CHEMISTRY A European Journal

Supporting Information

Synthesis and Demonstration of the Biological Relevance of sp³rich Scaffolds Distantly Related to Natural Product Frameworks

Daniel J. Foley,^[a, b] Philip G. E. Craven,^[a, b] Patrick M. Collins,^[c] Richard G. Doveston,^[a, b] Anthony Aimon,^[a, b] Romain Talon,^[d] Ian Churcher,^[e] Frank von Delft,*^[c, d] Stephen P. Marsden,*^[b] and Adam Nelson*^[a, b]

chem_201704169_sm_miscellaneous_information.pdf

Synthesis and Demonstration of the Biological Relevance of sp³-rich Scaffolds Distantly Related to Natural Product Frameworks

Dr Daniel J. Foley, Dr Philip G. E. Craven, Dr Patrick Collins, Dr Richard G. Doveston, Dr Anthony Aimon, Dr Romain Talon, Prof. Ian Churcher, Prof. Frank von Delft*, Prof. Stephen P Marsden*, Prof. Adam Nelson*

Supplementary Information

Contents:

1.0	Compo	und indices	4
1.1	By Frag	ment	4
1.2	By Scaff	old	11
1.3	By Fram	ework	15
2.0	Suppler	nentary Figures	17
3.0	Suppler	nentary Tables	24
4.0	Comput	ational analysis of fragments and scaffolds	39
4.1	Molecula	ar properties and natural product-likeness scores of the fragments	40
4.2	Natural _I	product-likeness scores of the deprotected scaffolds	46
4.3	Summar	y of natural product-likeness scores of the fragments and scaffolds	49
4.4	Natural _I	product-likeness scores of commercial libraries	49
5.0	Experim	nental	52
5.1	General	experimental	52
5.2	General	procedures	53
5.3	A note o	n NMR assignments	55
5.4	Compou	nd data	56
5.	4.1 Pre	eparation of cycloaddition precursors and cycloadducts	56
	5.4.1.1	Preparation of each intermediate in the synthesis of O-bridged cycloadduc	xt 2a56
	5.4.1.2	Telescoped synthesis of O-bridged cycloadducts 2a-b	59
	5.4.1.3	Preparation of O-bridged cycloadducts 2a and 2b	61
	5.4.1.4	Preparation of O-bridged cycloadduct 2c	63
	5.4.1.5	Preparation of precursors to <i>N</i> -bridged cycloadducts 2d-g	65
	5.4.1.6	Preparation of the <i>N</i> -bridged cycloadducts 2d-g	67
5.	4.2 Pre	eparation of scaffolds	70
	5.4.2.1	Scaffolds derived from cycloadduct 2a	70
	5.4.2	2.1.1 Preparation of cyclic amine 4, and diols 7 and S13	71
	5.4.2	2.1.2 Preparation of imidazole scaffolds 5 and S16	74

5.4.2	2.1.3	Preparation of silyl-protected amino alcohol scaffold 6	76
5.4.2	2.1.4	Preparation of oxazolidinone scaffold 8	79
5.4.2	2.1.5	Preparation of pyrazine scaffold 9	81
5.4.2	2.1.6	Preparation of piperazine scaffolds S19-S20	82
5.4.2	2.1.7	Preparation of quinoxaline scaffold S21	84
5.4.2.2	Sca	ffolds derived from cycloadduct 2b	85
5.4.2	2.2.1	Preparation of spirocyclic scaffold 3 and scaffold 12	85
5.4.2	2.2.2	Preparation of quinoxaline scaffold 10	90
5.4.2	2.2.3	Preparation of imidazole scaffold 11	91
5.4.2.3	Sca	ffolds derived from cycloadduct 2c	92
5.4.2	2.3.1	Preparation of silyl-protected amino alcohol scaffold 13 and alcohol S24	93
5.4.2	2.3.2	Preparation of quinoxaline scaffold 14	96
5.4.2	2.3.3	Preparation of diol S25 and cyclic amine 15	97
5.4.2	2.3.4	Preparation of oxazolidinone scaffold 16	99
5.4.2.4	Sca	ffolds derived from cycloadduct 2d	101
5.4.2	2.4.1	Preparation of scaffold 17	101
5.4.2	2.4.2	Preparation of scaffold S27	102
5.4.2.5	Sca	ffold derived from cycloadduct 2e	103
5.4.2	2.5.1	Preparation of scaffold 19	103
5.4.2.6	Sca	ffolds derived from cycloadduct 2f	105
5.4.2	2.6.1	Preparation of scaffold 18	106
5.4.2	2.6.2	Preparation of scaffolds 20 and S32-S34	107
5.4.2	2.6.3	Preparation of scaffold S35	113
5.4.3 Pre	eparat	tion of fragments	114
5.4.3.1	Prep	paration of fragments derived from cycloadduct 2g	120
5.4.3.2	Prep	paration of fragments derived from scaffold 3	123
5.4.3.3	Prep	paration of fragments derived from scaffold 7	124
5.4.3.4	Prep	paration of fragments derived from scaffold 8	131
5.4.3.5	Prep	paration of fragments derived from scaffold 9	134
5.4.3.6	Prep	paration of fragments derived from scaffold 13	136
5.4.3.7	Prep	paration of fragments derived from scaffold 14	140
5.4.3.8	Prep	paration of fragments derived from scaffold 15	141
5.4.3.9	Prep	paration of fragments derived from scaffold 16	144
5.4.3.10	Prep	paration of fragments derived from scaffold 17	145
5.4.3.11	Prep	paration of fragment derived from scaffold 18	147
5.4.3.12	Prep	paration of a fragment derived from scaffold 19	147
5.4.3.13	Prep	paration of fragments derived from scaffold 20	148

