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Supplementary Figure 1. PRISMA flow diagram illustrating the process of data collection and quality

control.



Soil biota traits contributing to soil aggregation

Supplementary Table 1 Compilation of essential soil biota traits contributing to biological, biophysical and —
chemical mechanisms of soil aggregation. The traits and mechanisms are assigned to the three major groups
(kingdoms/domain) Animalia, Bacteria and Fungi.

MECHANISMS Animalia Bacteria Fungi Refs
Biochemical - particle adhering - particle - particle adhering & 213
& orientation adhering & orientation
- cementing & orientation - cementing &
surface sealing - surface sealing surface sealing
- surface - surface
hydrophobicity hydrophobicity
By means of intestinal & extracellular extracellular 14-19
extracorporeal biopolymers (e.g. biopolymers (e.g.
biopolymers (mucus polysaccharides, polysaccharides,
enriched with Ca%, hydrophobins), hydrophobins)
saliva), organic debris biofilm
(integuments , eggs)
Biophysical - compaction & - none reported - compaction & 3,4,6,20-
compression compression 25
- grinding & - entanglement
remolding - soil water regime
- cast water regime
By means of whole body (inside/ N/A fungal hyphae/
outside) mycelium
Biological - interactions with - interaction - interactions with 9.26-34
soil food web with plant plant roots & root-
(ingest fungi & roots & fungal adhering bacteria
bacteria) hyphae - interactions with
- vector for soil food web (e.g.
dispersion of soil grazers)
microbes
By means of ingestion (geophagus signaling (e.g. exo- signaling (e.g. exo-

organisms) &

biopolymers,

biopolymers, hormones)

movement of soil fauna  hormones)
Scale of action - Micron —cm scale - Micron scale - Micron scale
(macroaggregates) (micro- (macro- & micro-
aggregates) aggregates)
Binding agent - Transient & - Transient - Transient &
temporary binding binding agent temporary binding
agents agent




Species composition of Single Taxa dataset

Supplementary Table 2 Overview of number of different species used in experiments of the studies included in
this meta-analysis.

Domain Kingdom Phylum of these are No. of species

Eukaryota Animalia Annelida 33
earthworm 30
enchytraeids 3
Arthropoda 26
mite 3
termite 16
ant 3
beetle 1
millipede 2

collembola 1

Nematoda 1

Bacteria Actinobacteria 12
Bacteroidetes 2

Cyanobacteria 13

Firmicutes 38

Proteobacteria 29

Eukaryota Fungi Ascomycota 75
yeasts 5

Basidiomycota 19
yeasts 3

Glomeromycota 24
Mucoromycotina 7

[
In total 279




Effect sizes composition

- negative

Supplementary Figure 2. Percentage of negative, neutral and positive effect size values in Single Taxa Dataset.
For further detail, see Fig. 2.

The majority of trials provided effect sizes values for which the corresponding variance overlapped
zero, meaning that there was a neutral effect when comparing treated (soil biota) and untreated
(control) samples.



Soil- and experiment-related factors

The edaphic factors were all analyzed as categorical variables. Soil pH had three levels (acidic, neutral
and alkaline) which followed the classification by USDA criteria (soils. usda.gov): acidic <6.5, neutral:
6.6 - 7.3 and alkaline >7.4. Data were converted to CaCl, to allow for comparison among different
reagents (eusoils.jrc.ec.europa.eu). The values for soil pH ranged from 3.7 to 10. For sand content,
values ranged from 3.8 to 97.4 %; these were grouped into two levels (sandy and not sandy). Data
were either presented directly or deduced from the soil texture via the USDA soil triangle *. All soil
textures with a sand content > 50% were grouped in the moderator level sandy. Soil organic matter
had two levels (low and high). The level low comprised all trials with soil organic matter content <
2%. Soil organic matter content ranged from 0.02 to 56.9 %. Bulk density had two levels (low and
high). The level high comprised all trials with soil organic matter content >1. 2%. Bulk density of test
soils ranged from 0.8 to 2.7 g cm™. In the analyses, we log-transformed this variable to improve data
distribution.

