

Supplementary Fig. 1: Modulation of the different HDACs expression during megakaryocyte differentiation. CD34⁺ cells were differentiated to MK and sorted on expression of CD34 and CD41 at day 6 of culture. A fraction of the CD41⁺ cells were grown for 3 and6 additional days allowing MK maturation (a) Relative *HDACs* mRNA level expression to *HPRT* mRNA in the CD34 and CD41

Day 6, Day 9 and day 12.(b)Relative *HDACs* mRNA level expression to *HPRT* mRNA. Bar graphs represent mean \pm SD.

Supplementary Figure 2. HDAC6 is the main Tubulin deacetylase (TDAC) in MK. (a) Sirtuin2 expression during megakaryopoiesis. Relative *Sirtuin2* mRNA level expression to HPRT at different times of human MK maturation (Day 7, 9, and 12) Bar graph represent mean \pm SD. (b-d) Sirtuin2 inhibition has no effect on tubulin acetylation in MK. CD41⁺ cells were treated with increasing doses of AGK2 ranging from 5 to 20µM in absence, n=2 (B) or presence of 1µM of ACY1215 (c-d). Bar graph represent mean \pm SEM

Supplementary Figure 3. HDAC6 inhibition does not impair cell cycle progression and decreases moderately MK migration. (a) Cell cycle analysis of CD34⁺ cells transduced with the control lentivirus shC, shHDAC6-1 and shHDAC6-2. (b-c) Tubastatin, ACY1215 and shHDAC6 decrease slightly MK migration. Unpaired Student's t-test *p = 0.0343. Bar graphs represent mean ± SEM

0.

shC

shHDAC6

500

0

Ċ

Tub A ACY 1215

Supplementary Figure 4: Colocalization of CD63 and VWF in MK treated with 1µM of ACY1215. CD63 (red), VWF (green) Dapi (blue) compared to control MK

Supplementary Figure 5. α TAT silencing has no effect on PFF in vitro. (a) α TAT expression during MK maturation. (b-c) CD34⁺ cells were transduced with either sh Control (C) or sh α TAT and sorted 48h later on GFP and CD41 expression. A fraction of sorted cells was subject to RT-qPCR analysis (b) and PPF (c) assays. Results are representative of three independent experiments. Bar graphs represent mean \pm SD (a-b) and SEM (c)

d

Supplementary Figure 6. CTTN knockdown (a) does not affect cell cycle progression and (b) MK maturation, but (c) decreases MK mean ploidy, shC N=4.9; shCTTN N=3.3 and (d) slightly MK migration, Unpaired Student's t-test *P<0.05. (e) Relative Sirtuin1 mRNA level expression to HPRT at different time of MK maturation (Day 7, 9, and 12). (f) Sirtuin1inhibition has no effect on *in vitro* platelet production evaluated by flow cytometry.

Uncropped blots related to Figure 1b

Uncropped blots related to Figure 2 a and g

Uncropped blots related to Figure 4 a and i

Uncropped blots related to Figure 7 b and f

Uncropped blots related to Figure 8a, 8c ,g

Uncropped blots related to Supplementary Figure 2 c

Genes	Primers
HDAC6-F HDAC6-R	GCCTCAATCACTGAGACCATCC GGTGCCTTCTTGGTGACCAACT
CTTN-F CTTN-R	TGTCCTCTGCCTACCAGAAGA CCTGCTCTTTCTCCTTAGCGA
aTAT-F aTAT-R	GGCGAGAACTCTTCCAGTAT TTGTTCACCTGTGGGACT
Sirt1-F Sirt1-R	GGGAATCCAAAGGATAATTCAGTGT CCTCGTACAGCTTCACAGTCAACT
Sirt2-F Sirt2-R	AGCGGCTCCTCCCTCAGA
HDAC1-F	GGTCCAAATGCAGGCGATTCCT
HDAC1-R	TCGGAGAACTCTTCCTCACAGG
HDAC2-F	CTCATGCACCTGGTGTCCAGAT
HDAC2-R	GCTATCCGCTTGTCTGATGCTC
HDAC3-F	TGATCGTCTTCAAGCCATACCA
HDAC3-R	TGTGTAACGCGAGCAGAACT
HDAC4-F	AGGTGAAGCAGGAGCCCATTGA
HDAC4-R	GGTAGTTCCTCAGCTGGTGGAT
HDAC5-F	CGCTGAGAATGGCTTTACTGGC
HDAC5-R	GTGTAGAGGCTGAACTGGTTGG
HDAC7-F	TCCTGGCACAGCGGATGTTTGT
HDAC7-R	TGAAGGCGAGGTCAGTGACACT
HDAC8-F	TGTGCTGGAAATCACGCCAAGC
HDAC8-R	ACCACTCCTCAGCTCTGGAAAC
HDAC9-F	TCTCGTCTCCAGGACTCACTCT
HDAC9-R	GCACTGGTGTTTCAGCATCAAGG
HDAC10-F	GAGGAGTCTGTGGCTGAACATC
HDAC10-R	CCAAGATGCAGCTCAGGAAACC
HDAC11-F	CTTCTGTGCCTATGCGGACATC
HDAC11-R	GAAGTCTCGCTCATGCCCATTG