Supplementary Information for

Klebsazolicin inhibits 70S ribosome by obstruction of the peptide exit tunnel

Mikhail Metelev^{1,2,3,4,*}, Ilya A. Osterman^{3,5,*}, Dmitry Ghilarov^{3,4}, Nelli F. Khabibullina⁶, Alexander Yakimov^{1,7}, Konstantin Shabalin⁷, Irina Utkina^{1,3}, Dmitry Y. Travin⁸, Ekaterina S. Komarova⁸, Marina Serebryakova^{4,5}, Tatyana Artamonova¹, Mikhail Khodorkovskii¹, Andrey L. Konevega^{1,7}, Petr V. Sergiev^{3,5}, Konstantin Severinov^{1,3,4,9,†}, and Yury S. Polikanov^{6,10,†}

¹ Research Center of Nanobiotechnologies, Peter the Great St.Petersburg Polytechnic University, Saint-Petersburg, 195251, Russia

² Institute of Antimicrobial Chemotherapy, Smolensk State Medical Academy, Smolensk, 214018, Russia

³ Skolkovo Institute of Science and Technology, Moscow, 143025, Russia

⁴ Institute of Gene Biology of the Russian Academy of Sciences, Moscow, 119334, Russia

⁵ Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, 119992, Russia

⁶ Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA

⁷ Petersburg Nuclear Physics Institute, NRC "Kurchatov Institute", Gatchina, 188300, Russia

⁸ Lomonosov Moscow State University, Department of Bioengineering and Bioinformatics, Moscow, 119992, Russia

⁹ Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA

¹⁰ Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60607, USA

* Authors contributed equally to this work

[†] To whom correspondence should be addressed.

E-mail: <u>yuryp@uic.edu</u> (Y.S.P.) <u>severik@waksman.rutgers.edu</u> (K.S.)

This file includes:

- I. Supplementary Figures (1 to 11 with legends)
- II. Supplementary Movie 1
- III. Supplementary Dataset 1
- IV. Supplementary Tables (1 to 4)
- V. Supplementary References

SUPPLEMENTARY RESULTS

I. SUPPLEMENTARY FIGURES

Supplementary Figure 1 | **Production of klebsazolicin by** *E. coli* **host.** (a) Comparison of HPLC-UV traces of supernatants of non-induced (black) and induced (red) cultures of *E. coli* cells carrying the *klpABCDE* gene cluster. KLB-containing fraction is labeled by an asterisk. (b) FT-MS spectra of HPLC-purified KLB. The m/z values of major peak [M+H]⁺ as well as [M+Na]⁺ and [M+K]⁺ are indicated. Experimentally measured and calculated values of m/z [M+H]⁺ are indicated. (c) UV-Vis absorption spectrum of HPLC-purified KLB. Note that KLB displays absorbance that is characteristic for azole-containing peptides.

Supplementary Figure 2 | MS/MS fragmentation analysis of klebsazolicin. (a) MALDI-TOF-MS analysis of purified KLB resulted in identification of ion consistent with the calculated m/z of KLB. The ion was fragmented and produced represented spectrum with the predominant fragmentation between Ser3 and Pro4. (b) Zoomed MS-MS spectrum and the diagram of KLB with the observed *b*- and *y*-ions labeled in the structure and in the spectra. (c) Expected m/z, observed m/z, and error are shown for *b*- and *y*-ions present in the spectrum.

Supplementary Figure 3a | 1H spectrum of klebsazolicin in DMSO-d6 solvent.

Supplementary Figure 3b | 13C spectrum of klebsazolicin in DMSO-d6 solvent.

Supplementary Figure 3c | Fragments of the 13C-HSQC spectrum with assignments of thiazoles.

Supplementary Figure 3d | Fragments of the 13C-COSY spectrum with assignment of oxazole.

Supplementary Figure 3e | Amide region of the 1H-15N HSQC spectra of KLB.

Supplementary Figure 3f | Fragments of the 13C-HMBC spectrum.