8.0	Referen		.428
7.0	Process	ed NMR spectra	.174
6.0	High-thr	oughput protein crystallography	.173
	5.4.3.22	Preparation of fragments derived from scaffold S33 and S34	.171
	5.4.3.21	Preparation of fragments derived from scaffold S32	.171
	5.4.3.20	Preparation of fragments derived from scaffold S27	.168
	5.4.3.19	Preparation of fragments derived from scaffold S25	.160
	5.4.3.18	Preparation of fragments derived from scaffold S24	.157
	5.4.3.17	Preparation of a fragment derived from scaffold S21	.156
	5.4.3.16	Preparation of a fragment derived from scaffold S20	.155
	5.4.3.15	Preparation of a fragment derived from scaffold S19	.153
	5.4.3.14	Preparation of fragments derived from scaffold S16	.149

1.0 Compound indices

1.1 By Fragment

Note that the following fragments from the manuscript are detailed throughout the Supporting Information using the aliases given below in parentheses:

- Compound **12** (**F12**)
- Compound **21** (**F8**)
- Compound **22** (**F31**)
- Compound **23** (**F48**)
- Compound **24** (**CF1**)
- Compound **25** (**F32**)

Entry	Fragment	Based on framework	Derivative of scaffold ##	Synthetically derived from
1	MsN H HÖ HÖ OH F1	fw-22	S35	$2g \to S36 \to \text{F1}$
2	H MsN HO OH F2	fw-22	S35	$2g \rightarrow S36 \rightarrow F2$
3	HN HN O HO NMe ₂ F3	fw-22	S35	$2g \rightarrow S37 \rightarrow F3$
4	HN OH F4	fw-1	3	3 → F4
5	HN O HN O H NO	fw-6	8	8 → F5

Entry	Fragment	Based on framework	Derivative of scaffold ##	Synthetically derived from
	F5			
6	HN O HN H F6	fw-6	8	F5 → F6
7	H H F F	fw-6	8	F6 → F7
8	$F8 \equiv 21$	fw-6	8	F6 → F8
9	$\mathbf{F}_{\mathbf{F}}^{D}$	fw-6	8	F6 → F9
10	F10	fw-7	9	9 → F10
11	HN O F11	fw-7	9	9 → F11
12	-N F12 ≡ 12	fw-10	12	$2b \rightarrow S22 \rightarrow F12$
13	HN HO HO F13	fw-4	13	$13 \rightarrow S38 \rightarrow F13$
14	HN HO HO F14	fw-4	13	$13 \rightarrow S39 \rightarrow F14$

Entry	Fragment	Based on framework	Derivative of scaffold ##	Synthetically derived from
15	HN HO HO F15	fw-4	13	$13 \rightarrow S40 \rightarrow F15$
16	F16	fw-11	14	14 → F16
17	Poder F ₃ C H F ₃ C N H F ₃ C N H F17	fw-12	15	$\textbf{15} \rightarrow S\textbf{41} \rightarrow S\textbf{42} \rightarrow \textbf{F17}$
18	F18	fw-12	15	$S25 \rightarrow S43 \rightarrow F18$
19	F19	fw-13	16	16 → F19
20	HN NON HO F20	fw-14	17	17 → F20
21	HÖ F21	fw-14	17	F20 → F21
22	HÖ F22	fw-14	17	F20 → F22

Entry	Fragment	Based on framework	Derivative of scaffold ##	Synthetically derived from
23	HN NH O NH2 F23	fw-15	18	18 → F23
24	HN N O F24	fw-16	19	19 → F24
25	HN NH HN HO F25	fw-17	20	20 → F25
26	он	fw-5	7	$7 \rightarrow S44 \rightarrow S45$ $\rightarrow S46 \rightarrow F26$
27	OH F27	fw-5	7	7 → S44 → S45 → S47 → F27
28	н. он он F28	fw-5	7	7 → S44 → S45 → S48 → F28
29	HN O NH F29	fw-18	S16	$\begin{array}{c} \textbf{11} \rightarrow \textbf{F29} \\ \text{and/or} \\ \textbf{S16} \rightarrow \textbf{F29} \end{array}$
30	F30	fw-18	S16	F29 → F30

Entry	Fragment	Based on framework	Derivative of scaffold ##	Synthetically derived from
31	F31 ≡ 22	fw-18	S16	F29 → F31
32	F32 ≡ 25	fw-18	S16	F29 → F32
33	-0 -0 -0 -0 -0 -0 -0 -0 -0 -0	fw-18	S16	F29 → F33
34	NH NH ONH F34	fw-18	S16	F29 → F34
35	HN HN HN F35	fw-19	S19	S19 → F35
36	HN HNH HN F36	fw-19	S20	S20 → F36
37	HN O N F37	fw-20	S21	S21 → F37
38	но он F38	fw-4	S24	$S24 \rightarrow S49 \rightarrow F38$
39		fw-4	S24	S24 \rightarrow S49 \rightarrow F39

