parameters 

 

Supplementary Note 1.2. | MHD modelling 

We study the plasma expansion dynamics using the resistive Eulerian MHD code PLUTO. 

The results of the density, displacement and velocity from the multi-physics LS-DYNA analysis are 

coupled to the 3D MHD modelling.  

PLUTO is a finite-volume/finite difference, shock-capturing code6,7,13 which solves the following 

system of the conservation laws of continuity, momentum, energy as well as the Faraday’s law:  

-2.176×108	
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where m=ρv is the momentum density, pt is the total pressure (magnetic and thermal). An ideal gas 

EOS is considered, as well as Spitzer resistivity14. A structured mesh approach for the solution of the 

system of conservation laws is adopted. An equivalent set of primitive variables (mass density, 

velocity, pressure and magnetic induction) is used for assigning initial and boundary conditions. 

Flow quantities are discretized on a logically rectangular computational grid enclosed by a boundary 

and augmented with guard cells or ghost points in order to implement boundary conditions on a 

given computational stencil. Numerical integration of the conservation law, is achieved through 

shock-capturing schemes using the Finite Volume (FV) formalism where volume averages evolve in 

time. These methods are comprised of three steps: an interpolation routine, followed by the solution 

of Riemann problems at zone edges and a final time evolution stage.  

Three regions are initially considered; a cylindrical fluid region, a cylindrical plasma region, 

and a cylindrical vacuum region. With respect to the 3D grid creation, discretization that ranges from 

4-8 µm is used in our model along the radial and azimuthal direction, while a discretization of 2-4 

µm is used for the longitudinal direction. The whole grid domain has a number of cells that ranges 

from 3×106-12×106 as presented in Supplementary Fig. 3. Concerning the assigned boundary 

conditions, the physical ghost zones of the computational domain outflow conditions are specified 

and a zero gradient of the flow quantities across the boundary are considered. 

The density distribution, the displacement and the velocity outputs from the LS DYNA 

simulation when plasma is formed is coupled in PLUTO MHD code. The observed displacement 

instabilities in LS DYNA are imported as initial seed in PLUTO and their evolution is traced. At 



every solution time step a restart analysis in PLUTO is performed coupling the new outcome data 

(density, displacement and velocity) from LS-DYNA.  

 
 
Supplementary Figure 3 | 3D grid. The structured grid of the 3D MHD model of the wire.  
 

Supplementary Note 2 | Experimental validation methods 

We use optical laser probing diagnostics such as shadowgraphy, schlieren, interferometry and 

Fraunhofer diffraction imaging, for diagnosing the spatio-temporal dynamics of the wire. The 

modified Fraunhofer diffraction optical probing method with high spatial resolution (~1 µm) is 

employed to determine the expansion of the wire before plasma formation. The combination of the 

above optical probing diagnostics also provides information for the early time history of the plasma 

formation including information on the phase change.  

Experiments are performed using a Z-pinch, pulsed power device, that produces a peak current 

of 40 kA with a rise time of 60 ns. The Z-pinch device consists of a Marx bank of 600 J energy 

capacity, a water-filled pulse forming line (PFL) and a self-breaking SF6 spark-gap switch. The Cu 

wire is placed in a vacuum chamber evacuated to a pressure of 10-4 mbar. The wire is fixed by 

soldering it to conical shaped Cu electrodes. A V-dot probe measures the derivative of the voltage at 

the PFL and a Rogowski groove measures the derivative of the current passing through the wire. The 

signals are recorded using a fast digital oscilloscope.  The second harmonic of a SBS-compressed 

Nd:YAG, Q-switch laser with 150 ps pulse duration, is used for the optical probing diagnostics. This 



enables sub-nanosecond resolution time resolved measurements of the wire’s dynamics. In 

Supplementary Fig. 4 the electro-optical diagram of the experiment is presented.  

 
Supplementary Figure 4 | Electro-optic diagram of the experiment.	
  Trigger signal from the laser control unit triggers 
the MARX bank, which provides a negative polarity high voltage output to PFL. When the voltage becomes equal to the 
breakdown voltage of the spark-gap switch, the current begins to flow through the wire to the anode. The V-dot output 
triggers the laser output while the delay unit defines the time delays used for the image capturing.  
 