Supplementary Figure 3g | Fragments of the 13C-HMBC spectrum (Ser1, Glu2 and Ser3).

Supplementary Figure 4 | Klebsazolicin displays bacteriostatic activity. Exponentially growing cultures of *E. coli* B cells were exposed to 0, 2-fold MIC (4 μ M), and 10-fold MIC (20 μ M) KLB. Cells were grown in M9 medium supplemented with 0.4% glucose. The numbers of survived cells were determined by plating on solid LB plates. Each point represent average of three experiments for each culture, error bars indicate standard deviations.

Supplementary Figure 5 | Inhibition of full-length product accumulation on *hns* and *osmC* mRNAs by erythromycin (ERY) and klebsazolicin (KLB). *hns* and *osmC* mRNAs were obtained by transcription with T7 RNA-polymerase, and then used for *in vitro* translation in S30 *E. coli* extract in the presence of fluorescently labeled lysine. The products were separated by SDS-PAGE and visualized by Typhoon FLA 9500. The concentrations of erythromycin and klebsazolicin both were 5 μ M.

Supplementary Information

Supplementary Figure 6 | **Effects of KLB binding on the conformations of the nucleotides in the 23S rRNA.** (**a**, **b**) Comparison of the positions of key nucleotides in the 23S rRNA around the PTC in the presence of KLB (light blue) and in the canonical pre-attack state (blue) without the drug viewed from two different orientations. The structure coordinates for the position of the aminoacylated tRNAs in the pre-attack state are from the PDB entry 1VY4¹. Note that the only nucleotide in the 23S rRNA whose conformation significantly changes upon binding of KLB is A2602, which rotates by more than ninety degrees to form Hoogsteen base-pair with the m²A2503. (**c**, **d**) Comparison of the positions of the CCA-

ends of the A- and P-site tRNAs in the presence of KLB (green and dark blue, respectively) and its absence with the canonical positions of the aminoacylated tRNAs. For reference, the fully accommodated tRNA in the A site (light green with the Phe moiety shown in dark green) and the P-site tRNA (light blue with the fMet moiety colored in blue) are shown from two different views. The structure coordinates for the position of the aminoacylated tRNAs in the pre-attack state are from the PDB entry 1VY4¹. Note that presence of KLB does not affect positioning of the CCA-ends of the tRNAs in the PTC.

Supplementary Figure 7 | **Comparison of the binding sites of antibiotics in the peptidyl transferase center.** (a) Overview of the superimposed binding sites of klebsazolicin (KLB, yellow), erythromycin (ERY, light red), and quinupristin (QIN, green) in the PTC of the 50S subunit. The view and the coloring of 23S rRNA, mRNA and tRNAs are the same as in Fig. 4. KLB structure is from the current work, ERY is from PDB entry 4V7X², and QIN is from PDB entry 4U26³. All structures were aligned based on the domain V of the 23S rRNA. (b, c, d) Close-up views of the binding sites shown in (a) for KLB, ERY, and

QIN respectively. Note that macrolides (ERY) or streptogramins B (QIN) only partially occlude the peptide exit tunnel, whereas klebsazolicin (KLB) significantly obstructs it.

Supplementary Figure 8 | **Superposition of 70S-KLB structure with the ribosome-bound translation inhibitor peptides Oncocin and Bac7. (a, b)** Close-up views of the structure of KLB (yellow) in complex with the *T. thermophilus* 70S ribosome superimposed with the structure of ribosome-bound Bac7 peptide (green) (PDB entry 5HAU⁴) and Oncocin-112 peptide (PDB entry 4Z8C⁵). Superposition is based on the alignment of the 23S rRNA. Subunits of the 70S ribosome, mRNA and tRNAs are omitted for clarity). Note that Bac7 and Oncocin bind to the ribosomal peptide exit tunnel in the elongated conformation, while KLB binds in a compact globular conformation.

