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1 Supplementary methods 

1.1 Administered questionnaires 

PG subjects were diagnosed using the German short questionnaire for gambling behavior 

questionnaire (Kurzfragebogen Spielsucht, KFG) (cutoff ≥ 16) (Petry and Baulig, 1996), 

internal consistency, i.e. Cronbach’s Alpha = 0.79, retest reliability 2 weeks = 0.80 (Petry, 

1996). According to the KFG 4 subjects displayed mild, 14 subjects medium and 1 subject 

severe PG. Otherwise, any known history of a neurological disorder or a current psychological 

disorder (except substance abuse and tobacco dependence) as assessed by the screening of the 

Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-I) (First et al, 2002) lead to 

exclusion from the study. For matching purposes subjects completed the Wechsler Intelligence 

Test for Adults (WAIS) matrices test (Wechsler, 1997) and they were asked to indicate age, 

smoking status, amount of personal debt and monthly personal income. Furthermore, they were 

asked to indicate their level of education and handedness (Oldfield, 1971). For further 

characterization of the three groups subjects also completed Beck's Depression Inventory (BDI-

II) (Beck et al, 1996) and the Barratt Impulsiveness Scale Version 10 (BIS-10) (Patton et al, 

1995). 
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1.2 Reaction times 

Reaction times were submitted into a linear mixed effects model with random effects (Bates et 

al, 2015b), where centralized gain, centralized loss, absolute Euclidean distance were fixed 

effects and also allowed to vary randomly per subject, using the lmer function in lme4 in R. In 

a second model fixed effects of gain and loss were modulated by group. Both models were 

compared using the anova function in R performing a Chi-Square-Difference test. Post-hoc t-

tests were performed using Satterthwate's approximations implemented in lmerTest 

(Kuznetsova et al, 2016). 
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1.3 The behavioral model 

Several models (within subject) were considered to model the behavioral data. The model by 

(Tom et al, 2007) but with Euclidean distance (lae, 𝑣𝑎𝑙𝑢𝑒 =  𝛽0 +  𝛽𝑔𝑎𝑖𝑛 ∗ 𝑔𝑎𝑖𝑛 +  𝛽𝑙𝑜𝑠𝑠 ∗

𝑙𝑜𝑠𝑠 + 𝛽𝑒𝑑 ∗ 𝑒𝑑), the original model by (Tom et al, 2007) used in the current study (la, 

𝑣𝑎𝑙𝑢𝑒 =  𝛽0 +  𝛽𝑔𝑎𝑖𝑛 ∗ 𝑔𝑎𝑖𝑛 +  𝛽𝑙𝑜𝑠𝑠 ∗ 𝑙𝑜𝑠𝑠), the ratio model (Gelskov et al, 2016) (lar, 

𝑣𝑎𝑙𝑢𝑒 =  𝛽0 +  𝛽𝑟𝑎𝑡𝑖𝑜 ∗ 𝑟𝑎𝑡𝑖𝑜) and the De Martino/Charpentier model (Charpentier et al, 

2015; De Martino et al, 2010) (lac, 𝑣𝑎𝑙𝑢𝑒 =  1 ∗ 𝑔𝑎𝑖𝑛 +  𝜆 ∗ 𝑙𝑜𝑠𝑠). Value was subjected to a 

two-options softmax function 𝑃(𝑎𝑐𝑐𝑒𝑝𝑡 =  1) = (1 + exp(−𝜇 ∗ 𝑣𝑎𝑙𝑢𝑒))−1 (Charpentier et 

al, 2015; Sutton, 1998) with 𝜇 = 1 (logistic function) or with 𝜇 as a free parameter (choice 

consistency, i.e. for model lac). Note that lac’s value function can be rewritten as 𝑣𝑎𝑙𝑢𝑒 =  𝜇 ∗

𝑔𝑎𝑖𝑛 +  𝜇 ∗ 𝜆 ∗ 𝑙𝑜𝑠𝑠, which then is submitted to the logistic function without any free 

parameter. Lac is hence a logistic regression like la but without an intercept 𝛽0, with 𝛽𝑔𝑎𝑖𝑛 =

 𝜇 and 𝛽𝑙𝑜𝑠𝑠 =  𝜇 ∗ 𝜆 (hence 𝜆 =  𝛽𝑙𝑜𝑠𝑠/ 𝛽𝑔𝑎𝑖𝑛). Inversely, in la, lae 𝛽𝑔𝑎𝑖𝑛 may be seen as 

𝜇 because one can write for la (and accordingly for lae) 𝑣𝑎𝑙𝑢𝑒 = (𝛽0 + 1 ∗ 𝑔𝑎𝑖𝑛 +  𝜆 ∗

𝑙𝑜𝑠𝑠) ∗ 𝜇 , from which follows 𝛽𝑔𝑎𝑖𝑛 =  𝜇 and 𝛽𝑙𝑜𝑠𝑠 =  𝜆 ∗ 𝜇 and hence again 𝜆 =  𝛽𝑙𝑜𝑠𝑠/ 𝛽𝑔𝑎𝑖𝑛.  