F39

Entry	Fragment	Based on framework	Derivative of scaffold ##	Synthetically derived from
40	HN HO F40	fw-4	S25	S25 → F40
41	H H HO F41	fw-4	S25	2c → S50 and S51 → S52 and S53 → F41
42	HO F42	fw-4	S25	$2c \rightarrow S50 \text{ and } S51$ $\rightarrow S52 \text{ and } S53$ $\rightarrow S54 \rightarrow F42$
43	н но F43	fw-4	S25	2c → S50 and S51 → S52 and S53 → F43
44	но но F44	fw-4	S25	2c → S50 and S51 → S52 and S53 → F44
45	HN F45	fw-21	S27	S27 → F45
46	н , , , , , , , , , , , , , , , , , , ,	fw-21	S 27	F45 → F46
47	о N NH 6 F47	fw-21	S27	F45 → F47
48		fw-21	S27	F45 → F48

Entry	Fragment	Based on framework	Derivative of scaffold ##	Synthetically derived from
	F48 ≡ 23			
49	H ₂ N NH	fw-21	S27	F45 → F49
50	HN HO HO F50	fw-16	S32	S32 → F50
51	HN HN FF	fw-16	S33	S33 → F51
52	HN NH F HO F52	fw-16	S34	S34 → F52

1.2 By Scaffold

See Supplementary Figure 1 for a full summary of the synthetic routes used to prepare the scaffolds.

To count the scaffolds prepared in this study we have considered some closely related scaffolds to be equivalent. The following groups of compounds are counted as a single scaffold:

- 20 = S32 = S33 = S34
- S19 ≡ S20

Entry	Scaffold	Based on framework	Derivative fragments
1	CbzN OH OH	fw-1	F4
2	CbzN O NBn 4	fw-2	-
3	CbzN O NH S	fw-3	-
4	CbzN CbzN NH ₂ 6	fw-4	-
5	CbzN HO T	fw-5	F26-F28
6		fw-6	F5-F9

Entry	Scaffold	Based on framework	Derivative fragments
7	CbzN 9	fw-7	F10-F11
8	CbzN 0 N 10	fw-8	-
9	CbzN 0 NH 11	fw-9	-
10		fw-10	F12
11	CbzN TBSO ¹ NH ₂ 13	fw-4	F13-F15
12	H CbzN N N 14	fw-11	F16
13	CbzN DMB 15	fw-12	F17-F18
14	CbzN CbzN 16	fw-13	F19
15	BocN HÖ 17	fw-14	F20-F22

Entry	Scaffold	Based on framework	Derivative fragments
16	BocN NH O NH2 18	fw-15	F23
17	Boch N 19	fw-16	F24
18	Boch NH HÔ 20	fw-17	F25
19	CbzN CbzN OH S13	fw-4	-
20	CbzN S16	fw-18	F29-F34
21	Boch Boch H Boc S19	fw-19	F35
22	Boch Boch H Boc S20	fw-19	F36
23	CbzN S21	fw-20	F37
24	CbzN TBSO OH S24	fw-4	F38-F39

Entry	Scaffold	Based on framework	Derivative fragments
25	H CbzN HO S25	fw-4	F40-F44
26	BocN NMe NH S27	fw-21	F45-F49
27	H HO S32	fw-17	F50
28	HUNH HO S33	fw-17	F51
29	BocN NH F HO S34	fw-17	F52
30	BocN HÖ S35	fw-22	F1-F3

1.3 By Framework

Framework number	Graph-node-bond framework	Derivative Scaffold(s)	Derivative Fragments
fw-1	HN	3	F4
fw-2	HN	4	-
fw-3	HNONH	5	-
fw-4	HNO	6, 13, S13, S24-S25	F13-F15, F38-F44
fw-5	HN	7	F26-28
fw-6	HN O O O O O O O O O O O O O O O O O O O	8	F5-F9
fw-7		9	F10-F11
fw-8	HNON	10	-
fw-9	HNONH	11	-
fw-10	HN	12	F12
fw-11	HNOON	14	F16
fw-12	HN	15	F17-F18

fw-13	HN O NH	16	F19
fw-14	HN NH O	17	F20-F22
fw-15	HN O O	18	F23
fw-16	HNNN	19	F24
fw-17	HNNH	20, S32, S33-S34	F25, F50-52
fw-18	HNONH	S16	F29-F34
fw-19	HNONH	S19- S20	F35-F36
fw-20		S21	F37
fw-21	HN NH NH	S27	F45-F49
fw-22	HNNH	S35	F1-F3

Supplementary Figure 1 Synthesis of the 26 natural product-like scaffolds (blue).

Supplementary Figure 2 Molecular properties of the 52 fragments prepared. Hits are shown in black.

Supplementary Figure 3 Shape diversity of the 52 fragments prepared and 1,236 commerically-available fragments. R, rod; S, sphere; D, disk.

Supplementary Figure 4 Interactions between seven fragment hits based on the natural product-like scaffolds and the bromodomain of ATAD2. See Supplementary Table 2 (entries 2-8) for further details. H-bonding interactions of \leq 3.5 Å are shown.

Supplementary Figure 5 Interactions between eight fragment hits based on the natural product-like scaffolds and the bromodomain of BRD1. See Supplementary Table 3 for further details. H-bonding interactions of ≤ 3.5 Å are shown.

Supplementary Figure 6 Interactions between two fragment hits based on the natural product-like scaffolds and a peripheral binding pocket of JMJD2D. See Supplementary Table 4 for further details. H-bonding interactions of \leq 3.5 Å are shown.

against the bromodomain of ATAD2. See Supplementary Table 2 (entries 9-17) for further details. H-bonding interactions of \leq 3.5 Å are shown.

100

3.0 Supplementary Tables

Supplementary Table 1 Substructure occurrence of parent and daughter frameworks of the 26 scaffolds within the 281,897 structures found in the Dictionary of Natural Products (accessed 02/11/16). All other frameworks (Figure 3) produced no hits in the sub-structure search.