The experimental factors were all analyzed as categorical variables. Setting had three levels (in vitro
system, pot and field) representing the degree of environmental control which is lowest for field
studies and highest for in vitro systems. The latter comprised all enclosed experimental units (in vitro
systems) that were loaded under sterile conditions and could be sealed off for the duration of the
experiment (e.g. Petri dishes, bioreactors and sealed jars). Experimental duration had three levels
(short (<56 days), medium (56-112 days) and long (>112 days)) which followed the classification used
in previous works 3®%’, Only data from the last harvest were included. The three variables additional
organic matter application, plant, sterilization of growth substrate all had two levels (yes and no).
These moderators were tested to check for any potential biases introduced by such practices. If there
was an option, studies with sterilized growth substrate and no additional organic matter application
or plant in the test system were included during data collection.



Analysis outcomes for soil- and experiment-related factors

We tested soil- and experiment-related factors to evaluate their impact on the effect size rrST in the
Single Taxa dataset since there were not sufficient data available to conduct robust analyses in the
Interacting Species dataset for the effect size rriIT.
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Supplementary Figure 3. Effect of soil-related factors (soil pH, sand content, soil organic matter and bulk
density) on the effect size rrST. For each variable an overall summary effect and results of HTC-specific subset
analyses are presented. Effects are represented as means and 95% Cls; below the p-values, moderator levels
and number of trials included in the analysis can be found. Significance test for between-level differences of
moderators were based on a permutation test (random effects design); p < 0.05 were significant and marked in

bold.

For the soil-related factors, we found a significant overall relationship for the moderator variables
soil pH and a trend for sand content (Supplementary Figure 3). For sand content, we found a
significant effect in the Animalia subset. Thus soils with high pH and sand content favored soil biota

mediated effects on soil aggregation.



In our analyses we found that only the two soil-related moderator variables soil pH and sand content
modulated the soil biota effects on soil aggregation. Higher soil pH leads to increased concentrations
of negative charges and hence increased repulsive forces between particles resulting in dispersion 38,
The detected positive soil biota mediated effect suggested that their actions in soil could counteract
the negative impact of increasing soil pH on soil aggregation. Coarsely textured soils high in sand
content were more positively affected by soil biota than fine textured soils with a low amount of
sand particles. In soils rich in clay particles swelling and dispersion processes might override soil biota
contribution to soil aggregation *°.

For the experiment-related factors, we found a significant overall impact of additional organic matter
application and experimental setting on the effect size rrST (Supplementary Figure 4). For the latter
one, the same and also significant effect was detectable for bacteria. For Animalia, this pattern was
present but not significant. In the Bacteria subset the between-level differences were significant.

In our analyses we found that only the two experiment-related moderator variables experimental
setting and additional organic matter application modulated the soil biota effects on soil aggregation.

Soil organic matter itself functions as a binding agent and aggregate nucleation sites during the
process of soil aggregation %°. Thus additional application of organic matter diminished the soil biota
effect on soil aggregation.

The experimental setting affected the soil biota mediated effect on soil aggregation; the more
controlled the setting the higher were the resulting effects. This finding was in accordance with other
studies comparing field and lab studies e.g. **. To evaluate if the identified moderator variables are
potentially confounding factors, we re-analyzed our data while excluding all trials of experiments
with application of in vitro experiments, application of additional organic matter, acidic or not sandy
(sand content < 50%) soil. For further information, see paragraph “Evaluation of potential
confounding effect by “experimental setting” below (Supplementary Figure 5).