To perform model comparison we estimated each model using the glmer function in lme4 (Bates 

et al, 2015b) in each group separately or with all groups together using group as a between 

subject fixed effect, respectively. From the glmer models we could simply note down the 

Aikaike Information Criterion (AIC) values and computed mean AIC values, so that all reported 

AIC values are always “mean AIC per subject” values. Only this way AIC values can be 

compared between groups, because the groups have different sizes (Table S1). 
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The la model had the lowest mean group AIC value (i.e. best model), also reflected in the 

likelihood ratio tests comparing all models to lae (Table S1). We thus chose for the analyses in 

the main text the la model. We used mixed effects modeling because it yields more robust 

single-subject parameter estimates and also mixed effects modeling is designed to estimate 

group fixed effects (Bates et al, 2015a). 

We computed 𝜆′𝑠 per model and correlated them. The lambdas of la correlated well with 𝜆’s of 

all other considered models (Table S2). We also computed mean 𝜆 values per group and model 

and performed group comparisons. For this we extracted the fixed effects and random effects 

and added them and computed one 𝜆 values per subject and model. Note that this is a different 

but very fast method to estimate the fixed effect of loss aversion (𝜆) and get standard errors of 

the parameters. This method was only used here, not in our main analysis, where we 

bootstrapped parametrically the p-values for group comparisons of fixed effects of 𝜆. Note that 

all models yielded the same expected group differences (Table S3). 
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Table S1: AIC values of different LA models split by group 

Model df HC PG AD 
mean of 

group AICs 
complete 

model AIC 
Likelihood ratio test against 

lae 

lae 22 91.7 103.1 127.9 107.5 106.81 - 

la 15 91.5 102.6 127.8 107.3 106.78 ΔLL = -6.2, Δdf = -7, 0.084 

lar 9 99.4 107.2 134.1 113.6 112.63 ΔLL = 161.4, Δdf = -13, p<0.001 

lac 12 140.0 132.1 152.1 141.4 135.09 ΔLL = 1421, Δdf = -20, p<0.001 

ΔLL is difference in log-likelihood, negative values mean it is a better fitting model than lae, positive 
values mean it is a worse fitting model; df is degrees of freedom of complete model; Δdf is the 
difference in degrees of freedom, i.e. difference in estimated parameters;  
 

Table S2: Spearman correlation coefficients of 𝜆 estimates of different models across all groups. 

λ lae la lar lac 

lae 1 0.99 0.6 0.95 

la  1 0.53 0.98 

lar   1 0.43 

lac    1 

0 means n.s. Spearman correlation 

Table S3: Mean 𝜆 values per group and model. 

 HC PG AD p(HC > PG) p(HC > AD) p(PG > AD) 

lae 2.33 1.09 1.16 0.020 0.030 0.789 

la 2.29 1.15 1.21 0.028 0.040 0.804 

lar 2.04 1.64 1.62 0.018 0.012 0.905 

lac 2.19 1.19 1.26 0.032 0.049 0.761 

p’s are p-values of two-sample t-tests  
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1.4 MRI data acquisition and preprocessing 

Scanning was performed with a 3-Tesla clinical whole-body magnetic resonance tomograph 

(MR Magnetom Tim Trio, Siemens, Erlangen, Germany) equipped with a standard 12-channel 

phased-array head coil at Charité – Universitätsmedizin Berlin. In the T2*-sensitive Gradient-

Echo Echo-Planar Imaging (GE-EPI) sequence used during the loss aversion (LA) task, 39 

slices covering the whole brain were acquired in an interleaved order and ascending acquisition 

direction (TR=2.5s, 3mm thickness, 0.5mm inter-slice gap, TE: 35ms, flip angle: 80°, in-plane 

resolution: 64 x 64 pixels, voxel size: 3.5mm x 3.5mm x 3.0mm). Before the GE-EPI sequence, 

a T1-weighted 3D structural image for anatomical referencing (Magnetization Prepared Rapid 