Shadowgraphy is used for the evaluation of the plasma instabilities along the wire. A Mach-

Zehnder interferometer in finite-fringe mode is also used for plasma density measurements. For the 

schlieren imaging, a knife-edge is used at an orientation parallel to the wire at the focal length of the 

imaging lens so that is possible to distinguish the light deviation caused by plasma domination from 

that caused by neutral Cu vapors15. The formation of coronal plasma is determined from the bright 

light that appears on the same side of the wire as that where the knife-edge is placed16. In 

Supplementary Fig. 5 the set-up for the optical laser probing diagnostics is presented.  

 



 

Supplementary Figure 5 | Experimental set-up. Optical laser probing diagnostics: Shadowgraphy, schlieren, 
interferometry and Fraunhofer diffraction imaging. 

 

Supplementary Note 3 | Additional data  

Supplementary Note 3.1. | Before plasma creation 

As mentioned above, a modified Fraunhofer diffraction diagnostic is used to investigate the change 

in the wire’s diameter before plasma formation. It is operated so that the 150 ps, 532 nm, laser beam 

which probes the wire forms the Fraunhofer diffraction pattern at the focal distance of the lens. The 

diffraction pattern is recorded on a CCD camera. The focal spot of the laser beam is shifted just out 

of the CCD’s frame to reveal the second and higher order fringes at the image. The recorded 

diffraction image is compared to the reference image, captured before the shot to reveal the 

expansion of the wire. The diameter d, of the wire, is calculated by fitting a sinc2(x) function since 

the diffraction intensity is proportional to sinc2(πds/fλ), where f is the focal length of the lens, λ is the 

wavelength of the laser and s is the real diffraction pattern length on the CCD17. Although the 

simplified expression gives a systematic overestimation of the wire’s diameter, measurements 



comparative to its initial value are very accurate, i.e., a small expansion can be measured with very 

high accuracy17-19. Supplementary Fig. 6 shows the lineout along the axis of the diffraction pattern at 

140 ns from the current start, just before gas formation, compared to the reference (wire diameter 

before shot). The function and the results (errors are in the parenthesis) are shown in the inset. The 

measured diameter compared to the initial measurement shows an expansion of 7.4 (±0.8) µm. At 

that time the simulation gives an expansion of 7 µm. An average radial expansion rate of 65 (±1) m s-

1 is experimentally measured while simulation results give a radial expansion rate of 60 m s-1. 

 
Supplementary Figure 6 | Fraunhofer diffraction method analysis. Laser probing diffraction pattern image (a) and 
the lineout intensity plot along the axis of the fringes (b) at 140 ns from the current start and at a time before the shot. 
 

Simulation results from LS-DYNA show a significant deformation at the ends of the wire before 

plasma formation. In Supplementary Fig. 7 the behaviour at the end of the wire is depicted at 100 ns 

(Supplementary Fig. 7b).  The initial un-deformed target before the interaction is also shown 



(Supplementary Fig. 7a). The physical parameter of the plastic strain is shown in the longitudinal 

cross-section of the deformed geometry of the wire. This behaviour agrees with the experimental 

results where plasma usually appears first at the bottom of the wire where cathode is. An 

interferometric image is presented in Supplementary Fig. 7c with a zoomed detail at wire’s end 

(cathode), where the shift of the fringes indicates the existence of vapour before plasma formation. In 

addition a larger diameter of the wire is shown at the cathode addressing the same behaviour as in the 

simulation.  

Supplementary Figure 7 | Matter’s behaviour at the end of the wire. Computed deformation (b) of the created 
instabilities at the end of the wire, at 100 ns from current start. The interferometric image (c) is recorded just before 
plasma formation. 