Experimental duration

Subset Animalia Bacteria Fungi Animalia Bacteria Fungi
Q_
) + H |
: %
AT AN AR AES i
e _|
o
o
o -
I
A p =0.008 p=0.81 p =0.03 p=041 p=0.95 p=0.59 p=0.50 p =045
o ° ° o | . E - - . 5
Levels g Fi:z gz Frz|zt : 1§ 218 2t¢8
Trials 103174 68 63 72 4 4 33 31 36 69 33 121 100 78 43 36 25 41 18 9 37 46 44

Moderator Experimental setting
Subset Animalia Bacteria Fungi Animalia Bacteria Fungi Animalia Bacteria Fungi
+
) b1y !
S N B P +
[t}
o
T
B p=0.02 p=029 p=075 p=014|p=085 p=0.14 p=005 p=074 p=029 p=078 p=090 p=0.96
w w w w w %] w o v w W 173
Levels 2 2 2 g g g g ¢ ]2 ¢ 22 g¢ g g2 8 28 2 28
Trials 25983 96 42 20 14 107 29 162183 86 54 41 27 36 102 248 95 123 15 50 17 75 63
Moderator Additional organic matter Plant Substrate sterilization

Supplementary Figure 4. Effect of experiment-related factors (experimental duration and setting, additional
organic matter application, plant as co-occurring organism and pre-sterilization of growth substrate) on the
effect size rrST. For each variable an overall summary effect and results of HTC-specific subset analyses are
presented. Effects are represented as means and 95% Cls; below the p-values, moderator levels and number of
trials included in the analysis can be found. Significance test for between-level differences of moderators were

based on a permutation test (random effects design); p < 0.05 were significant and marked in bold.



Sensitivity analyses I: Evaluation of potential confounding variables

As depicted in Supplementary Figure 3 and Supplementary Figure 4, the moderators soil pH, sand
content and experimental setting had a clear influence on our effect size rrST: with increasing
environmental control, application of additional organic matter, decreasing soil pH and sand content
the effect sizes increased. To evaluate how these potential confounding factors (use of in vitro
experiments, application of additional organic matter, acidic or not sandy (sand content < 50%)) soil
influenced our results - with the potential to over- or underestimate soil biota effects on soil
aggregation - we re-analyzed our data while excluding all trials derived from the respective
experiments (Supplementary Figure 5).

When excluding “in vitro” trials, we found for the overall summary effect a reduced but still
pronounced positive effect (Single Taxa dataset: 24% [Cl: 18-31%]; Single Taxa dataset - in vitro trials:
20% [Cl: 14-26%]). The exclusion of “acidic”, “not sandy” or “extra OM-yes” trials led to an increase
of the overall summary effect (Single Taxa dataset - acidic trials: 33% [Cl: 25 to 41%)], Single taxa
dataset - not sandy trials: 31% [Cl: 22 to 41%)], Single Taxa dataset - extra OM-yes: 28% [Cl: 21 to
36%]) which still remained positive. The exclusion of respective trials only marginally altered the
patterns we found (Supplementary Figure 5). Thus, by including in vitro experiments we only slightly
overestimated while by including acidic and sandy soil trials and trials with additional organic matter
application we slightly underestimated soil biota mediated effects on soil aggregation.
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Supplementary Figure 5. Comparison of analysis outcomes for effect size rrST with (black) and without (blue)

trials extracted from “in vitro”,

n o u

extra organic matter (yes)”, “acidic soil” and “not sandy soil” experiments for
overall effect, higher taxonomic category (HTC) and aggregate size fraction (for overall and HTC-specific

subsets). Effects are represented as means and 95% Cls; below the p-values, moderator levels and number of
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trials included in the analysis can be found. Significance test for between-level differences of moderators were
based on a permutation test (random effects design); p < 0.05 were significant.
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Investigation of soil biota ‘motility’ trait

