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1. Supporting Methods: 

The generalized polarization (GP) function was originally introduced as an analytical method to 
quantitatively determine the relative amounts and temporal fluctuations of two distinct lipid phases when 
they coexist in a model membrane, for reviews see (1,2). This function was originally defined as:   
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where IB and IR are the measured fluorescence intensities under conditions in which a wavelength (or a band 
of wavelengths) B (for blue shifted) and R (for red shifted) are both observed using a given excitation 
wavelength. Being a weighted difference, the values of the GP must fall within -1 and 1; the lower the value 
the greater the extent of relaxation (or bathochromic shift of the spectrum). This definition is formally 
identical to the classical definition of fluorescence polarization, in which B and R represent two orthogonal 
orientations of the observation polarizers in the fluorimeter. The advantage of the GP function for the 
analysis of the spectral properties of the DAN probes is derived from the well-known properties of the 
classical polarization function, which contains information on the interconversion between two different 
“states” of the emitting dipole of the fluorophore. In the original studies, the LAURDAN GP was shown to 
distinguish between the extent of water relaxation in solid-ordered (so) and liquid-disordered (ld) phases in 
phospholipid membranes (1,2). In the GP function as used here, the two states correspond to the unrelaxed 
and relaxed environments sensed by the probes. Our approach to the study of intracellular water dynamics in 
yeast therefore constitutes a generalization of the use of the GP function (3, 4). In this case, however, we 
explore fluctuations in water relaxation throughout the cell rather than in just membrane-associated water.  
The oscillations of the GP function in the cell (Figure S1C) yielding the measured changes in the intensity of 
emission (quantum yield; Figure S1B) of the probes at any given wavelength can be explained only if 
solvent relaxation is the dominant mechanism. In the classical definition of GP, B and R correspond to 440 
and 490 nm, respectively, of the ACDAN fluorescence emission spectrum (1,2). 

 

2. Modelling the coupling of glycolytic oscillations with water dynamics 

In order to put our experimental results in to a more rigid theoretical framework we use the Association-
Induction hypothesis proposed by GN Ling (5). This hypothesis builds on the assumptions (i) that the bulk 
of water and various solutes are adsorbed on cellular proteins, (ii) that this adsorption is synchronized as a 
result of interactions of neighbouring adsorption sites (cooperativity), and (iii) that the cooperative 
adsorptions are controlled by a smaller number of molecular species referred to as cardinal adsorbents, 
which exert their control by interacting with certain key sites (cardinal sites) on the same proteins (5). 

Here we give a brief outline of a recently developed model for the coupling of glycolytic oscillations with 
intracellular water dynamics. The model is based on an earlier model of glycolysis (6) using the generally 
accepted view that phosphofructokinase is a key enzyme in controlling the pace of glycolysis and that the 
enzyme shows cooperativity with respect to binding of ATP and is activated by its product ADP (6). 
However, instead of using the classical mass-action based Michaelis-Menten (or for cooperative enzymes 
Monod-Wyman-Changeux) approach, we use Yang-Ling isotherms (5,7,8) for describing the transformation 
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of ATP to ADP and its coupling to the state of water, which is denoted p (for polarized). As opposed to the 
Monod-Wyman-Changeux and the related Koshland-Nemethy-Filmer models the Yang-Ling isotherm has a 
statistical-mechanical origin and is general. 

The full description of the model will be presented elsewhere (manuscript in preparation), but briefly the 
equations are 
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where vPFK is defined by: 
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Here V is a maximal activity of PFK, while 𝐾𝐾𝑐𝑐𝑜𝑜𝑜𝑜 ,𝐾𝐾𝑜𝑜𝑜𝑜𝑜𝑜 ,−𝛾𝛾𝑐𝑐
2

and − 𝛾𝛾𝑜𝑜
2

   represent ATP dissociation constants 
for adsorption of ATP to sites on PFK and nearest-neighbour interaction energies under the control of ADP 
(𝐾𝐾𝑐𝑐𝑜𝑜𝑜𝑜and − 𝛾𝛾𝑐𝑐

2
 ) and  in the absence of control (𝐾𝐾𝑜𝑜𝑜𝑜𝑜𝑜and − 𝛾𝛾𝑜𝑜

2
, in contrast to Ling (5,8) we use dissociation 

constants instead of association constants). κ𝑐𝑐𝑜𝑜𝑜𝑜  represents the dissociation constant for binding of ADP to a 
cardinal binding site while −𝛤𝛤

2
  is the nearest neighbour interaction energy for exchanging H2O with ADP at 

this site. R is the gas constant, while T is the absolute temperature. F is the concentration of adsorption sites 
for ADP. 

