OMTN, Volume 9

Supplemental Information

Size, Shape, and Sequence-Dependent

Immunogenicity of RNA Nanoparticles

Sijin Guo, Hui Li, Mengshi Ma, Jian Fu, Yizhou Dong, and Peixuan Guo

SUPPLEMENTAL INFORMATION:

Supplemental Figures:

Figure. S1. Step-wise self-assembly of small, medium and large 2'F SQR-SEQ, 2'F TRI-SEQ, 2'F PENTA-SEQ and 2'F Tetrahedron-SEQ evaluated by 3% agarose gel (M=monomer, D=dimer, T=trimer, Tetra=tetramer, P=pentamer; ladder: 100 bp DNA).

Figure. S2. Flow cytometry analysis showing the increased cellular binding of medium 2'F SQR-SEQ to RAW 264.7 cells as more copies of 2'F SEQ incorporated (2'F SQR-2 SEQ refers to 2'F Square with two SEQ extensions on the neighboring vertexes, and 2'F SQR-2' SEQ means 2'F Square with two SEQ extensions on the opposite vertexes).

Figure. S3. Size distribution histogram of 2'F Tetrahedron (Th)-SEQ measured by DLS (n=3).

Figure. S4. Cytokines **a.** TNF- α and **b.** IL-6 induction by medium 2'F SQR-SEQ, 2'F SQR-double-stranded SEQ and control groups (concentrations refer to nanoparticles; results were presented as mean±standard deviation, n=3, ***P*<0.01, ****P*<0.001, analyzed by student's t test).

SEO (20nt)	UCCAUGACGUUCCUGACGUU
Mutotod SEO I (20nt)	
Mutated SEQ I (2011)	
Mutated SEQ II (20nt)	UCCAUGAGCUUCCUGAGCUU
Scramble sequence(20nt)	GCAGCUUUGGCUGAGCGUAU
Complementary SEQ (20nt)	AACGUCAGGA ACGUCAUGGA
Small SQR A-SEQ (63nt)	GGUCCAUGACGUUCCUGACGUUUUUUUGGGCCGUCAAUCAUGACCGU
	ACUUUGUUGCACGCCC
Small SQR B-SEQ (63nt)	GGUCCAUGACGUUCCUGACGUUUUUUUGGCGACCCAAUCAUGUCUCU
	ACUUUGUUGGCUGGCC
Small SQR C-SEQ (63nt)	GGUCCAUGACGUUCCUGACGUUUUUUUGGCCAGCCAAUCAUGCACAU
	ACUUUGUUGACGGCCC
Small SQR D-SEQ (63nt)	GGUCCAUGACGUUCCUGACGUUUUUUUGGGCGUGCAAUCAUGUAGUU
	ACUUUGUUGGGUCGCC
Small SQR E (48nt)	GGUCAUGUGUAUGUGCAUGUGUAGAGACAUGUGUAACUACAUGUGU
	AC
Medium SQR A-SEQ (73nt)	GGUCCAUGACGUUCCUGACGUUUUUUUGGGCCGUCAAUCAUGGCAAG
TRI A-SEQ (73nt)	UGUCCGCCAUACUUUGUUGCACGCCC
PENTA A-SEQ (73nt)	
Medium SQR B-SEQ (73nt)	GGUCCAUGACGUUCCUGACGUUUUUUUGGCGACCCAAUCAUGGCAAC
PENTA B-SEQ (73nt)	GAUAGAGCAUACUUUGUUGGCUGGCC
Medium SQR C-SEQ (73nt)	GGUCCAUGACGUUCCUGACGUUUUUUUGGCCAGCCAAUCAUGGCAAU
TRI C-SEQ (73nt)	AUACACGCAUACUUUGUUGACGGCCC
PENTA C-SEQ (73nt)	
Medium SQR D-SEQ (73nt)	GGUCCAUGACGUUCCUGACGUUUUUUUGGGCGUGCAAUCAUGACAAG
	CGCAUCGCAUACUUUGUUGGGUCGCC
Medium SQR E (88nt)	GGACACUUGUCAUGUGUAUGCGUGUAUAUUGUCAUGUGUAUGCUCUA
	UCGUUGUCAUGUGUAUGCGAUGCGCUUGUCAUGUGUAUGGC
TRI B-SEQ (73nt)	GGUCCAUGACGUUCCUGACGUUUUUUUGGGCGUGCAAUCAUGGCAAC
	GAUAGAGCAUACUUUGUUGGCUGGCC
TRI D (66nt)	GGACACUUGUCAUGUGUAUGCGUGUAUAUUGUCAUGUGUAUGCUCUA
	UCGUUGUCAUGUGUAUGGC
PENTA D-SEQ (73nt)	GGUCCAUGACGUUCCUGACGUUUUUUUGGCCCUACAAUCAUGGCAAG
	CGCAUCGCAUACUUUGUUGGGUCGCC