Scaffold	No. NPs containing framework	% of NPs containing framework
o	55131	19.6
HZ	9150	3.2
HZ HZ	9080	3.2
	4421	1.6
0	3279	1.2
HZ	805	0.29
τΖ	767	0.27
	264	0.09
	251	0.09
	75	0.03
ΞΞ	16	0.006
HN	14	0.005
HNO	13	0.005
HZ	3	0.0001
	2	0.0007

Supplementary Table 2 Summary of interactions between fragment hits and ATAD2. Ligands include the truncated acetyl lysine ligand (Entry 1)^{S1}, the seven fragment hits based on the natural product-like scaffolds that were identified in this work using high-throughput X-ray crystallography (Entries 2-8), nine commercially available fragment hits identified in this work using high-throughput X-ray crystallography (Entries 9-17), other known fragment hits (criteria: $12 \le HA \le 19$; cyclic) and published hits that were identified using a range of methods (conventional hits entries 18-25;^{S1-S4} and thymidine hits entries $26-28^{S1}$). For comparison, the interactions made by a recently identified chemical probe (Entry 29)^{S5} are also provided. H-bonding interactions of ≤ 3.5 Å are listed. Where bridging waters interact with more than one side chain, the interaction containing the shortest H-bond forms the title interaction, and any remaining interactions are detailed in parentheses.

Entry	Ligand Structure	N1064, γ-Ο	N1064, γ-NH₂	H₂O (→Y1021, Ar-OH)	E1017, δ-Ο	H₂O (→D1014, α-N)	H₂O (→V1008, β-O)	V1008, β-Ο	D1071, γ -O	D1014, α-N	l1056, β-Ο	K1011, β-Ο	M1029, β-Ο	R1007, ζ-NH₂	H₂O (→I1056, β-O)	H₂O (→P1012, β-O)	H₂O (→M1029, β-O)
Natural	ligand (truncated)																
1			2.7	2.7 (& →A1060, α-N)													
Fragme	ents based on natural product paralogues								-	-				-	-		
2	HO HO HO HO HO HO HO HO HO HO HO HO HO H		2.9	2.8		3.5 (& → E1017, δ-Ο)											

Entry	Ligand Structure	N1064, γ-Ο	N1064, γ-NH2	H₂O (→Y1021, Ar-OH)	E1017, δ-Ο	H₂O (→D1014, α-N)	H₂O (→V1008, β-O)	V1008, β-Ο	D1071, γ -O	D1014, α-N	l1056, β-Ο	K1011, β-Ο	M1029, β-Ο	R1007, ζ-NH₂	H₂O (→I1056, β-O)	H₂O (→P1012, β-O)	H₂O (→M1029, β-O)
3	HO,,, HOITH ent-F43		2.9	2.8		3.5											
4	ent F10		3.1	2.8 (& →N1059, β-O)	3.1												
5	ent-F32		3.0	2.8 (& →N1059, β-O)	3.1												

Entry	Ligand Structure	N1064, γ-Ο	N1064, γ-NH2	H₂O (→Y1021, Ar-OH)	E1017, δ-Ο	H₂O (→D1014, α-N)	H₂O (→V1008, β-O)	V1008, β-Ο	D1071, γ -O	D1014, α-N	l1056, β-Ο	K1011, β-Ο	M1029, β-Ο	R1007, ζ-NH₂	H₂O (→I1056, β-O)	H₂O (→P1012, β-O)	H₂O (→M1029, β-O)
6	ent-F33		3.1	2.8 (& →N1059, β-O)	2.8												
7	ent-F48		3.0	2.7	2.9, 3.1	2.3	3.3										
8	HOULD NO ent-F21		3.0														

Entry	Ligand Structure	N1064, γ-Ο	N1064, γ-NH₂	H₂O (→Y1021, Ar-OH)	E1017, δ-Ο	H₂O (→D1014, α-N)	H₂O (→V1008, β-O)	V1008, β-Ο	D1071, γ -O	D1014, α-N	l1056, β-Ο	K1011, β-Ο	M1029, β-Ο	R1007, ζ-NH₂	H₂O (→I1056, β-O)	H₂O (→P1012, β-O)	H₂O (→M1029, β-O)
9 9	Poised Library (DSPL) hits		3.1	2.7 (& →A1060, α-N; N1059, β-O)													
10			3.0	2.8 (& →A1060, α-N)													
11			3.1	2.8 (& →A1060, α-N; N1059, β-O)													

Entry	Ligand Structure	N1064, γ-Ο	N1064, γ-NH2	H₂O (→Y1021, Ar-OH)	E1017, δ-Ο	H₂O (→D1014, α-N)	H₂O (→V1008, β-O)	V1008, β-Ο	D1071, γ -O	D1014, α-N	l1056, β-Ο	K1011, β-Ο	M1029, β-Ο	R1007, ζ-NH₂	H₂O (→I1056, β-O)	H₂O (→P1012, β-O)	H₂O (→M1029, β-O)
12			3.1	2.8 (& →A1060, α-N; N1059, β-O)													
13			3.0	2.8 (& →A1060, α-N; N1059, β-O)													
14			3.2	2.8 (& →A1060, α-N; N1059, β-O)		2.8	3.1										