The symbol v in equation S2 represents a constant supply of ATP, while k1 and ko in equations S3 and S4 
are simple first order rate constants. The rate vo in equation S4 is given by the expression (5): 
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where V1 is a maximum rate for the ATP-induced transition of water from a less to a more polarized state 
(p) and 𝐾𝐾𝑐𝑐1𝑜𝑜𝑜𝑜 and − 𝛾𝛾𝑐𝑐1

2
 represent the dissociation constant and the nearest neighbour interaction energy for 

binding of ATP to fibrillary proteins, e.g. actin. 

We now assume that the maximum activity of PFK (V) and the dissociation constant for binding of ATP 
(𝐾𝐾𝑐𝑐𝑜𝑜𝑜𝑜) depend on the variable p, i.e. V(p) and 𝐾𝐾𝑐𝑐𝑜𝑜𝑜𝑜(𝑑𝑑). It is well-documented that for enzymes in viscous 
solutions the maximum activity and the binding constants of substrates change with crowding (9,10). For 
simplicity we assume that V is inversely proportional to p, while 𝐾𝐾𝑐𝑐𝑜𝑜𝑜𝑜is proportional to p. However, other 
relations between the two parameters and p will yield similar behaviour. Furthermore, it is quite possible 
that many of the other parameters in equations S2-S3 may depend on p, but again this will only have 
qualitative effect on the behaviour of the model. In the current form of the model ATP, ADP , p and time t 
appear as dimensionless variables. The model was simulated using the Berkeley-Madonna software 
(Berkeley-Madonna, Berkeley, CA) 

Simulations of the model are shown in Figs. S16 and S17. The data in Fig. S16 reveal that ATP and p 
oscillate in phase as revealed by the phase plot in Fig. S16C. Note that this phase plot is similar to that of 
ATP and ACDAN fluorescence (Fig. S3C). Furthermore, reducing either the maximum velocity V1 or 
increasing the rate constant ko will destroy the oscillations. This situation corresponds to that in Fig. 6 where 
the formation of actin filaments is inhibited by Latrunculin B. Changing the rate constant ko will change the 
steady-state level of p, which again will affect the amplitude and the frequency of the oscillations. A plot of 
the relative amplitude of oscillations of ATP against the steady-state value of p reveals a double Hopf 
bifurcation (Fig. S17), similar to the experimental Hopf bifurcation shown in Fig. 4A. Finally, the model 
predicts that simple mechanical coupling of p in a region where glycolytic oscillations occur to the 
polarization of water (p1), in a region where glycolytic oscillations are absent, would result in a slight phase 
shift in the oscillations of p and p1 (Fig. S18), which is confirmed experimentally (Fig S19). 

It should be emphasized that the variables in the model constitute a network (11), and hence one cannot say 
that metabolic oscillations drive oscillations in the polarization of water or the other way around. 
Furthermore, in such a network one cannot study the individual components in isolation, e.g. by assuming 
that situations may exist in which one variable shows oscillations while others do not. 