 
Supplementary 3.2. | In the plasma regime 

In Supplementary Fig. 8 shadowgraphy, schlieren and interferometry images additional to the main 

manuscript are presented at 210 and 240 ns. The corresponding reference pre-shot images for each 

case are also shown. In the reference schlieren images the light along both edges of the wire is due to 

diffraction. After the shot, the bright light on the left and the darkening on the right side of the wire 

reveal the existence of coronal plasma (a knife edge parallel to the wire’s axis was placed as a 

schlieren stop16). The fringes on the interferograms are shifted due to the plasma formation. At 210 

ns the fringes are aligned transversely to wire’s axis while at 240 ns the fringes are aligned parallel to 

the wire. The first mode is convenient for the evaluation of the radial expansion and the electron 



density of the plasma, while the second one allows for the measurement of the wavelength of the 

plasma instabilities along the wire.  

	
  
Supplementary Figure 8 | Plasma diagnostics. Experimental shadowgraphy, schlieren and interferometry images at 
210 and 240 ns and their corresponding reference images. 
 

The dominant average axial wavelength of instabilities in the coronal plasma 210 ns is 

measured to be 270 μm and the simulation computes it to be 255 μm, while 30 ns later is measured 

to be 600 μm and the simulation computes it to be 575 μm. The excellent agreement with the 

simulation for the whole spatiotemporal dynamics of the observed plasma evolution validates the 



developed multiphysics model.  

Here, we present resulting data of our MHD simulation studies - uncoupled from the thermo-elasto-

plastic phase of the target – where the MHD is initiated by an artificial externally seeded perturbation 

function either sinusoidal, random or multispectrum periodic. These data are compared with those 

obtained when the real thermo-elasto-plastic seed is used as initial seed. Supplementary Figs 9 and 

10 present plasma density contour plots at two different times showing the spatial distribution 

dynamics of the plasma density. For comparison, Supplementary Figs 9(a) and 10(a) present results 

when the real thermo-elasto-plastic seed is used as initial perturbation. It is shown that only when the 

real thermo-elasto-plastic seed is used the simulation results match the experiments. All other results 

show different instability structure that differs significantly from the experiments. These results 

clearly demonstrate how crucial is to consider the real intrinsic physical properties of the target when 

studying plasma instabilities. 

 
 

Supplementary Figure 9 | Plasma density contours at 210 ns from the current start. (a): initial perturbation seed is 
produced by the real thermo-elasto-plastic dynamics of the material (our study), (b, c, d): the seed is generated by an 
artificial sinusoidal function with 1.5 larger (b), equal (c) and 1.5 smaller (d) wavelength but same amplitude as in (a), 
are used respectively as initial seed. (e, f, g): random seed perturbation functions (e, f) and a multispectrum periodic 
function (g) are used as initial seed respectively. Indicatively the function in (g) is: cos(x)+0.5cos(3x+23)+cos(5x-
0.4)+0.5cos(7x+2.09)+0.5cos(9x-3) and is plotted in Supplementary Fig. 11. 
 



 

Supplementary Figure 10 | Plasma density contours at 240 ns from the current start. (a): initial perturbation seed is 
produced by the real thermo-elasto-plastic dynamics of the material (our study), (b, c, d): the seed is generated by an 
artificial sinusoidal function with 1.5 larger (b), equal (c) and 1.5 smaller (d) wavelength but same amplitude as in (a), 
are used respectively as initial seed. (e, f, g): random seed perturbation functions (e, f) and a multispectrum periodic 
function (g) are used as initial seed respectively.  
 

 
Supplementary Figure 11 | Multispectrum periodic function. Plotted function: cos(x)+0.5cos(3x+23)+cos(5x-
0.4)+0.5cos(7x+2.09)+0.5cos(9x-3) which serves as initial density perturbation in Supplementary Figs 9g and 10g. 
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Supplementary Note 4. | Future research on the seeding mechanisms of plasma 

instabilities  

As stated in the main manuscript, our proof-of-principle study is not aiming to discuss in 

details aspects of plasma instabilities such as the kind of instability, the growth rates, the 

wavelengths etc., but to present the physics that needs to be considered at the very first moments 

within the Joule heating taking into account the intrinsic real physical properties of the target. 