While testing for the impact of motility on soil biota contribution to soil aggregation, we found that
nonmotile organisms had higher effects on rrST (Fig. 3, Supplementary Figure 6). However, when
investigated in more detail, it became apparent that this finding was confounded by taxonomic
groups: motile soil animals showed lower rrST than nonmotile fungi. Since bacteria were the only
taxonomic group comprising both motile and nonmotile species, we re-analyzed their impact on soil
aggregation on “bacteria”- and “aggregate size fraction”-subsets. We found that nonmotile bacteria
more positively contribute to soil aggregation than motile species and that this pattern is especially
evident at the microaggregate scale. Due to their small body size and hence restricted area of
influence, bacteria have a stronger impact on microaggregates ** which is even more pronounced
when species concerned are nonmotile. Thus at the microscale, bacteria contributed more strongly
to soil aggregation when attached to surfaces (providing their binding agents, e.g. exo-biopolymers
and formation of biofilms) compared to motile forms.
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Supplementary Figure 6. Analysis outcomes of the effect size rrST for motility trait for complete dataset and
various subsets to investigate potential confounding effect of taxonomic groups on our results. In the blue-
framed compartment, data and subset analyses for the taxonomic group bacteria only are presented. Effects
are represented as means and 95% Cls; below the p-values, moderator levels and number of trials included in
the analysis can be found. Significance test for between-level differences of moderators were based on a
permutation test (random effects design); p < 0.05 were significant.
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Taxonomic group combinations both on HTC and phylum level
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Supplementary Figure 7. Overview of the impact of taxonomic group combinations (on higher taxonomic
category or phylum level) on the effect size rrIT. Effects are represented as means and 95% Cls with number of
trials for each grouping.
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Composition of inoculum for monoculture and species mixtures

Supplementary Table 3. Biomass of inoculum for monocultures and mixtures. In the column “phyla”, those species combinations are marked in green which revealed a positive
effect size mean as presented in Supplementary Figure 7.

biomass of
groups in
phyla organism groups biomass of groupl | biomass of group2 | biomass of group3 | biomass of group 4 | mixture
glomeromycota:glomeromycota Glomus claroideum:mix 5% (v:v) 5% (v:v)
1000 spores & 500
firmicutes:glomeromycota Glomus mosseae:Bacillus root fragments 1079 cfu
Glomus mosseae:Bacillus
(Bacillus sp. & Rhizobium 1000 spores & 500 20 ml, 1079 cells * 10 ml, 1078 cells ml
firmicutes:glomeromycota leguminosarum) root fragments mi-1 -1
ascomycota:glomeromycota Glomus intra:Aspergillus 5% (v:v) 3% (1.2 x 1077)
1076 spores per
container (1:10
inoculum:substrate
ascomycota:basidiomycota Scleroderma:Aspergillus ) 3% (1.2 x 10°7)
proteobacteria:ascomycota Enterobacter:Sordaria 1079 bacteria cells 1 agar block
ascomycota:ascomycota/basidio Rhodotorula
mycota rubra:Sordaria 10”8 yeast cells 1 agar block
Meloidogyne jav:Pasteuria
penetrans:Pseudomonas 300 +13.5x
nematoda:proteobacteria men 300 juveniles 13.5 x 1076 cells > 1078 cells ml-1 1076 + "strains"
70+ 70
annelida:annelida Amynthas:Lumbricus 140 individuals 140 individuals individuals

Millsonia:Hyperiodrilus:Dic

206 individuals m -

206 individuals m -

206 individuals m -

206 individuals

glomeromycota:glomeromycota

Glomus mix

intraradices g -1

annelida:annelida hogaster 2 2 2 m -2
annelida:annelida Eisenia:Lumbricus 2 individuals 1 individual
proteobacteria:glomeromycota Glomus:Pseudomonas 5% (v:v) 1079 CFU
proteobacteria:glomeromycota Glomus:Pseudomonas 5% (v:v) 1079 CFU
64 spores
55 spores of G. (including

groupland 3
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additional
species)