To investigate if the results obtained with the simple model (equations S2-S4) are general we also 
implemented the Yang-Ling approach to the coupling of the polarity of water to glycolytic oscillations on a 
detailed model of glycolysis adapted from Hald and Sørensen (12). The model, which involves 24 reactions 
and 32 chemical species, is shown in Fig. S20 and Fig. S21 shows two phase plots of p versus [ATP] and p 
versus [NADH], respectively. We note that the first phase plot is similar to those in Fig. S3C and S16C, 
showing that p is in phase with [ATP] as observed experimentally and with our simple model. While the 
simple model (equations S2-S4) does not involve NADH it is interesting to compare phase plots of p versus 
[NADH] in the detailed model (Fig. S21B) with the corresponding plots of ACDAN versus NADH 
fluorescence (Fig. S3D). Both plots show that the oscillations of ACDAN GP are in antiphase with 
oscillations in NADH. 
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Table S1 Corresponding values of growth temperature, measurement temperature, ACDAN GP and 
oscillation frequency for the wild type BY4743 S. cerevisiae strain. A frequency of 0 s−1 means that no 
oscillations were obtained at the particular temperature. 

Growth temp (°C)  Measurement temp 
(°C) 

ACDAN GP Frequency (s−1) 

25 20 0.0002 0.0151 
25 25 −0.0154 0.0250 
25 30 −0.0362 0.0377 
25 35 −0.0440 0.0552 
25 40 −0.0574 0 
30 20 −0.0007 0.0155 
30 25 −0.0200 0.0248 
30 30 −0.0424 0.0395 
30 35 −0.0587 0 
30 40 −0.0578 0 
35 20 −0.0274 0.017 
35 25 −0.0520 0 
35 30 −0.0701 0 
35 35 −0.0817 0 
35 40 −0.0845 0 
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Table S1 Yeast strains used in this study 
 

Yeast strain Gene deletion Genotype 
BY4743 - MATa/MATα.; his3∆1/his3∆1 ; leu2∆0/leu2∆0; met15∆0\MET15; 

LYS2/lys2∆0; ura3∆0/ura3∆0 
YFR053c Hxk1∆ BY4743; MAT a/α; his3∆1/his3∆1; leu2∆0/leu2∆0; lys2∆0/LYS2 ; 

MET15/met15∆0; ura3∆0/ura3∆0; YFR053c::kanMX4/YFR053c::kanMX4 
YGL253w Hxk2∆ BY4743; MAT a/α; his3∆1/his3∆1; leu2∆0/leu2∆0; lys2∆0/LYS2 ; 

MET15/met15∆0; ura3∆0/ura3∆0; YGL253w::kanMX4/YGL253w::kanMX4 
YGR240c Pfk1∆ BY4743; MAT a/α; his3∆1/his3∆1; leu2∆0/leu2∆0; lys2∆0/LYS2 ; 

MET15/met15∆0; ura3∆0/ura3∆0; YGR2240c::kanMX4/YGR240c::kanMX4 
YGR254w Eno1∆ BY4743; MAT a/α; his3∆1/his3∆1; leu2∆0/leu2∆0; lys2∆0/LYS2 ; 

MET15/met15∆0; ura3∆0/ura3∆0; GR254w::kanMX4/YGR254w::kanMX4 
YBL099w Atp1∆ BY4743; MAT a/α; his3∆1/his3∆1; leu2∆0/leu2∆0; lys2∆0/LYS2 ; 

MET15/met15∆0; ura3∆0/ura3∆0; YBL099w::kanMX4/YBL099w::kanMX4 
YKL016c Atp7∆ BY4743; MAT a/α; his3∆1/his3∆1; leu2∆0/leu2∆0; lys2∆0/LYS2 ; 

MET15/met15∆0; ura3∆0/ura3∆0; YKL016c::kanMX4/YKL016cc::kanMX4 
YDR377w Atp17∆ BY4743; MAT a/α; his3∆1/his3∆1; leu2∆0/leu2∆0; lys2∆0/LYS2 ; 

MET15/met15∆0; ura3∆0/ura3∆0; DR377w::kanMX4/YDR377w::kanMX4 
YMR056c Aac1∆ BY4743; MAT a/α; his3∆1/his3∆1; leu2∆0/leu2∆0; lys2∆0/LYS2 ; 

MET15/met15∆0; ura3∆0/ura3∆0; YMR056c::kanMX4/YMR956c::kanMX4 
YHR051w Cox6∆ BY4743; MAT a/α; his3∆1/his3∆1; leu2∆0/leu2∆0; lys2∆0/LYS2 ; 