Adaptation of our multiphysics methodology to known instabilities such as, for example, the 

electrothermal instability (ETI) – which begins to grow immediately after the heating source is 

applied onto the solid target – is the purpose of future work. However, here we give an introductory 

discussion identifying the frame for the specialization of this work for the study/modification of 

prompt instabilities such as the electrothermal instability (ETI) in the linear or non-linear magnetic 

diffusion regime. 

When a material with temperature-depended electrical resistivity is Ohmically heated it can 

be subject to the development of ETIs, where a temperature perturbation due to Joule heating can 

grow in time and space20-36. An ETI is a prompt instability, begins to grow immediately after the 

heating source is applied and persists as the outer part of the target expands rapidly. If dη/dT > 0 

(where η is the electrical resistivity and T the temperature of the material) thermal instabilities give 

rise to layered structures called strata, which are developed normal to the current flow25-27,31-34,37-40. 

This type of instability dominates at current densities greater than 107 A cm-2. Sometimes this 

instability is also referred to as overheat instability32,41. On the other hand when dη/dT < 0 as for 

example in the Spitzer resistivity of a plasma, ΕΤΙs give rise to filamentation of the current flow into 

channels21,35. Furthermore, it is very well known that during an electrical explosion the material 

undergoes all phases of matter from solid to plasma. The ETI has become the subject of active 

research due to its importance as a potential seed mechanism for the Magneto-Rayleigh-Taylor 

(MRT) instability growth.  The growing ETI gives rise to pressure nonuniformities at the surface 



acting as the potential seed for the MRT instability, which appears when the magnetic pressure 

increases up to the point able to oppose the rapid expansion of the material. At this point, the MRT 

instability – also known as flute instability – begins to grow seeded by the ETI of the previous 

phase43.  

Other studies have pointed out the importance on the development of ETI of the nonlinear 

magnetic diffusion into the target during electrical explosions 26,42. During an electrical explosion of a 

conductor at the skin effect mode the formation of a dense low temperature plasma at the surface of 

the conductor is accompanied by the generation and propagation of a shock wave and a nonlinear 

magnetic diffusion wave (NMDW). For the majority of metals the magnetic induction threshold 

above which a NMDW can take place is a few hundreds of kGauss. In this case the NMDW 

propagates in the conductor together with the shock wave generated at the surface.  As time 

progresses, the magnetic diffusion rate increases due to the increase of the electrical resistivity of the 

metal. It was shown that when a NMDW propagates through a conductor the long wavelength modes 

of the ETI are suppressed and that the short wave modes of ETI can be unstable26,42-43. Recent studies 

with the inclusion of heat conduction, shock-wave propagation as well as viscous damping, also 

exposed the crucial role of the ETI to the growth of the MRT instability26,42-43. It was also proposed 

that in pulsed power magnetic liners the initial seed of the MRT instability growth is the 

electrothermal instability44 and not the surface roughness. Experiments showed results on the 

mitigation of the growth of the MRT instability on metallic rods and liners when dielectric coatings 

were applied at the surface to mitigate the ETI seed33-34.  

Therefore, it is clear and widely recognized by the scientific community21,42,45 that the 

complexity of such a multiphysics problem builds serious difficulty for the simulations on 

magnetically driven and laser ICF implosions, to successfully incorporate the realistic physical initial 

conditions of the targets. Up-to-date all studies were limited to the coupling of properties of the solid, 

among others the resistivity, the heat conduction, the magnetic diffusion, the viscous damping and 



the stress tensors, to the system of the MHD equations. These studies treat the target at its initial 

condition as an MHD fluid having a solid density, including terms to comprise some of the physical 

properties of the solid material.   

Early stage results of the application of our approach for the study of the ETI for our 

experimental conditions show that the growth rates of this instability - which serves as the seed for 

the MRT instability - is at least one order of magnitude larger than those found in the literature. This 

difference is due to our treatment of the target as an electro-thermo-mechanical system, that takes 

into account the target’s mechanical and physical properties. The inclusion of the material’s 

mechanical properties modifies the ETI into an instability, which for future reference we choose to 

call it electro-thermo-mechanical (ETM) instability.  
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