Supplementary Figure 9 | MS/MS fragmentation spectrum of KLB^{S1A}, KLB^{Q2N}, and KLB^{S3A}. (a) An m/z scan of purified KLB^{S1A} derivative resulted in ion consistent with the calculated m/z of for KLB^{S3A}

with amidine ring (observed $[M+H]^+$ at m/z 1958.6929, calculated $[M+H]^+$ 1958.6968, $\Delta ppm=1.99$). The ion was fragmented and produced represented spectra. The diagram of KLB^{S1A} with the observed *b*- and *y*-ions labeled in the structure and in the spectra. (b) An m/z scan of purified KLB^{Q2N} derivative resulted in ion consistent with the calculated m/z of for KLB^{Q2N} with amidine ring (observed $[M+H]^+$ at m/z1960.6693, calculated $[M+H]^+$ 1960.6761, $\Delta ppm=3.47$). The ion was fragmented and produced represented spectra. The diagram of KLB^{Q2N} with the observed *b*- and *y*-ions labeled in the structure and in the spectra. (c) An m/z scan of purified KLB^{S3A} derivative resulted in ion consistent with the calculated m/z of for KLB^{S3A} that doesn't contain an amidine ring (observed $[M+H]^+$ at m/z 1976.7048, calculated $[M+H]^+$ 1976.7074, $\Delta ppm=1.32$). The ion was fragmented and produced represented spectra. The diagram of KLB^{S3A} with the observed *b*- and *y*-ions labeled in the spectra. Presence of y_{22} -ion and no loss of H2O molecule support the absence of amidine ring.

Supplementary Figure 10 | MS/MS fragmentation spectrum of KLB^{A14K} and KLB^{S13A-A14K}. An m/z scan of purified KLB^{A14K} (a) and KLB^{S13A-A14K} (b) mutants resulted in ion consistent with the calculated m/z for derivatives with amidine ring. The ions were fragmented and produced represented spectra. Diagrams with the observed *b*- and *y*-ions labeled in the structure and in the spectra. (c) MALDI-TOF-MS spectra of HPLC purified KLB^{A14K}(1-14) fragment, product of proteolysis of KLB^{A14K} by trypsin. (d)

MALDI-TOF-MS spectra of HPLC purified KLB^{S13A-A14K} (1-14) fragment, product of proteolysis of KLB^{S13A-A14K} by trypsin. (e) MALDI-TOF-MS spectra of HPLC purified KLB^{S13A-A14K}(1-14) fragment, product of proteolysis of KLB^{S13A-A14K}(1-14) by carboxypeptidase Y.

Supplementary Figure 11 | **Biosynthetic gene clusters similar to klebsazolicin.** (a) Schematic representation of gene clusters from *Pantoea ananatis* strain PA4 (JMJK01000000), *Pseudovibrio denitrificans* JCM 12308 (BAZK01000000), *Paracoccus* sp. 228 (JYGY01000000) and *Paracoccus* sp. S4493 (JXYF01000000), and *Terasakiispira papahanaumokuakeensis* strain PH27A (MDTQ01000000) similar to *klpABCDE* gene cluster. (b) Alignment of predicted precursor peptides. Predicted residues involved in formation of the amidine ring and azoles are labelled in blue and red, respectively. Conservative part is highlighted by grey rectangle.

II. SUPPLEMENTARY MOVIE

Supplementary Movie 1 | **KLB functional site in the 70S ribosome.** The movie shows: (1) zoom-out and (2) close-up views of the KLB binding site in the large subunit of the *T. thermophilus* 70S ribosome programmed with mRNA and three tRNAs; (3) details of KLB interactions with the 23S rRNA in the PTC of the ribosome; (4) occlusion of the nascent peptide exit tunnel by KLB molecule.