proteobacteria:ascomycota

Azotobacter:Trichoderma

not specified

not specified

ascomycota:muceromycotina

Mucor:Penicillium

not specified

not specified

extracted from 300 | 80 individuals
g of soil Proisotoma minuta
(Collembola: 300g-extract +
arthropoda:glomeromycota Proisotoma:AMF Isotomidae) per pot 80 Ind.
extracted from 300 | 80 individuals
g of soil Proisotoma minuta
(Collembola: 300g-extract +

arthropoda:glomeromycota

Proisotoma:AMF

Isotomidae) per pot

80 Ind.

actinobacteria:proteobacteria

Micrococcus:Pseudomona
s:Actinomyces:Absidia

not specified

not specified

not specified

not specified

anneldida:arthropoda

Pseudopolydesmus:Amynt
has

1 large (0.156 g) or
2 small (0.045 g
each)

4 earthworms per
microcosm (0.865 g
each)

glomeromycota:glomeromycota

G.etunicatum:G.mosseae:

Gi.margarita:A.lacunosa:G.

aggregatum:G.versiforme

7000 IPU

7000 IPU

7000 IPU

7000 IPU

7000 IPU

glomeromycota:glomeromycota

G.etunicatum:G.mosseae:
Gi.rosea

500 spores

500 spores

1000 spores

250, 250 & 500
spores of each
fungus

anneldida:annelida

Apporectodea:Lumbricus

1.82 g of A.
caliginosa (6 adults)

1.98 g of L. rubellus
(6 adults)

1.93 g of A.

caliginosa+L.
rubellus (3 of
each species)

anneldida:annelida

Apporectodea:Alloloboph
ora

1.37 g biomass

1.15 g biomass

1.70 g biomass

annelida:arthropoda

enchytrae:mite

50 individuals

400 individuals

50 + 400

annelida:arthropoda

enchytrae:mite:mite

50 individuals

3 individuals

400 individuals

50+ 3 +400
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Alternative effect size for Interacting Taxa dataset

To evaluate the choice of our effect size rrIT, we calculated an alternative effect size. We used
instead of the best performing monoculture the average of soil aggregation data for all the presented
monocultures; the resulting effect size will be called hereafter rrIT2. We found that this alternative
effect size yielded more positive analysis outcomes than rrIT while the moderator analyses showed
comparable patterns and significance levels. Thus our conclusions are robust to the particular choice
of effect size.

Higher taxonomic category Phylum
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Supplementary Figure 8. Impact of soil biota interactions in mixtures across and within taxonomic groups (HTC
and phylum level, respectively) on soil aggregation presented for the original effect size rrIT (in black) and the
alternative effect size rriT2 (in purple). Effects are represented as means and 95% Cls; below the p-values,
moderator levels and number of trials included in the analysis can be found. Significance test for between-level
differences of moderators were based on a permutation test (random effects design); p < 0.05 were significant.
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Sensitivity analyses II: Publication bias

Publication Bias

0.310 0.000
I

Standard Error
0.621

0.931

1.241
|
°

I I I I I T

-2.00 -1.00 0.00 1.00 2.00 3.00
reST

Supplementary Figure 9. Test for publication bias by funnel plot. Observed pattern indicated no sign of
publication bias.

We tested our datasets for publication bias by plotting the effect size rrST against the sample size
(replicates) and variance (within-study variance; *3). There was no pattern suggesting the existence of
a publication bias, as would be evident by funnel asymmetry %,
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Applied soil aggregation stability test

The soil aggregation data extracted from articles reflected the stability of treated/ untreated soil. The
stability tests varied by the type of applied disintegrating force (e.g. water, abrasion, drop impact).
The majority of studies used water as disintegrating force. In rarer cases abrasion on a sieve or drop
impact were used as disintegrating force (impact of aggregates on surface after fall from 1.5m
height). Only in 12 studies no appropriate information was given about the disintegrating force. In
general, the type of disintegrating force did not cause a change in the effect size outcome
(Supplementary Table 4), thus we did not exclude any disintegrating force type from our analyses.