MET15/met15∆0; ura3∆0/ura3∆0; HR051w::kanMX4/YHR051w::kanMX4 
YMR145c Nde1∆ BY4743; MAT a/α; his3∆1/his3∆1; leu2∆0/leu2∆0; lys2∆0/LYS2 ; 

MET15/met15∆0; ura3∆0/ura3∆0; YMR145c::kanMX4/YMR145c::kanMX4 
YDL085w Nde2∆ BY4743; MAT a/α; his3∆1/his3∆1; leu2∆0/leu2∆0; lys2∆0/LYS2 ; 

MET15/met15∆0; ura3∆0/ura3∆0; YDL085w::kanMX4/YDL085w::kanMX4 
YDL185w Vma1∆ BY4743; MAT a/α; his3∆1/his3∆1; leu2∆0/leu2∆0; lys2∆0/LYS2 ; 

MET15/met15∆0; ura3∆0/ura3∆0; YDL185w::kanMX4/YDL185w::kanMX4 
YKL080w Vma5∆ BY4743; MAT a/α; his3∆1/his3∆1; leu2∆0/leu2∆0; lys2∆0/LYS2 ; 

MET15/met15∆0; ura3∆0/ura3∆0; YKL080w::kanMX4/YKL080w::kanMX4 
YBR026c Etr1∆ BY4743; MAT a/α; his3∆1/his3∆1; leu2∆0/leu2∆0; lys2∆0/LYS2 ; 

MET15/met15∆0; ura3∆0/ura3∆0; YBR026c::kanMX4/YBR026c::kanMX4 
YHR129c Arp1∆ BY4743; MAT a/α; his3∆1/his3∆1; leu2∆0/leu2∆0; lys2∆0/LYS2 ; 

MET15/met15∆0; ura3∆0/ura3∆0; YHR129c::kanMX4/YHR129c::kanMX4 
YIL034c Cap2∆ BY4743; MAT a/α; his3∆1/his3∆1; leu2∆0/leu2∆0; lys2∆0/LYS2 ; 

MET15/met15∆0; ura3∆0/ura3∆0; YIL034c::kanMX4/YIL034c::kanMX4 
YCR088w Abp1∆ BY4743; MAT a/α; his3∆1/his3∆1; leu2∆0/leu2∆0; lys2∆0/LYS2 ; 

MET15/met15∆0; ura3∆0/ura3∆0; YCR088w::kanMX4/YCR088w::kanMX4 
YNL020c Ark1∆ BY4743; MAT a/α; his3∆1/his3∆1; leu2∆0/leu2∆0; lys2∆0/LYS2 ; 

MET15/met15∆0; ura3∆0/ura3∆0; YNL020c::kanMX4/YNL020c::kanMX4 
YIL095w Prk1∆ BY4743; MAT a/α; his3∆1/his3∆1; leu2∆0/leu2∆0; lys2∆0/LYS2 ; 

MET15/met15∆0; ura3∆0/ura3∆0; YIL095w::kanMX4/YIL095w::kanMX4 
YAL047c Spc72∆ BY4743; MAT a/α; his3∆1/his3∆1; leu2∆0/leu2∆0; lys2∆0/LYS2 ; 

MET15/met15∆0; ura3∆0/ura3∆0; YAL047c::kanMX4/YAL047c::kanMX4 
YGL216w Kip3∆ BY4743; MAT a/α; his3∆1/his3∆1; leu2∆0/leu2∆0; lys2∆0/LYS2 ; 

MET15/met15∆0; ura3∆0/ura3∆0; YGL216w::kanMX4/YGL216w::kanMX4  
YML124c Tub3∆ BY4743; MAT a/α; his3∆1/his3∆1; leu2∆0/leu2∆0; lys2∆0/LYS2 ; 

MET15/met15∆0; ura3∆0/ura3∆0; YML124c::kanMX4/YML124c::kanMX4 
YLR200w Gim1∆ BY4743; MAT a/α; his3∆1/his3∆1; leu2∆0/leu2∆0; lys2∆0/LYS2 ; 