Gradient Echo, MPRAGE, voxel size: 1mm x 1mm x 1mm) and a B0 fieldmap for image 

distortion correction were recorded. Imaging data were processed with Statistical Parametric 

Mapping (SPM12, http://www.fil.ion.ucl.ac.uk/spm/, Wellcome Department of Imaging 

Neuroscience, London, UK) running on MATLAB (version: R2014a, Mathworks, Sherborn, 

MA, USA). The GE-EPI images of every subject were corrected for differences in slice 

acquisition time. GE-EPI images were registered to the mean GE-EPI image. Fieldmaps were 

used to unwarp non-linear image distortions caused by B0 inhomogenities (Andersson et al, 

2001). The T1 image was co-registered to the unwarped mean GE-EPI image using affine 

spatial transformation. The T1 image was then segmented into tissue classes and transformed 

into the Montreal Neurological Institute-standard space (MNI). This process yielded linear and 

non-linear parameters for the transformation between individual and standard space, which 

were applied to all unwarped EPI images. EPI images were resampled to a voxel size of 3.5mm 

x 3.5mm x 3.5mm. Finally, these images were spatially smoothed with an isotropic Gaussian 
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kernel (full-width-at-half maximum 8mm). Additionally, we used the VBM8 toolbox (Kurth et 

al, 2010) to segment T1 images into tissue classes. Gray matter tissue probability maps (TPMs) 

were than warped into standard space, spatially smoothed and down sampled to a voxel size of 

3.5mm x 3.5mm x 3.5mm to match the resolution of our functional images. These gray matter 

TPMs then represent local gray matter volume or local gray matter density (GMD) (Good et al, 

2002), irrespective of overall brain size, and lend themselves for BPM analysis.  
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1.5 The fMRI single-subject model 

Additionally, the head motion parameters obtained during motion correction were entered into 

the model to account for signal fluctuations caused by the interaction of movement and 

susceptibility (Morgan, Dawant, Li, & Pickens, 2007). After high pass filtering (cut off 

frequency = 1/128 Hz) and the elimination of high frequency noise by autoregressive (AR(1)) 

modeling, the General Linear Model (GLM) was fit to the preprocessed EPIs using a restricted 

maximum likelihood algorithm. Only gray matter voxels according to the SPM12 gray matter 

template (p > 0.2) were considered. 
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1.6 The network of interest (NOI) 

Our NOI consisted of cortical and limbic areas derived from relevant LA and related studies 

(Aron et al, 2014; Basten et al, 2010; Canessa et al, 2013; De Martino et al, 2010; Gelskov et 

al, 2016; Levy and Wagner, 2011; Litt et al, 2008; Sokol-Hessner et al, 2013; Tom et al, 2007; 

Venkatraman et al, 2011). Specifically, the NOI included caudate, putamen, accumbens region, 

VLPFC, medial frontal cortex for ventral medial prefrontal cortex (VMPFC), orbital gyrus, 

amygdala, anterior cingulate, insula, DLPFC, ventral tegmental area/midbrain (VTA), dorsal 

raphe nucleus (DRN). The NOI was created using labels according to the SPM12’s 

Neuromorphometrics Inc. atlas (see Table S5). 

Table S4: Overview of SPM12 ROIs used for NOI. 

SPM12’s atlas label Also referred to as 

Right Accumbens Area ventral striatum (VS) 
Left Accumbens Area ventral striatum (VS) 
Right Putamen  
Left Putamen  
Right Caudate  
Left Caudate  
Right ACgG anterior cingulate gyrus  
Left ACgG anterior cingulate gyrus  
Right Amygdala  
Left Amygdala  
Right AOrG anterior orbital gyrus  
Left AOrG anterior orbital gyrus  
Right LOrG lateral orbital gyrus  
Left LOrG lateral orbital gyrus  
Right MOrG medial orbital gyrus  
Left MOrG medial orbital gyrus  
Right POrG posterior orbital gyrus  
Left POrG posterior orbital gyrus  
Right MFC medial frontal cortex ventral medial prefrontal cortex (VMPFC) 
Left MFC medial frontal cortex ventral medial prefrontal cortex (VMPFC) 
Right AIns anterior insula  
Left AIns anterior insula  
Right PIns posterior insula  
Left PIns posterior insula  
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For VTA we used a probabilistic ROI of the midbrain (Murty et al, 2014). These authors 

constructed a midbrain mask based on hand-drawn VTA-substantia-nigra-midbrain masks of 