III.SUPPLEMENTARY DATASETS

Supplementary Dataset 1 | Raw data for the luciferase luminescence assay shown in Figure 2b. Inhibition of protein synthesis by increasing concentrations of KLB in the *in vitro* cell-free translation in S30 extract. Efficiency of protein synthesis is measured in arbitrary luciferase luminescence units. Data for three independent measurements at each given concentration of KLB are shown. Each data point on the plot represents the average of three independent measurements. Standard deviations for each data point are calculated, however, the error-bars are not shown on the plot due to their small size.

IV. SUPPLEMENTARY TABLES

Supplementary Table 1 | NMR chemical shift assignments for amino acid residues in klebsazolicin (DMSO-d6).

		HN	Ν	CA	C"	HA	СВ	HB1	HB2	С	CD	HD	CG	HG
Ser	1			60.625	169.22	3.785	63.673	3.630	3.524					
Ser	1'	7.942		54.296	171.270	4.588	61.815	3.346	3.346					
Gln	2	7.953	116.778	52.009	156.856	3.948	30.450	2.108	1.862		30.352	2.096, 1.948	173.53	
Gln	2'	7.920	117.315	51.700	155.780	3.942	32.609	1.996	1.885		30.650	2.230, 2.000	174.32	
Ser	3	7.925		54.298	170.990	4.680	61.790	3.346	3.346					
Ser	3'			58.040	170.70	3.724	63.693	3.622	3.603					
Pro	4			59.907	171.740	4.346	28.836	2.054	1.896		24.209	1.939, 1.859	46.942	3.923
Gly	5	7.982	104.990	41.938	168.572	3.726								
Asn	6	8.38	121.138	48.08	170.781	5.473	39.37	2.926	2.733	172.573				
Asn	6'	8.35	121.138	48.08	170.781	5.473	39.26	2.926	2.733	172.573				
Ala	8	8.065	117.830	47.955	172.148	4.678	18.670	1.418						
Ser	9	8.851	118.199	53.718	171.641	5.188	62.906	3.890	3.845					
Ser	11	8.017	110.802	54.582	169.24	4.531	61.731	3.730	3.690					
Asn	12	8.68	118.138	44.06	163.164	5.37	37.69	2.91	2.70	170.448				
Ala	14	7.847	118.441	47.835	171.796	4.558	18.631	1.339						
Ser	15	8.119	112.423	54.790	169.53	4.375	61.651	3.658	3.605					
Ala	16	8.000	120.737	48.216	171.799	4.341	17.825	1.285						
Asn	17	8.63	120.341	48.28	170.595	5.483	39.36	2.922	2.710	173.008				
Thr	19	7.941	108.719	58.105	170.061	4.421	66.525	4.156	-	-	19.665	1.099		
Gly	20	8.236	107.130	42.236	168.958	3.792								
Gly	21	7.977	103.143	41.916	168.308	3.767								
Leu	22	7.831	117.724	50.884	171.800	4.325	40.793	1.475	1.513		23.982	1.612	21.450 22.825	0.839 0.873
Gly	23	7.929	106.090	41.020	171.863	3.680								
		C5	Н5	C2	C4	C6								
Thz	7	123.949	8.174	170.781 SH	148.539	159.628								
Thz	10	124.215	8.184	171.641	148.994	159.908								
Oxz	13	141.667	8.512	163.164 SH	135.370	159.137								
Thz	18	124.258	8.190	170.595 SH	148.639	160.250								

Strain (mutation)	MIC, µg/ml	MIC, µM	Fold change
SQ110DTC ^a (pBAD- <i>sbmA-ompF</i>)	64	32	1
SQ110DTC (pBAD-sbmA-ompF) (rrsX U2609G) ^b	256	130	4
SQ110DTC (pBAD-sbmA-ompF) (rrsX U2609A) ^b	256	130	4
SQ171DTC ^c	128	65	1
SQ171DTC (<i>rrsX</i> A2058G) ^d	512	259	4
SQ171DTC (<i>rrsX</i> A2058U) ^d	512	259	4
SQ171DTC (<i>rrsX</i> A2059C) ^d	512	259	4
SQ171DTC (<i>rrsX</i> A2059G) ^d	1024	519	8
SQ171DTC (<i>rrsX</i> A2059U) ^d	256	130	2
SQ171DTC (<i>rrsX</i> U2584C) ^d	1024	519	8
SQ171DTC (<i>rrsX</i> U2609A) ^d	512	259	4
SQ171DTC (<i>rrsX</i> U2609C) ^d	128	65	1
SQ171DTC (<i>rrsX</i> U2609G) ^d	1024	519	8

Supplementary Table 2 | Klebsazolicin MICs for various *E. coli* rRNA mutant strains.