MET15/met15∆0; ura3∆0/ura3∆0; LR200w::kanMX4/YLR200ww::kanMX4 
YEL003w Gim4∆ BY4743; MAT a/α; his3∆1/his3∆1; leu2∆0/leu2∆0; lys2∆0/LYS2 ; 

MET15/met15∆0; ura3∆0/ura3∆0; YEL003w::kanMX4/YEL003w::kanMX4 
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Figure S1. Oscillations of (A) NADH autofluorescence, (B) ACDAN fluorescence, and (C) ACDAN GP 
(calculated using equation (S1)) . (D) Power spectra of the time series indicated in A, B and C.  S. cerevisiae 
BY4743 cells grown at 30 °C (10% w/v) were suspended at 25 °C in 100 mM potassium phosphate, pH 6.8. 
The cells in panels B and C were stained with 5 µM ACDAN for 1 h and then washed twice before 
suspension in potassium phosphate buffer. At the indicated arrows 30 mM glucose and (60 s later) 5 mM 
KCN were added to the cell suspension. Measurement temperature was 25 °C. 
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Figure S2 Oscillations in NADH and Glucose 6-phosphate in S. cerevisiae cells grown at 30 °C. Yeast cells 
(10% w/v) were suspended at 25 °C in 100 mM potassium phosphate, pH 6.8 and oscillations were induced 
as described in Fig. S1. Measurements of intracellular glucose 6-phosphate were made by quenching the 
cells with boiling buffered ethanol and subsequently extracting the metabolites (13). The concentration of 
glucose 6-phosphate was then measured by addition of NADP+ and glucose 6-phosphate dehydrogenase to 
the extract.  The concentration of glucose 6-phosphate in the extract was determined from the concentration 
of formed NADPH using standard curves measured on solutions with known concentrations of glucose 6-
phosphate. In the estimation of the intracellular concentration of glucose 6-phosphate we assumed that 1 mg 
protein corresponds to a cytoplasmic volume of 3.7 µl. 
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Figure S3 Oscillations in intracellular ATP and ACDAN GP in S. cerevisiae cells grown at 30 °C. (A) and 
(B) time series of ATP and ACDAN GP; (C) phase plot of ACDAN GP versus intracellular ATP; (D) phase 
plot of ACDAN fluorescence against NADH fluorescence. Yeast cells (10% w/v) were suspended at 25 °C 
in 100 mM potassium phosphate, pH 6.8 and oscillations were induced as described in Fig. S1 Intracellular 
ATP concentration was measured using an aptamer-based  ATP nanosensor (14) inserted into the cells using 
electroporation. 
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Figure S4 Distribution of ACDAN in resting BY4743 yeast cells. A) Spectral fluorescence image of 
ACDAN were obtained on an inverted multiphoton excitation fluorescence microscope (Zeiss LSM 510 
META NLO, Carl Zeiss, Jena, Germany) equipped with a Ti:Sa MaiTai XF-W2S laser (Broadband Mai Tai 
with 10 W Millennia pump laser, tunable excitation range 710–980 nm, Spectra Physics, Mountain View, 
CA), with excitation wavelength for ACDAN at 780 nm. The fluorescence signal was collected using the 
microscope’s meta detector in spectral mode acquisition in a wavelength range from 400 to 580 nm with a 
resolution of 10 nm, through a 63X water immersion objective, NA 1.2. Acquisition of the two photon 
excitation fluorescence image was performed by adding 300 μl of ACDAN-labeled resting yeast cells at a 
density of 10% by weight (suspended in 100 mM potassium phosphate buffer, pH 6.8) to an 8-well plastic 
chamber (Lab-tek Brand Products, Naperville, IL). The chamber containing the sample was placed in the 
microscope and the images were acquired a few minutes later to allow the cells to sink to the bottom of the 
well. B) 10 nm resolution spectra of the encircled region in A. The average fluorescence emission spectrum 
indicates a heterogeneous and wide distribution of the probe in the intracelullar environment. 
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Figure S5 Distribution of ACDAN and CFDA-SE ester in resting BY4743 cells. BY4743 wild type cells 
were incubated with 10µM ACDAN and 4.5µM CFDA-SE ester for 1 hour at 30°C, and washed twice with 
