Liraglutide restores chronic ER stress, autophagy impairments and apoptotic signalling in SH-SY5Y cells

Theodora Panagaki¹, Maria Michael¹, and Christian Hölscher^{1,*}

 $^1 \rm Biomedical \&$ Life Sciences Division, Lancaster University, Lancaster, LA
1 4YG, UK $$^* \rm c.holscher@lancaster.ac.uk$

Supplementary Information

Target	Modification Site	$\mathbf{Mean}\pm\mathbf{SEM}$				One-way ANOVA	
		CNTRL	LIRA	TG	TG + LIRA	F	p
Stat1	Tyr 701	1.00 ± 0.178	1.36 ± 0.106	1.02 ± 0.162	1.38 ± 0.194	(3, 28) = 1.619	0.2072
Akt	Ser 4731	1.00 ± 0.214	1.42 ± 0.241	0.867 ± 0.151	1.23 ± 0.160	(3, 28) = 1.575	0.2174
$AMPK\alpha$	Thr 172	1.00 ± 0.201	0.962 ± 0.191	0.666 ± 0.056	0.619 ± 0.052	(3, 28) = 1.870	0.1575
S6 Ribosomal	Ser $235/$	1.00 ± 0.1664	0.813 ± 0.095	0.733 ± 0.096	0.958 ± 0.076	(3, 28) = 1.203	0.3268
Protein Kinase	236						
mTOR	Ser 2448	1.00 ± 0.107	1.02 ± 0.122	0.70 ± 0.103	1.15 ± 0.190	(3, 27) = 2.018	0.1351
HSP27	Ser 78	1.00 ± 0.241	0.970 ± 0.145	0.609 ± 0.082	0.635 ± 0.128	(3, 28) = 1.727	0.1841
p70 S6K	Thr 389	1.00 ± 0.103	0.863 ± 0.062	0.930 ± 0.122	0.807 ± 0.115	(3, 28) = 0.6552	0.5864
PRAS40	Thr 246	1.00 ± 0.176	0.925 ± 0.138	0.712 ± 0.077	0.798 ± 0.102	(3, 28) = 0.9936	0.4102
p38	Thr $180/Tyr \ 182$	1.00 ± 0.212	1.03 ± 0.227	0.662 ± 0.140	1.16 ± 0.165	(3, 28) = 1.261	0.3068
SAPK/JNK	Thr $183/Tyr \ 185$	1.00 ± 0.183	1.03 ± 0.164	0.89 ± 0.078	0.87 ± 0.111	(3, 28) = 0.3143	0.8149
Caspase 3	Asp 175	1.00 ± 0.0782	0.98 ± 0.119	1.35 ± 0.149	1.06 ± 0.047	(3, 28) = 2.561	0.0750

Table S1: Protein expression of additional signalling targets included in the PathScan[®] Intracellular Signaling Array kit. Twenty-four hours post seeding, SH-SY5Y cells were serum starved for 8 h and treated with 0 or 100 nM of thapsigargin (TG) for 16 h, in the presence or absence of 100 nM Liraglutide (LIRA). Cells were harvested, and 0.3 mg mL^{-1} protein of whole-cell lysate was processed with the PathScan[®] sandwich immunoassay. All samples per experiment were processed in duplicate. Data is expressed as fold change to the control (CNTRL; unstressed/untreated conditions) from four independent experiments.

Figure S1: Chronic disturbance of ER calcium homeostasis does not affect the expression levels of the pro-survival Bcl-2 protein. Twenty-four hours post seeding, SH-SY5Y cells were serum starved for 8 h and treated with 0 or 100 nM of thapsigargin for 16 h, in the presence or absence of 100 nM Liraglutide. Cells were harvested, and Bcl-2 expression was determined by western blotting. β -Actin was used as the loading control to the western blot analysis. Each bar represents mean \pm SEM from four independent experiments. Data is expressed as fold change to the control (CNTRL; unstressed/untreated conditions). Data was analysed by one- and two-way ANOVA, followed by *post hoc* Bonferroni's multiple comparison t-test.