^a MG1655 ΔtolC, Δ(rrnA, rrnB, rrnC, rrnD, rrnG, rrnH)

^b Spontaneous resistance mutations

^c MG1655 Δ*tolC*, Δ(*rrnA*, *rrnB*, *rrnC*, *rrnD*, *rrnE*, *rrnG*, *rrnH*), pAM552

^d Engineered resistance mutations

Supplementary Table 3 | Nucleotide sequences of primers used for cloning and Sanger sequencing verification.

Name	Primer (5'-3')	Purpose			
klpcF	ATTAT <u>GAGCTC</u> AAATAACATTTATAAGGCCGCAG	Molecular cloning of			
klpeR	ATTAT <u>CTGCAG</u> CTTAAAAATTATTTAATTCCATTACAACAT	klpBCDE			
klpaF	ATAAT <u>CCATGG</u> CTAAAATCAAGAATCGTTTTGG	Molecular cloping of kinA			
klpaR	ATTAT <u>CTCGAG</u> TTAACCTAAGCCACCTGTACAATTA				
klpaR2	ATTAT <u>GAGCTC</u> TTAACCTAAGCCACCTGTACAATTA	Molecular cloning of klpA2			
klpaS3A	ATTAT <u>CTCGAG</u> TTAACCTAAGCCACCTGTACAATTAGCACTGGCACT ATTTGAACAACTTGCACAATTACCCGGTGCCTGACTATAGAGTCCCT TCTT	Molecular cloning for preparation of KlpA Ser3Ala mutant			
klpaQ2N	ATTAT <u>CTCGAG</u> TTAACCTAAGCCACCTGTACAATTAGCACTGGCACT ATTTGAACAACTTGCACAATTACCCGGTGAGTTACTATAGAGTCCCT TCTT	Molecular cloning for preparation of KlpA Gln2Asn mutant			
klpaS1A	ATTAT <u>CTCGAG</u> TTAACCTAAGCCACCTGTACAATTAGCACTGGCACT ATTTGAACAACTTGCACAATTACCCGGTGACTGAGCATAGAGTCCCT TCTT	Molecular cloning for preparation of KlpA Ser1Ala mutant			
klpaA14K	ATTAT <u>CTCGAG</u> TTAACCTAAGCCACCTGTACAATTAGCACTTTTACT ATTTGAACAACTTGCACAA	Molecular cloning for preparation of KlpA Ala14Lys mutant			
klpaA11K	ATTAT <u>CTCGAG</u> TTAACCTAAGCCACCTGTACAATTAGCACTGGCACT ATTTTTACAACTTGCACAATTACCCG	Molecular cloning for preparation of KlpA Ala11Lys mutant			
klpaS13AA14K	ATTAT <u>CTCGAG</u> TTAACCTAAGCCACCTGTACAATTAGCACTTTTCGC ATTTGAACAACTTGCACAATT	Molecular cloning for preparation of KlpA Ser13Ala-Ala11Lys mutant			
sbmaF	ATTAACCATGGTTAAGTCTTTTTTCCCAAAG	- Molecular cloning of sbmA			
sbmaR	TAATT <u>GGATCC</u> TTAGCTCAAGGTATGGGTTACTTC				
ompfF	TAATT <u>CATATG</u> ATGAAGCGCAATATTCTGGC	Molecular cloning of omol			
ompfR	TAATT <u>CTCGAG</u> TTAGAACTGGTAAACGATACCCAC				
klpeF	ATTAT <u>CCATGG</u> AAAAGATTCTATACATTGCATC	Molecular cloping of kinE			
klpeR2	ATTAT <u>GAGCTC</u> CTTAAAAATTATTTAATTCCATTACAACAT				
rrnE1	GGATTTGACTATTACAGAG				
rrnE2	AAATTGAAGAGTTTGATCATG				
rrnE3	CTGTCGTCAGCTCGTGTTGTG				
rrnE4r	AATGGCGCATACAAAGAGAAGC	Sequencing of <i>rrnE</i> gene			
rrnE5	GGTTAAGCGACTAAGCGTAC				
rrnE6	CGGCGGGTGCTAACGTCCGTCG				
rrnE7	GCGAAATTCCTTGTCGGGTAA				
rrnE8r	GGATAGGTGGGAGGCTTTGAAGT				
rrnE9	AGCTGGGTTTAGAACGTCGTG				
rrnE10	GGTTAAGCGACTAAGCGTAC				
rrnE11	CACTAACTGGAGGACCGAAC				
rrnE12r	GCGAAATTCCTTGTCGGGTAA				
rrnE13	GGATAGGTGGGAGGCTTTGAAGT				
rrnE14r	CCTTACAACGCCGAAGGTGTTT				
U2584C-1	CTTAGAACGTCGTGAGACA	Site mutagenesis of pAM552			
U2584C-2	CCAGCTCGCGTACCACTT	plasmid at position U2584			