phosphate buffer. (a) and (b) Fluorescence images of ACDAN were obtained using the same microscope 
(but with different setup) and sample preparation as in Fig. S4.  Two photon excitation was performed at 810 
nm. The fluorescence emission was collected through a 63X oil objective, NA 1.4 and split to two detectors 
(H7422 PMT, Hammamatsu, Denmark) by a 460 nm long pass dichroic mirror and then filtered by (a) a 520 
± 17.5 nm band pass filter; (b) 438 ± 12 nm band pass filter (both from AHF Analysen Technik AG, 
Tübingen, Germany). (c) CFDA was excited via one photon excitation using an Argon-Ion laser at 488nm, 
send through the confocal pinhole (z-resolution 2µm) and filtered as in (a). (d) Composite of (a), (b) and (c) 
shows that ACDAN and CFDA co-localize in the cells. The fluorescent images for both dyes were 
simultaneously obtained using a multi-track mode from the Zeiss software, to avoid leakage of fluorescence 
into the different emission channels. Control experiments with cells unlabeled and stained with either 
ACDAN or CFDA confirmed that no leakage was observed within the experimental setup used in the 
microscope. Scale bar: 5 µm. 
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Figure S6 ACDAN and MitoTracker Red in yeast cells. Top row: BY4743 wild type cells grown overnight 
in glucose and stained with 5 µM ACDAN and 1 µM MitoTracker Red. 10mM glucose was added to the 
cells prior to imaging. Left, ACDAN; middle, MitoTracker Red; right, overlay. Bottom row: BY4743 wild 
type cells grown on glycerol and stained with 1 µM MitoTracker Red. Left, brightfield image; middle, 
MitoTracker Red; left, overlay. Note that the cells grown on glycerol exhibit far more mitochondria and 
their respiration rate is more than twice that of cells grown on glucose. Images were obtained on a Leica 
DMRE epifluorescence microscope using a CoolLed illumination system (CoolLed, Andover, U.K.) through 
a 100X Leica oil-emission objective (NA = 1.4). Images of ACDAN fluorescence were obtained using a 
Leica Microsystems A4 filter cube, while images of MitoTracker Red were obtained using a Leica 
Microsystems Y3 filter cube. 
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Figure S7 Differences in ACDAN and NADH signal. 
Fluorescent images were obtained using the same microscope (with a different setup) as in figure S4. Top 
row: Cells incubated with ACDAN (10% by weight suspended in 100 mM potassium phosphate buffer with 
30 mM glucose, pH 6.8) were excited at either 740nm, 780nm or 810nm, and emission was collected 
through a 63X oil objective, NA 1.4. (a) are reflected excitation light at 780nm from ACDAN stained cells. 
(b)-(d): Fluorescence was collected through a 462 ± 24 nm band pass filter (AHF Analysen Technik AG, 
Tübingen, Germany), which correspond to the fluorescence maxima of NADH and ACDAN upon excitation 
at 810nm (b), 780nm (c), 740 nm (d) and 740 nm at 60% laser power (e). (f)-(j): Unstained control cells 
(10% by weight suspended in 100 mM potassium phosphate buffer with 30 mM glucose, pH 6.8) were 
excited using the same microscope, detector and laser settings as in the top row. No visible differences are 
observed in the reflected light (f). In the emission range 462 ± 24 nm there is no visible contribution of 
NADH fluorescence from the control cells upon excitation at 810 (g), 780nm (h) or 740nm (i) at the used 
settings. Intensity profiles reveal that the intensities in (g)-(i) are not above the background noise. A 
comparison of (j) and (e) reveals that in order to visualize NADH in unstained cells (j) the ACDAN signal 
becomes significantly oversaturated (e). The maximum laser power (i.e., the power output from the laser before 
interaction with filters and optics) are 790mW at 810nm,  740mW at 780nm and 675mW at 740nm. In (b)-(d) and 
(g)-(i) the used laser power was 40% of the maximum, while in (e) and (j) it was 60%. Scale bars are 10 µm. 