Entry	Ligand Structure	N1064, γ-Ο	N1064, γ-NH2	H₂O (→Y1021, Ar-OH)	E1017, δ-Ο	H₂O (→D1014, α-N)	H₂O (→V1008, β-O)	V1008, β-Ο	D1071, γ -O	D1014, α-N	l1056, β-Ο	K1011, β-Ο	M1029, β-Ο	R1007, ζ-NH₂	H₂O (→I1056, β-O)	H₂O (→P1012, β-O)	H₂O (→M1029, β-O)
15	CF7		3.0	2.7 (& →A1060, α-N)			2.7, 3.5										
16	N HN CF8		3.1				2.9										
17	CF9							2.9									

Entry	Ligand Structure	N1064, γ-Ο	N1064, γ-NH ₂	H₂O (→Y1021, Ar-OH)	E1017, δ-Ο	H₂O (→D1014, α-N)	H₂O (→V1008, β-O)	V1008, β-Ο	D1071, γ -O	D1014, α-N	l1056, β-Ο	K1011, β-Ο	M1029, β-Ο	R1007, ζ-NH₂	H₂O (→I1056, β-O)	H₂O (→P1012, β-O)	H₂O (→M1029, β-O)
18	PDB: 5A50	3.1	2.7	2.7 (& →A1060, α-N)													
19	PDB: 5A5P	3.1; 3.1	2.7	2.7 (& →A1060, α-N)					2.9								
20	PDB: 5A5Q	3.0; 2.9	2.8	2.7 (& →A1060, α-N)					2.6								

Entry	Ligand Structure	N1064, γ-Ο	N1064, γ-NH2	H₂O (→Y1021, Ar-OH)	E1017, δ-Ο	H₂O (→D1014, α-N)	H₂O (→V1008, β-O)	V1008, β-Ο	D1071, γ -O	D1014, α-N	l1056, β-Ο	K1011, β-Ο	M1029, β-Ο	R1007, ζ-NH₂	H₂O (→I1056, β-O)	H₂O (→P1012, β-O)	H₂O (→M1029, β-O)
21	H ₂ N H ₂ N PDB: 4TTE		3.0	2.7 (& →A1060, α-N)										3.5			
22			3.1	2.7 (& →A1060, α-N; N1059, β-O)		3.2										2.8 (& →K1011, β-O)	
23	Ph HN HN NH ₂ PDB: 4TZ2		2.6; 3.1	2.7							2.9		3.4				
24			3.0	3.2; 3.1 (& →A1060, α-N; N1059, β-O)			2.9 (& → K1011, β-O)	3.0				3.1			3.5		2.6, 3.3

Entry	Ligand Structure	N1064, γ-Ο	N1064, γ-NH ₂	H₂O (→Y1021, Ar-OH)	E1017, δ-Ο	H₂O (→D1014, α-N)	H₂O (→V1008, β-O)	V1008, β-Ο	D1071, γ -O	D1014, α-N	l1056, β-Ο	K1011, β-Ο	M1029, β-Ο	R1007, ζ-NH₂	H₂O (→I1056, β-O)	H₂O (→P1012, β-O)	H₂O (→M1029, β-O)
25	PDB: 4QST		2.8	2.5 (& →A1060, α-N; N1059, β-O)													
Thymid	ine literature hits																
26		3.1	2.9	2.6 (& →A1060, α-N)	3.4	2.8	2.6										
27	PDB: 4QSW	3.1	2.8	2.6 (& →A1060, α-N)	3.2; 3.1		2.5			3.2							
28	H-Q N N N N N N N N N N N N N N N N N N N	2.8	2.8	2.7 (& →A1060, α-N)		2.9											

Entry	Ligand Structure	N1064, γ-Ο	N1064, γ-NH ₂	H₂O (→Y1021, Ar-OH)	E1017, δ-Ο	H₂O (→D1014, α-N)	H₂O (→V1008, β-O)	V1008, β-Ο	D1071, γ -O	D1014, α-N	l1056, β-Ο	K1011, β-Ο	M1029, β-Ο	R1007, ζ-NH₂	H₂O (→I1056, β-O)	H₂O (→P1012, β-O)	H₂O (→M1029, β-O)
Establi	shed chemical probe																
29	MeO N N N H F F PDB: 5LJ0	2.9; 2.8	2.8	2.7 (& →A1060, α-N)					2.6	3.1							

Supplementary Table 3 Summary interactions between eight fragment hits based on the natural product-like scaffolds and BRD1, identified using high-throughput X-ray crystallography.

Entry	Ligand Structure	N110, α-N	H₂O (→Y67, Ar-OH)	l54, β-Ο	H₂O (→I54, β-O)	H₂O (→P58, β-O)	H2O (→Q57, α-N)	H2O (→Q57, β-N)	Y67, Ar-OH	E63, δ-Ο	Notes
1	N H' MeO 26 (= F10)	3.0	2.8 [& C106, α-N]								The enantiomer was an ATAD2 hit
2	N NH H N ent-28 (≡ ent-F32)	3.2	2.7 [& C106, α-N]								ATAD2 hit
3	HN O O O entF33	3.1	2.9 [& C106, α-N]]								ATAD2 hit
Entry	Ligand Structure	N110, α-N	H₂O (→Y67, Ar-OH)	l54, β-Ο	H₂O (→I54, β-O)	H₂O (→P58, β-O)	H2O (→Q57, α-N)	H2O (→Q57, β-N)	Y67, Ar-OH	E63, δ-Ο	Notes
-------	--	--------------	----------------------	-------------	--------------------	--	--	----------------------	---------------	-------------	-----------
4		3.0	2.8 [& C106, α-N]		2.7						
5	HO H	3.0	2.8 [& C106, α-N]	3.2		2.6, 2.6 [& →Q57, β-O; P58, β-O]	3.1 [& → R53, I54 and Q57, β-O; & A56, Q57, α -N]	3.4 [& →154, β-O]			
6	ent-25 (= ent-F48)	3.0	2.7 [& C106, α-N]			2.7 [& →Q57, β-O]				2.5	ATAD2 hit
7	HN H HN F29	3.0	2.2 [& C106, α-N]	3.2							