Supplementary Table 4 | Data collection and refinement statistics.

	70S-KLB with
	A-, P- and E-tRNAs
Data collection	
Space group	P212121
Cell dimensions	
a, b, c (Å)	209.64, 449.06, 622.01
α, β, γ (°)	90.0, 90.0, 90.0
Resolution (Å)	364-2.70 (2.77-2.70) ^a
R _{merge}	15.9 (137.7)
$I / \sigma I$	9.20 (0.97) ^b
Completeness (%)	99.3 (93.0)
Redundancy	4.97 (3.60)
Refinement	
Resolution (Å)	2.70
No. reflections	1,572,843
$R_{\rm work}$ / $R_{\rm free}$	20.7/25.2
No. atoms	
Protein	90,976
Ligand/ion	203,179
Water	5,861
B factors	
Protein	55.5
Ligand/ion	52.5
Water	40.5
r.m.s. deviations	
Bond lengths (Å)	0.005
Bond angles (°)	0.888

Values in parentheses are for highest-resolution shell. ^a Single crystal was used to obtain the structure

^b $I/\sigma I = 2$ at 2.87Å resolution

V. SUPPLEMENTARY REFERENCES

- 1. Polikanov, Y.S., Steitz, T.A. & Innis, C.A. A proton wire to couple aminoacyl-tRNA accommodation and peptide-bond formation on the ribosome. *Nat. Struct. Mol. Biol.* **21**, 787-793 (2014).
- 2. Bulkley, D., Innis, C.A., Blaha, G. & Steitz, T.A. Revisiting the structures of several antibiotics bound to the bacterial ribosome. *Proc. Natl. Acad. Sci. USA* **107**, 17158-17163 (2010).
- 3. Noeske, J. et al. Synergy of streptogramin antibiotics occurs independently of their effects on translation. *Antimicrob. Agents. Chemother.* **58**, 5269-5279 (2014).
- 4. Gagnon, M.G. et al. Structures of proline-rich peptides bound to the ribosome reveal a common mechanism of protein synthesis inhibition. *Nucleic Acids Research* **44**, 2439-2450 (2016).
- 5. Roy, R.N., Lomakin, I.B., Gagnon, M.G. & Steitz, T.A. The mechanism of inhibition of protein synthesis by the proline-rich peptide oncocin. *Nat. Struct. Mol. Biol.* **22**, 466-469 (2015).