Table S1. Sequences for primary RNA nanoparticles $(5' \rightarrow 3')$

PENTA E-SEQ (73nt)	GGUCCAUGACGUUCCUGACGUUUUUUUGGGCGUGCAAUCAUGGCAAA
	UAUGCGCCAUACUUUGUUGUAGGGCC
PENTA F (110nt)	GGACACUUGUCAUGUGUAUGCGUGUAUAUUGUCAUGUGUAUGCUCUA
	UCGUUGUCAUGUGUAUGCGAUGCGCUUGUCAUGUGUAUGGCGCAUAU
	UUGUCAUGUGUAUGGC
Large SQR A-SEQ (93nt)	GGUCCAUGACGUUCCUGACGUUUUUUUGGGCCGUCAAUCAUGGCAAG
	UGUCCGCAAGCAUAGCUCGGAUAGCCUCAUACUUUGUUGCACGCCC
Large SQR B-SEQ (93nt)	GGUCCAUGACGUUCCUGACGUUUUUUUGGCGACCCAAUCAUGGCAAC
	GAUAGAGGCAUAGUCGACCUAUGCAUCCAUACUUUGUUGGCUGGC
Large SQR C-SEQ (93nt)	GGUCCAUGACGUUCCUGACGUUUUUUUGGCCAGCCAAUCAUGGCAAU
	AUACACGCGAGUUGCCACGAGGACGCUCAUACUUUGUUGACGGCCC
Large SQR D-SEQ (93nt)	GGUCCAUGACGUUCCUGACGUUUUUUUGGGCGUGCAAUCAUGACAAG
	CAUCGCAUUCCGUGUCGUAGUCCUUCGCAUACUUUGUUGGGUCGCC
Large SQR E (168nt)	GGACACUUGUCAUGUGUAUGAGCGUCCUCGUGGCAACUCGCGUGUAU
	AUUGUCAUGUGUAUGGAUGCAUAGGUCGACUAUGCCUCUAUCGUUGU
	CAUGUGUAUGCGAAGGACUACGACACGGAAUGCGAUGCUUGUCAUGU
	GUAUGAGGCUAUCCGAGCUAUGCUUGC
Th A-SEQ (115nt)	GGUCCAUGACGUUCCUGACGUUUUUUUGGACUGAUACGAAUCAUCGU
	GUAGCACCAGCUGUAAUCGAUGUGUACGGGAAGAGCCUAUGCCCAUC
	CUACUUUGUUCUACUAUGGCG
Th B-SEQ (115nt)	GGUCCAUGACGUUCCUGACGUUUUUUUGGUGCUACACGAUGUGUAGC
	CAGACUUAGCGGAAUGUUCGUACUUUGUUCAUGCGAGGCCGUCCAAU
	ACCGAAUCAUCGAUUACAGCU
Th C-SEQ (115nt)	GGUCCAUGACGUUCCUGACGUUUUUUUUGGGCAGUUGAGAUGUGUACG
	AACAUUCCGCUAAGUCUGGCUACUUUGUUCGUAUCAGUCCCGCCAUA
	GUAGAAUCAUCGUAUCACCAU
Th D (88nt)	GGCCUCGCAUGAAUCAUCUCAACUGCCCAUGGUGAUACGAUGUGUAG
	GAUGGGCAUAGGCUCUUCCCGUACUUUGUUCGGUAUUGGAC
RNA SQR	Reference (54)
(small, medium & large)	
RNA TRI, SQR & PENTA	Reference (59)
RNA Th	Reference (43)

(SEQ: specific sequence, TRI: triangle, SQR: square, PENTA: pentagon, Th: tetrahedron)

Supplemental Methods:

Flow Cytometry Assay

 5×10^5 RAW 264.7 cells were suspended in Opti-MEM medium in 1.5mL eppendorf tubes. Cy3-labled RNA nanoparticles were diluted in Opti-MEM medium at 100nM and incubated with cells at 37 °C for 1.5 hours. After washing with PBS buffer (137 mM NaCl, 2.7 mM KCl, 100 mM Na₂HPO₄, 2 mM KH₂PO₄, pH 7.4) to remove unbound nanoparticles, cells were re-suspended in PBS buffer and the cell binding efficacy was determined by FACSCalibur flow cytometer (BD Biosciences, San Jose, CA).