Entry	Ligand Structure	N110, α-N	H₂O (→Y67, Ar-OH)	154, β-Ο	H₂O (→I54, β-O)	H₂O (→P58, β-O)	H2O (→Q57, α-N)	H2O (→Q57, β-N)	Y67, Ar-OH	E63, δ-Ο	Notes
8	0 N H N H N 23 (= F31)	2.8		3.3					2.9		

Supplementary Table 4 Summary interactions between two fragment hits based on the natural product-like scaffolds and JMJD2D, identified using high-throughput X-ray crystallography.

Entry	Ligand Structure	S308, β-OH	E224, δ-Ο	P217, β-Ο	H₂O (→D197, γ-O)
1					2.5 [→Y303, β-O]
2	H H H O N O O O H ent-F8	2.7	3.4	3.2	2.7, 3.5 [& →R41, ζ-NH₂)

4.0 Computational analysis of fragments and scaffolds

Natural product likeness scores^{S6} were calculated using the implementation in RDKit v2015.09.2 (Greg Landrum; Open Source Cheminformatics; http://www.rdkit.org; last accessed 27/04/2016).

For the preparation of Figure 2, databases of commercially available screening compounds were downloaded and filtered for $13 \le \text{heavy}$ atoms ≤ 19 before comparison with the fragments. The databases used were:

a) BIONET – Fragments from Nature (128 compounds; http://www.keyorganics.net/downloads/; downloaded 24/08/2016).

 b) The Enamine General Fragment Library (12,486 compounds; http://www.enamine.net/index.php?option=com_content&task=view&id=11; downloaded 17/03/2016).

For the preparation of Supporting Figure 2, the following two libraries were used for comparison with the scaffolds:

a) The AnalytiCon MEGx Library (4460 natural product screening compounds from plants and microorganisms; http://www.ac-discovery.com/content/Products&Technologies/MEGAbolite.php; downloaded 17/03/2016).

b) The Enamine Advanced Collection (278,365 compounds;
http://www.enamine.net/index.php?option=com_content&task=view&id=11; downloaded
17/03/2016).

Entry	Fragment No.	Fragment	Natural product- likeness score	AlogP	НА	RMM /Da
1	F1	H MsN HO OH	0.28	-0.93	19	288.363
2	F2	H HO HO HO	0.28	-0.93	19	288.363
3	F3	H HN HO NMe ₂	0.34	-0.82	18	251.325
4	F4	HN OH OH	1.8	-0.89	18	259.299
5	F5	HN O O O	1.7	-0.09	17	238.283
6	F6	HN O O O	2.1	-0.41	16	224.256
7	F7	H N O O O O O O O O O O O O O O O O O O	1.9	0.3	17	238.283
8	F8		1.4	-0.14	18	252.266

4.1 Molecular properties and natural product-likeness scores of the fragments

Entry	Fragment No.	Fragment	Natural product- likeness score	AlogP	НА	RMM /Da
9	F9		1.7	-0.26	19	266.293
10	F10		0.28	0.27	19	261.276
11	F11	HN O N	0.92	-0.03	15	203.24
12	F12		1.5	0.21	17	239.311
13	F13	HN HO'	1.8	0.02	16	226.315
14	F14	HN HO' NH	1.9	-0.96	16	226.272
15	F15		1.6	-0.68	17	240.299
16	F16	HN N N	0.6	1.48	19	253.299
17	F17	$F_{3}C$	0.81	1.05	19	300.298
18	F18	HN ON	1.2	0.82	15	208.3

Entry	Fragment No.	Fragment	Natural product- likeness score	AlogP	НА	RMM /Da
19	F19		1.9	-0.21	16	224.256
20	F20	H H H	0.33	-0.31	17	235.282
21	F21		-0.067	0.96	19	263.335
22	F22		0.2	-0.47	19	263.292
23	F23	HN NH O NH2	0.88	-1.33	16	221.256
24	F24	HILL CO	0.9	1.25	19	254.327
25	F25	H H H H H H H H H H H H H H H H H H H	1.3	0.35	18	244.332
26	F26	OH OH	0.74	0.74	17	243.342
27	F27	N N OH	-0.2	0.44	19	284.375

Entry	Fragment No.	Fragment	Natural product- likeness score	AlogP	НА	RMM /Da
28	F28	OH OH	0.4	0.05	19	269.337
29	F29	HN NH	0.74	-0.16	14	191.23
30	F30	H N O N N N	0.16	0.74	16	219.283
31	F31	N NH	0.48	-0.7	16	219.24
32	F32		0.19	-0.28	17	233.266
33	F33		0.1	0.02	18	249.266
34	F34	NH NH ONH	-0.42	0.01	19	262.308
35	F35	HN HN H	1.9	-1.27	15	209.288
36	F36	HN O HHNH	1.9	-1.27	15	209.288
37	F37	HN O N	0.49	1.41	19	253.299
38	F38		2.0	-1.35	16	227.257