Supplementary Table 4 Overview of types of disintegrating forces applied to test aggregate stability
throughout the 183 studies included in the Single Taxa dataset

disintegrating force mean (rrST) IbCl® ubCl® trials P2
abrasion 0.21 -0.03 0.45 17 0.86
drop impact 0.06 -0.30 0.42 6

no info 0.22 -0.05 0.50 12

water 0.22 0.17 0.27 310

2 significance for between-level differences; p < 0.05 were significant
b Jower and upper border of the 95% confidence intervals
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Sensitivity analysis lll: ‘Disproportional impact of studies’ approach
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Supplementary Figure 10. Test for disproportional impact of studies on the effect size rrST for the moderator variable Higher taxonomic category (levels:
Animalia, Bacteria, Fungi; see Fig. 2B). No disproportional impact was detectable; the exclusion of a study did not cause the mean effect size to move outside
the 95% Cl limits (red, dashed line) of the original set of studies.
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Supplementary Figure 12. Test for disproportional impact of studies on the effect size rrST for the moderator variable Aggregate size fraction (levels:
macroaggregate, microaggregate; see Fig. 2C) in the subset “Fungi”. No disproportional impact was detectable; the exclusion of a study did not cause the mean
effect size to move outside the 95% Cl limits (red, dashed line) of the original set of studies.
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Supplementary Figure 13. Test for disproportional impact of studies on the effect size rrST for the moderator variable Aggregate size fraction (levels:
macroaggregate, microaggregate; see Fig. 2C) in the subset “Glomeromycota”. No disproportional impact was detectable; the exclusion of a study did not
cause the mean effect size to move outside the 95% Cl limits (red, dashed line) of the original set of studies.
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Supplementary Figure 14. Test for disproportional impact of studies on the effect size rrST for the moderator variable Motility (levels: motile, nonmotile; see
Fig. 3A). No disproportional impact was detectable; the exclusion of a study did not cause the mean effect size to move outside the 95% Cl limits (red, dashed
line) of the original set of studies.
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Supplementary Figure 15. Test for disproportional impact of studies on the effect size rrST for the moderator variable Motility (levels: motile, nonmotile; see
Fig. 3A) in the subset “Bacteria & Microaggregate”. No disproportional impact was detectable; the exclusion of a study did not cause the mean effect size to
move outside the 95% Cl limits (red, dashed line) of the original set of studies.
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Supplementary Figure 16. Test for disproportional impact of studies on the effect size rrST for the numeric moderator variables Body Size (see results in main
text and Fig. 3B and C). No disproportional impact was detectable; the exclusion of a study did not cause the mean effect size to move outside the 95% Cl limits
(red, dashed line) of the original set of studies.
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Supplementary Figure 17. Test for disproportional impact of studies on the effect size rrST for the numeric moderator variables Body length and Density (see
Fig. 3B and C). No disproportional impact was detectable; the exclusion of a study did not cause the mean effect size to move outside the Cl limits (red, dashed
line) of the original set of studies.
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Supplementary Figure 18. Test for disproportional impact of studies on the effect size rrIT for the moderator variable Soil biota interactions for HTC (see Fig. 4).
No disproportional impact was detectable; the exclusion of a study did not cause the mean effect size to move outside the 95% Cl limits (red, dashed line) of
the original set of studies.
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Supplementary Figure 19. Test for disproportional impact of studies on the effect size rrST for the moderator variable soil pH (levels: acidic, neutral, alkaline;
see Fig. $3). No disproportional impact was detectable; the exclusion of a study did not cause the mean effect size to move outside the 95% Cl limits (red,
dashed line) of the original set of studies.
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Supplementary Figure 20. Test for disproportional impact of studies on the effect size rrST for the moderator variable sand content (levels: not sandy, sandy;

see Supplementary Figure 3) in the subset “Animalia”. No disproportional impact was detectable; the exclusion of a study did not cause the mean effect size to
move outside the 95% Cl limits (red, dashed line) of the original set of studies.
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Supplementary Figure 21 Test for disproportional impact of studies on the effect size rrST for the moderator variable setting (levels: field, pot, in vitro; see