50 healthy subjects. For DRN we used an 8mm radius sphere around the MNI coordinate [-2, -

32, -16] (Pedroni et al, 2011). Note that both areas are quite large with respect to the actual size 

of the mentioned nuclei to account for inter-individual differences. These masks for VTA and 

DRN were chosen because these areas are not part of the SPM12 atlas, nor the AAL atlas. For 

DLPFC we used the WFU pick atlas to select Brodman areas (BA) 8,9,10 and 46 (dilated in 2D, 

i.e. in-plane, by 1 voxel) (Collins, 2001; Draganski et al, 2008; Maldjian et al, 2003) within the 

middle frontal gyrus according to the AAL atlas (Tzourio-Mazoyer et al, 2002). For VLPFC we 

used BA 44, 45, 47 (dilated in 2D, i.e. in-plane, by 1 voxel) within the inferior frontal gyrus 

(Badre and Wagner, 2007; Danker et al, 2008; Gold et al, 2006) (Figure S1). The complete 

NOI can be found as .nii file in the Supplementary Online Material. 



 

 

 

13 

 

 

 

 

 

 

Figure S1: Network of interest (NOI). Mask (red) superimposed on mean of normalized structural T1-images of 

all subjects. Slices are shown from y = +60 to y = -40 in steps of -4 (top to bottom). Regions were taken from 

SPM12 Neuromorphometrics atlas, as well as AAL and BA atlas within the wfu pick atlas (DLPFC and VLPFC), as 

well as external sources (midbrain, DRN). Regions were selected based on literature sources reporting on the 

neural correlates of inter-individual differences in loss aversion tasks. This NOI mask was used for small volume 

correction in group comparisons of neural gain and loss sensitivity as well as for other exploratory analyses. 
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1.7 The rBPM analysis 

Robust biological parametric mapping (rBPM in toolbox BPMe) was used running on SPM5 

(Casanova et al, 2007; Yang et al, 2011) and results were evaluated in SPM8. Note that BPMe 

is only available for SPM5 but results may be evaluated in SPM8 but not in SPM12. 
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1.8 Functional connectivity 

We fit new single subject models. Specifically, for every seed region we expanded the standard 

single subject model by interaction terms multiplying the time series of the respective seed 

region and each parametric modulator (McLaren et al, 2012). All the other terms in the single 

subject model, including motion parameters as covariates of no interest, stayed the same. We 

then submitted the contrast images pertaining to the interaction terms for gain and loss to 

second-level T-tests comparing PG and AD to HC, respectively.  

In the ANDREA model (Fig. S2), when LA exists, the amygdala sends a salience signal to OFC 

which is stronger for losses than for gains. This enhances the represented loss value over the 

represented gain value in OFC. Lack of LA may thus emerge from a more efficacious 

transmission of the amygdala salience signal for gains. We thus expected a functional 

connectivity which grows more strongly for increasing gains in both PG and AD subjects 

compared to HC subjects. 

According to (Basten et al, 2010) (Fig. S2), the VMPFC is said to be a comparator region 

integrating cost signals from amygdala and gain signals from VS. We hence computed a gPPI 

analysis on single subject level with amygdala as seed region and used the VMPFC ROI for 

small volume correction and expected HC to show stronger functional connectivity from 

amygdala to VMPFC with respect to growing losses than both PG and AD subjects. 

Found group differences in functional connectivity were checked for stability against adjusting 

for age using ancova analysis in SPM. Only results are reported which survived adjustment for 

age. 
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Figure S2: Network models for gPPI analyses. The ANDREA model (left, adapted from (Litt et al, 2008)) and the 

model by Basten et al. (right, adapted from (Basten et al, 2010). The network models were used as hypotheses 

generators regarding differences in functional connectivity between PG, AD and HC subjects. The arrows mean 

functional connections. Next to the arrows it is stated whether the connection processes gain or loss signals. 
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2 Supplementary results 

2.1 Reaction times 

Inclusion of group into the behavioral model was significant, Δdf = 6, p(ΔChi2) = 0.023, ΔAIC 

= 2. The HC group showed a mean reaction time (rt) of 1.27s, the AD group of 1.54s and the 

PG group of 1.39s. HC’s rt was shorter than that of AD subjects (HC < AD, p = 0.030). AD 

patients showed a stronger increase in rt with growing losses than HC subjects (β = 0.019, p = 