Entry	Fragment No.	Fragment	Natural product- likeness score	AlogP	НА	RMM /Da
39	F39	H H H	1.7	-0.79	17	241.284
40	F40	H H H H H H H H H H H H H H H H H H H	2.7	-1.24	13	185.22
41	F41	E C C C C C C C C C C C C C C C C C C C	1.5	0.34	17	241.327
42	F42	E	0.47	0	19	282.359
43	F43		1.1	-0.14	19	267.321
44	F44		0.69	0.1	19	262.304
45	F45	H NH	0.54	0.14	16	217.267
46	F46		0.032	1.35	18	245.32
47	F47	H N N N N N N N N N N N N N N	0.32	-0.56	18	245.277
48	F48		0.066	0.35	19	259.304

Entry	Fragment No.	Fragment	Natural product- likeness score	AlogP	НА	RMM /Da
49	F49	H ₂ N N NH	-0.0083	0.02	19	260.292
50	F50	HN NH HO	1.3	0.35	18	244.332
51	F51	H HN HN HO	0.8	0.35	19	262.323
52	F52	HN NH F	0.8	0.35	19	262.323

Entry	Scaffold No.	Scaffold (deprotected)	Natural product- likeness score
1	3	HN OH OH	1.8
2	4	HN	1.6
3	5	H NH	0.39
4	6	HN O O OH NH2	2.1
5	7	HN OH HN HO	1.7
6	8	H H H H H H H H H H H H H H H H H H H	2.1
7	9	HN ONN	0.92
8	10		0.33
9	11	HNONH	0.52
10	12		1.5

4.2 Natural product-likeness scores of the deprotected scaffolds

11	13		2.0
12	14		0.6
13	15	I.V.	2.0
14	16	I I I I	1.9
15	17	EE	0.33
16	18	H HN HN NH O NH ₂	0.88
17	19		0.9
18	20/S33		1.3
19	S13	HN O OH	2.7
20	S16	HN ONH	0.74

21	S19	HN HN H	1.9
22	S20	H NH H H	1.9
23	S21	H HN N	0.49
24	S24	HN HO'OH	2.5
25	S25	H H H	2.7
26	S27	H NH	0.54
27	S32/S34	HN NH HO	1.3
28	S35	HN HN HO	1.6

4.3 Summary of natural product-likeness scores of the fragments and scaffolds

After scoring the libraries, the data was sorted in bins of 0.5 increments (i.e. $-5 \le NP < -4.5$, $-4.5 \le NP < -4$, etc.). Below are the tables of the binned results for each library.

Din	Fragments		Scaffolds	
DIII	Frequency	Fraction	Frequency	Fraction
-5 ≤ NP < -4.5	0	0	0	0
-4.5 ≤ NP < -4	0	0	0	0
-4 ≤ NP < -3.5	0	0	0	0
-3.5 ≤ NP < -3	0	0	0	0
-3 ≤ NP < -2.5	0	0	0	0
-2.5 ≤ NP < -2	0	0	0	0
-2 ≤ NP < -1.5	0	0	0	0
-1.5 ≤ NP < -1	0	0	0	0
-1 ≤ NP < -0.5	0	0	0	0
-0.5 ≤ NP < -0	0	0	0	0
0 ≤ NP < 0.5	3	0.074074	0	0
0.5 ≤ NP < 1	17	0.314815	4	0.133333
1 ≤ NP < 1.5	11	0.203704	7	0.233333
1.5 ≤ NP < 2	6	0.12963	2	0.1
2 ≤ NP < 2.5	13	0.240741	10	0.333333
2.5 ≤ NP < 3	1	0.018519	2	0.1
3 ≤ NP < 3.5	1	0.018519	3	0.1
3.5 ≤ NP < 4	0	0	0	0
$4 \leq NP < 4.5$	0	0	0	0
4.5 ≤ NP < 5	0	0	0	0
SUM	52	1	28	1

4.4 Natural product-likeness scores of commercial libraries

Din	BIONET – Fragments from Nature		
DIII	Frequency	Fraction	
-5 ≤ NP < -4.5	0	0	
-4.5 ≤ NP < -4	0	0	
-4 ≤ NP < -3.5	0	0	
-3.5 ≤ NP < -3	0	0	
-3 ≤ NP < -2.5	0	0	
-2.5 ≤ NP < -2	0	0	
-2 ≤ NP < -1.5	0	0	
−1.5 ≤ NP < −1	3	0.023438	
-1 ≤ NP < -0.5	21	0.164063	
-0.5 ≤ NP < -0	33	0.257813	
0 ≤ NP < 0.5	30	0.234375	
0.5 ≤ NP < 1	22	0.171875	
1 ≤ NP < 1.5	13	0.101563	
1.5 ≤ NP < 2	6	0.046875	
2 ≤ NP < 2.5	0	0	

Pin	BIONET – Fragments from Nature		
DIII	Frequency	Fraction	
2.5 ≤ NP < 3	0	0	
3 ≤ NP < 3.5	0	0	
3.5 ≤ NP < 4	0	0	
4 ≤ NP < 4.5	0	0	
4.5 ≤ NP < 5	0	0	
SUM	128	1	