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Figure S8. Oscillations of NADH following addition of glucose and KCN to a 10% (w/v) suspension of the 
S. cerevisiae strain BY4743 at (A) 20 °C, (B) 25 °C, (C) 30 °C and (D) 35 °C. Yeast cells were grown at 30 
°C. Oscillations were induced by addition of first 30 mM glucose (arrow) and 60 s later 5 mM KCN. 
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Figure S9. Fluorescence spectra of resting yeast cells incubated with ACDAN and plots of GP and 
oscillation frequency versus temperature. (A) Fluorescence spectra of 10% (w/v) S. cerevisiae strain 
BY4743 incubated for 60 min with 10 µM ACDAN at room temperature and measured at temperatures of 
20, 25, 30, 35 and 40 °C. (B) Plot of GP values, calculated using equation S1 and data from the emission 
spectra in A, against measuring temperature. (C) Plot of oscillation frequency against measuring 
temperature. Yeast cells were grown at 25 °C. 
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Figure S10. Oscillations of NADH following addition of glucose and KCN to a 10% (w/v) suspension of 
the S. cerevisiae strain BY4743 at (A) 20 °C, (B) 25 °C, (C) 30 °C and (D) 35 °C. Yeast cells were grown at 
25 °C. Oscillations were induced by addition of first 30 mM glucose (arrow) and 60 s later 5 mM KCN. 
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Figure S11. Fluorescence spectra of resting yeast cells incubated with ACDAN and plots of GP and 
oscillation frequency versus temperature. (A) Fluorescence spectra of 10% (w/v) S. cerevisiae strain 
BY4743 incubated for 60 min with 10 µM ACDAN at room temperature and measured at temperatures 20, 
25, 30, 35 and 40 °C. (B) Plot of GP values, calculated using equation S1 and data from the spectra in A, 
against measuring temperature. (B) Plot of oscillation frequency against measuring temperature. Yeast cells 
were grown at 35 °C. 
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Figure S12. Oscillations of NADH are only observed at 20ºC in yeast cells grown at 35 °C.  30 mM glucose 
(arrow) and 60 s later 5 mM KCN were added to a 10% (w/v) suspension of the S. cerevisiae strain BY4743 
at (A) 20 °C, (B) 25 °C, (C) 30 °C and (D) 35 °C.  
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Figure S13. Plot of ACDAN GP vs ethanol production rate in the 25 yeast strains listed in Table S2. The 
ethanol production rate is normalized to that of the wild type strain. Calibration of the mass spectrometry 
ethanol signal showed that more than 80% of the added glucose is converted to ethanol in all strains. The 
dashed line is a linear regression to the data. It has a slope of 7.2×10−3 and the R2 value is 1.6×10−3. 
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Figure S14. Effect of 2-deoxyglucose on the oscillations of NADH and ACDAN GP. Oscillations in NADH 
(A) and ACDAN GP (B) following addition of glucose and KCN to a 10% (w/v) suspension of BY4743 WT 
cells. At approximately 1100 s 20 mM 2-deoxyglucose is added to the suspension. Yeasts were grown at 30 
°C. Oscillations were induced by addition of first 30 mM glucose (arrow) and 60 s later 5 mM KCN. 
Measurement temperature was 25 °C. 
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Figure S15. Time evolution of ACDAN GP time in glucose-depleted yeast cells.  A 10% (w/v) suspension 
of wild type strain BY4743 grown at 30 °C was incubated with 10 µM ACDAN for 30 mins immediately 
after glucose in the growth medium had been exhausted. The cells were then washed twice with 
phosphate/citrate (McIlvaine) buffer (pH = 5.5), and placed in the spectrofluorometer at 30 °C. The 
fluorescence intensities at 440 nm and 490 nm were recorded simultaneously with a 365nm excitation every 
15th minute for approximately 20 hours. A relatively large GP increase in the first hour of starvation is 
usually observed. Note that the upper GP limit at GP = 0 is crossed after ≈ 10 h, which is consistent with the 
time for which yeast can be starved before oscillations can no longer be induced.  