0.019), also PG subjects showed this (β = 0.018, p = 0.018). With increasing gains, PG subjects 

showed a stronger decrease in rt compared to HC (β = -0.011, p = 0.033) (Figure S3). Adjusting 

for age by allowing age to impact the fixed intercept and the rt within each group, yielded the 

same results, except the overall mean difference in rt of HC vs. AD and HC vs. PG was rendered 

insignificant. 
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Figure S3: Reaction times. Depicted are mean reaction times (time until decision is made) per group and 

condition in seconds with bootstrapped 95% confidence intervals. MeanRT is the mean reaction time at 

presentation of mean gain and mean loss in the proposed gamble. Bygain shows how this meanRT changes when 

gain increases by 5 euros. Byloss shows how reaction time changes when losses increase by 5 euros. Note that 

PG and AD subjects change their reaction times as a function of gain and loss but not HC subjects. 
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2.2 Debt 

We have checked the relationship of debt (yes/no) (28 yes, 19 no, 4 NA) and loss aversion. The 

median LA for no debt was 1.64 and for debt 0.97. This difference was significant (Kruskall-

Wallis test, p = 0.02). We fit our original model (group explaining behavioral gain and loss 

sensitivity) and the alternative model (debt (yes/no) explaining behavioral gain and loss 

sensitivity), while excluding in both cases the 4 subjects which did not provide information on 

their debt. Model comparison showed that the group model was still slightly better than the debt 

model: Δdf = 4, Chi2 = 11.4, p = 0.022, ΔAIC = 3.5 (AIC of group model better than that of 

debt model). We could not usefully correlate the amount of debt with behavioral LA because 

we had too many missings (15 NA) in the variable “amount of debt”. This is because 15 subjects 

declined to answer this question. 

  



 

 

 

20 

 

 

 

 

 

2.3 Functional connectivity 

 

Figure S4: Functional connectivity group differences. A,B: PG subjects show a stronger functional connectivity 

from Amygdala to posterior OFC with regards to growing gains. It seems they transmit the amygdala signal with 

respect to gains more and more efficaciously to OFC, when gains increase, while HC subjects do so less or even 

do the reverse. C: With growing losses HC subjects show stronger connectivity increase from left amygdala to 

VMPFC than PG subjects. It seems they transmit the amygdala signal with respect to losses more and more 

efficaciously to OFC, when losses increase, while HC subjects do so less. D: The same is true for the functional 

connectivity from left posterior OFC to DRN.  
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2.4 Voxel-based morphometry 

We checked functional results for stability against adjusting for local gray matter density 

(GMD) and age. Here we contrast GMD maps (adjusted for age) to display the GMD differences 

between clinical groups (PG, AD) and HC. We look at contrasts HC > PG, HC < PG, HC > 

AD, HC < AD, PG > AD, AD < PG, with the latter two masked by the F-conjunction HC <> 

PG, HC<>AD, PG<>AD (Figure S5). We explore at p < 0.001, uncorrected, k = 10, apply 

small volume correction using our NOI at pSVC = 0.05, and apply whole brain FWE correction 

at pFWE = 0.05.  

HC > PG yielded no suprathreshold voxels. SVC and whole brain correction yielded no results. 

HC < PG yielded three major clusters: at left parietal operculum / supramarginal gyrus, [-54, -

42, 23], at DLPFC, i.e. left middle frontal gyrus [-26, 49, 16] and at ACC [3, 32, 19]. SVC NOI 

and whole brain FWE correction yielded no significant peak voxels. HC < AD yielded no 

suprathreshold voxels, SVC NOI and whole brain FWE correction yielded no significant voxels. 

HC > AD yielded major clusters at right precentral gyrus [27, 25, 58], right medial orbital gyrus 

[13, 32, -30] and right supramarginal gyrus [48, -28, 44] and right cerebellum [38, -49, -34]. 

SVC NOI and whole brain FWE correction yielded no sig. voxels. PG > AD (masked by F- 

conjunction) yielded a cluster in right middle cingulate gyrus, [6,15,37], and right precentral 

gyrus [40,-19,37]. SVC NOI and whole brain FWE correction yielded no sig. voxels. PG < AD 

(masked by F- conjunction) yielded no significant voxels, neither when applying whole brain 

and SVC NOI correction, nor on exploratory level. 
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Figure S5: Voxel-based morphometry (VBM) analysis. Results of one-way ANOVA adjusted for age. First line of 

images shows VBM contrast of PG > HC at p < 0.001, k = 0. Second line of images shows VBM contrast of HC > AD 

at p < 0.001, k = 0. Third line of images shows VBM contrast of PG > AD at p < 0.001, k = 0.  
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