Supplementary Figure 4). No disproportional impact was detectable; the exclusion of a study did not cause the mean effect size to move outside the 95% Cl

limits (red, dashed line) of the original set of studies.
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Constructed maximum likelihood trees

For the phylogenetic merging approach, species’ names (EOL encyclopedia of life, MycoBank) and
availability of DNA sequences were checked and retrieved from GenBank by using the species specific
spacer regions 28S (earthworms and enchytraeids), ITS1 and 2 (fungi), 16S (bacteria). Unavailable
sequences were replaced by congeneric species. Aligned sequences and Maximum Likelihood Trees
(calculated by best fitted model and bootstrapping with 1000 iterations) were constructed in MEGA
2.6 (for calculated trees, see following graphics). The final merging procedure was conducted in R
v.3.3.1 % via the rma.mv() function in the ‘metafor’ package *. Here the rma.mv() function was used
to build a model with species as random factor and the implemented phylogenetic correlation matrix
constructed by the ‘phytools’ package .
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_|: Bacillus amyloliquefaciens
Bacillus atrophaeus

Bacillus sp.

Bacillus pumilus

Bacillus oleronius
Bacillus cereus

Bacillus niacini

_|: Bacillus flexus
Bacillus megaterium

Bacillus azotoformans

Sporosarcina globispora

Bacillus sphaericus

_|: Kurthia gibsonii
Kurthia sibirica

Bacillus alcalophilus

Brevibacillus borstelensis

Brevibacillus centrosporus
Brevibacillus reuszeri
Brevibacillus sp.
Brevibacillus parabrevis

Brevibacillus choshinensis

Paenibacillus alvei

{ Paenibacillus macerans

Paenibacillus sp.

Paenibacillus pabuli

_|: Paenibacillus validus
Paenibacillus chondroitinus

— Microbacterium barkeri

ﬁﬁ#

L Microbacterium laevaniformans
Kocuria rosea

Rothia dentocariosa
Micrococcus luteus
Arthrobacter mysorens
Arthrobacter globiformis
Arthrobacter ramosus
Shewanella putrefaciens
Paucimonas lemoignei

Pseudomonas huttiensis

Maximum likelihood tree for study 90

Borrelia burgdorferi
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Funneliformis mosseae

Rhizophagus irregularis

Glomus deserticola

Maximum likelihood tree for studies 22 & 683

Maximum likelihood tree for study 91

Chytridium olla

Pseudomonas fluorescens
Pseudomonas putida
Pseudomonas marginalis
Acinetobacter sp.
Stenotrophomonas maltophilia
Sphingobacterium thalpophilum
Chryseobacterium scophthalmum
Arthrobacter aurescens
Bacillus pumilus

Bacillus simplex

Bacillus mycoides

Bacillus cereus

Methanosaeta sp.

Rhizophagus irregularis

Glomus deserticola

Funneliformis mosseae

Maximum likelihood tree for study 98

Aspergillus niger

Rhizophagus irregularis

Funneliformis mosseae

Glomus deserticola

Maximum likelihood tree for study 107

Chytridium olla
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Maximum likelihood tree for study 120

Maximum likelihood tree for study 154

Sordaria alcina
Trichoderma harzianum
Penicillium sp.
Penicillium purpurascens

Chytridium olla

Penicillium glabrum
Penicillium spinulosum
Penicillium sp.

Penicillium simplicissimum
Penicillium brevicompactum
Penicillium crystallinum
Penicillium herquei
Penicillium roseopurpureum
Penicillium citrinum
Penicillium canescens
Aspergillus fumigatus
Aspergillus wentii
Aspergillus flawus
Aspergillus ochraceus
Aspergillus niger
Aspergillus niveus
Aspergillus terreus
Aspergillus ustus

Chytridium olla
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{ Rhizobium leguminosarum
Rhizobium sp.