  



22 
 

 

Figure S16 Simulations of the model described by equations S2-S4. (A) shows oscillations in the ATP 
concentration, while (B) shows oscillations in the polarity (p) of intracellular water. (C) is a phase plot of p 
against [ATP]. Note the similarity of (C) to the phase plot in Fig. S3C. Parameters (most of them 
dimensionless) are: v=0.4; V=2.5/p; 𝐾𝐾𝑐𝑐𝑜𝑜𝑜𝑜 =8⋅p; 𝛾𝛾𝑐𝑐

2
= 0.5 kcal/mol; 𝐾𝐾𝑜𝑜𝑜𝑜𝑜𝑜=50; 𝛾𝛾𝑜𝑜

2
= 0.6 kcal/mol; k1= 0.07; V1= 

2.3; κ𝑐𝑐00 =10; 𝛤𝛤
2

=0.7 kcal/mol; 𝐾𝐾𝑐𝑐1𝑜𝑜𝑜𝑜=0.3;  𝛾𝛾𝑐𝑐
2

= 0.5 kcal/mol. Initial values of [ATP], [ADP] and p are 10, 4 
and 1.13, respectively 

 

Figure S17 Plot of the relative amplitude of ATP oscillations versus the steady state value of p obtained by 
setting 𝑎𝑎(𝑝𝑝)

𝑎𝑎𝑑𝑑
 equal to zero. Parameters as in Figure S15. 
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Figure S18 Phase plot of polarization of water in two different regions of the cell: one in which glycolytic 
oscillations occur (p) and another in which glycolytic oscillations are absent (p1).  The simulation assumes 
simple mechanical coupling of p to p1. Parameters as in Fig. S15. 
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Figure S19 Simultaneous measurements of oscillations in ACDAN (A) and Nile Red (B) fluorescence in the 
wild type strain S. cerevisiae BY4743 strain. A 10% (w/v) cell suspension in 100 mM potassium phosphate 
buffer, pH 6.8, was incubated at room temperature for 1 h with 10 µM ACDAN and 5 µM Nile red. Then 
the cells were washed twice and resuspended in the same buffer. ACDAN was excited at 365 nm and its 
emission was measured at 450 nm, while Nile red was excited at 550 nm with its emission measured at 630 
nm. The plot in C is a phase plot of the two measurements.  Yeasts were grown at 30 °C. Oscillations were 
induced by addition of first 30 mM glucose (arrow) and 60 s later 5 mM KCN. Measurement temperature 
was 25 °C. 
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Fig. S20 Hald-Sørensen model (14) of yeast glycolysis. Metabolites are shown in black; enzymes are shown 
in red. Abbreviations are: Gluex, extracellular glucose; Gluin, intracellular glucose; G6P, glucose 6-
phosphate; F6P, fructose 6-phosphate; FBP, fructose 1,6-bisphosphate; DHAP, dihydroxyacetone 
phosphate; Glycin, intracellular glycerol; Glycex, extracellular glycerol; GAP, glyceraldehyde 3-phosphate; 
BPG, 1,3-bisphosphoglycerate; 3PG, 3-phosphoglycerate; 2PG, 2-phosphoglycerate; PEP, phosphoenol 
pyruvate; PYR, pyruvate; ACAin, intracellular acetaldehyde; OAcin, intracellular acetate; OAcex, 
extracellular acetate; ACAex, extracellular acetaldehyde; HK, hexokinase; PGI, phosphoglucose isomerase; 
PFK, phosphofructokinase; ALD, aldolase; TPI, triosephosphate isomerase; GAPDH, glyceraldehyde 
phosphate dehydrogenase; PGK, phosphoglycerate kinase; PGM, phosphoglycerate mutase; ENO, enolase; 
PK, pyruvate kinase; PDC, pyruvate decarboxylase; ALDH; Aldehyde dehydrogase; ADH, alcohol 
dehydrogenase; AK, adenylate kinase. 
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Fig S21 Phase plots of (A) p versus [ATP] and (B) p versus [NADH] for the modified Hald-Sørensen model 
with inclusion of the polarity of water and effects on maximal enzyme activities and dissociation constants 
as described for the simple model. The plots should be compared to those in Fig. S3C and S3D. 
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