Agrobacterium radiobacter

—— Bradyrhizobium japonicum

I Beijerinckia indica

Azotobacter chroococcum

Maximum likelihood tree for study 207

Borrelia burgdorferi

Millsonia sp.

Dichogaster sp.

Hyperiodrilus africanus

Maximum likelihood tree for study 226

Sipunculus nudus

Acaulospora sp.

Acaulospora colombiana

Gigaspora margarita

Scutellospora heterogama

Glomus etunicatum

Glomus sp

Maximum likelihood tree for study 439

Chytridium olla

Funneliformis mosseae

Gigaspora rosea

Glomus etunicatum

Maximum likelihood tree for study 462

Chytridium olla

Paenibacillus larvae subsp. pulvifaciens
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Maximum likelihood tree for study 509

Maximum likelihood tree for study 533

Maximum likelihood tree for study 557

Maximum likelihood tree for study 622

Stemphylium sp.
Curwlaria sp.
Chaetomium sp.
Fungus sp.
Mucor sp.

Myrothecium verrucaria

Funneliformis mosseae
Glomus diaphanum
Glomus ersiforme

Chytridium olla

Rhizobium sp.

Derxia sp.

Azotobacter chroococcum

Bacterium sp.

Borrelia burgdorferi

Aporrectodea sp.
Aporrectodea caliginosa
Aporrectodea longa
Allolobophora chlorotica
Aporrectodea rosea

Sipunculus nudus
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Maximum likelihood tree for study 680

Maximum likelihood tree for study 689

Maximum likelihood tree for study 718

Maximum likelihood tree for study 720

Suillus luteus
Suillus granulatus
Suillus bovinus
Rhizopogon roseolus
Paxillus involutus
Laccaria bicolor
Laccaria laccata
Lactarius rufus
Lactarius sp.

Chytridium olla

Glomus etunicatum
Gigaspora rosea
Funneliformis mosseae

Chytridium olla

Penicillium sp.
Humicola sp.
Trichoderma sp.
Phoma sp.

Myrothecium verrucaria

Curwilaria sp.
Alternaria sp.
Stemphylium sp.
Helminthosporium sp.
Fungus sp.
Aspergillus niger
Penicillium palitans
Fusarium sp.

Myrothecium verrucaria
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—|: Penicillium Sp.
Aspergillus sp.
Cladosporium sp.

—— Rhizopus stolonifer
[ — Mucor rouxii

Myrothecium verrucaria

Maximum likelihood tree for study 722

Scopulariopsis brevicaulis

Doratomyces stemonitis

Gliomastix sp.

Chaetosphaeriaceae sp.

Fusarium sp.

Cylindrocarpon sp.

nith

Fusarium solani

Phialemonium sp.

Volutella sp.

Sepedonium chrysospermum

Diplodina sp.

Rhinocladiella sp.

Aureobasidium pullulans

Sclerotium sp.
—|: Rhexocercosporidium sp.
Stachybotrys sp.

Penicillium janczewskii
—|: Penicillium wilpinum

Penicillium brefeldianum

Penicillium vinaceum

i Aspergillus sp.
L Aspergillus versicolor

_|: Cladosporium herbarum
Cladosporium cladosporioides

Cladosporium sp.

Torula sp.

Pyrenochaeta sp.
_|: Epicoccum nigrum
Alternaria consortialis

Myrothecium verrucaria

Maximum likelihood tree for study 727
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Maximum likelihood tree for study 738

Maximum likelihood tree for study 741

Fusarium solani
Cylindrocarpon sp.
Doratomyces stemonitis
Aspergillus sp.
Penicillium vinaceum
Penicillium janczewskii
Aureobasidium pullulans

Chytridium olla

Pseudomonas aeruginosa
Pseudomonas sp.

Chromobacterium violaceum

Beijerinckia indica subsp. indica

Arthrobacter viscosus
Bacillus subtilis

Methanosaeta sp.
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