Din	Enamine General Fragment Library		
DIN	Frequency	Fraction	
-5 ≤ NP < -4.5	0	0	
-4.5 ≤ NP < -4	0	0	
-4 ≤ NP < -3.5	0	0	
-3.5 ≤ NP < -3	11	0.000881	
-3 ≤ NP < -2.5	166	0.013295	
-2.5 ≤ NP < -2	942	0.075444	
-2 ≤ NP < -1.5	2213	0.177239	
−1.5 ≤ NP < −1	3086	0.247157	
−1 ≤ NP < −0.5	2394	0.191735	
-0.5 ≤ NP < -0	1836	0.147045	
0 ≤ NP < 0.5	1076	0.086177	
0.5 ≤ NP < 1	564	0.045171	
1 ≤ NP < 1.5	176	0.014096	
1.5 ≤ NP < 2	18	0.001442	
2 ≤ NP < 2.5	4	0.00032	
2.5 ≤ NP < 3	0	0	
3 ≤ NP < 3.5	0	0	
3.5 ≤ NP < 4	0	0	
4 ≤ NP < 4.5	0	0	
4.5 ≤ NP < 5	0	0	
SUM	12486	1	

Bin	AnalytiCon MEGx Library		
DIII	Frequency	Fraction	
-5 ≤ NP < -4.5	0	0	
-4.5 ≤ NP < -4	0	0	
-4 ≤ NP < -3.5	0	0	
-3.5 ≤ NP < -3	0	0	
-3 ≤ NP < -2.5	0	0	
-2.5 ≤ NP < -2	0	0	
−2 ≤ NP < −1.5	0	0	
−1.5 ≤ NP < −1	1	0.000224	
−1 ≤ NP < −0.5	1	0.000224	
-0.5 ≤ NP < -0	14	0.003139	
0 ≤ NP < 0.5	53	0.011883	
0.5 ≤ NP < 1	174	0.039013	
1 ≤ NP < 1.5	424	0.095067	
1.5 ≤ NP < 2	688	0.15426	
2 ≤ NP < 2.5	1111	0.249103	

Bin	AnalytiCon MEGx Library		
DIII	Frequency	Fraction	
2.5 ≤ NP < 3	923	0.206951	
3 ≤ NP < 3.5	645	0.144619	
3.5 ≤ NP < 4	372	0.083408	
4 ≤ NP < 4.5	54	0.012108	
4.5 ≤ NP < 5	0	0	
SUM	4460	1	

Bin	Enamine Advanced Collection		
ып	Frequency	Fraction	
-5 ≤ NP < -4.5	0	0	
-4.5 ≤ NP < -4	0	0	
-4 ≤ NP < -3.5	14	5.02937E-05	
-3.5 ≤ NP < -3	264	0.000948395	
-3 ≤ NP < -2.5	3039	0.010917321	
-2.5 ≤ NP < -2	19398	0.069685485	
-2 ≤ NP < -1.5	57552	0.20675013	
-1.5 ≤ NP < -1	85558	0.307359043	
-1 ≤ NP < -0.5	68775	0.247067699	
-0.5 ≤ NP < -0	31687	0.113832558	
0 ≤ NP < 0.5	9482	0.03406319	
0.5 ≤ NP < 1	2057	0.007389578	
1 ≤ NP < 1.5	421	0.001512403	
1.5 ≤ NP < 2	82	0.000294577	
2 ≤ NP < 2.5	26	9.34025E-05	
2.5 ≤ NP < 3	7	2.51468E-05	
3 ≤ NP < 3.5	2	7.18481E-06	
3.5 ≤ NP < 4	0	0	
4 ≤ NP < 4.5	1	3.59241E-06	
4.5 ≤ NP < 5	0	0	
SUM	278365	1	

5.0 Experimental

5.1 General experimental

All non-aqueous reactions were performed under an atmosphere of nitrogen unless otherwise stated. Water-sensitive reactions were performed in oven-dried glassware, cooled under nitrogen before use. THF, CH₂Cl₂, PhMe and MeCN were dried and purified by means of a Pure Solv MD solvent purification system (Innovative Technology Inc.). Anhydrous DMF was obtained in a SureSeal bottle from Sigma-Aldrich. All other solvents used were of chromatography or analytical grade. Petrol refers to petroleum spirit (b.p. 40-60 °C). Commercially available starting materials were obtained from Sigma-Aldrich, Fluka, Acros, Alfa Aesar or Fluorochem and were used without purification.

Thin layer chromatography (TLC) was carried out on aluminium backed silica plates (Merck silica gel 60 F254). Visualisation of the plates was achieved using an ultraviolet lamp ($\lambda_{max} = 254$ nm) and KMnO₄. Flash chromatography was carried out using silica gel 60 (60-63 µm particles) supplied by Merck. Columns with solvent gradients were carried out using a Biotage Flashmaster II on pre-packed Redisep normal-phase silica or cyanosilica cartridges (as specified). Strong cation exchange solid phase extraction (SCX SPE) was carried out using pre-packed Discovery DSC-SCX cartridges supplied by Supelco, see the general procedure below.

Melting points were measured on a Reichert hot stage apparatus and are uncorrected. Infrared spectra were recorded on a Bruker Alpha Platinum-ATR, with absorption reported in wavenumbers (cm^{-1}) . High resolution mass spectra (HRMS) were recorded on a Bruker MaXis Impact spectrometer with electrospray ionisation (ESI) source. Low resolution mass spectra (LRMS) were recorded by HP-LCMS, which was generally carried out on an Agilent 1200 series LC system comprising a Bruker HCT Ultra ion trap mass spectrometer. The solvent system used was CH₃CN/H₂O + 0.1% formic acid with a Phenomenex Luna C18 50 × 2 mm 5 micron column.

Proton (¹H) and carbon (¹³C) NMR spectral data were collected on Bruker Advance 500, Bruker DPX500, Bruker Advance 400 and Bruker DPX300 spectrometers. Chemical shifts (δ) are quoted in parts per million (ppm) and referenced to the residual solvent peak. Coupling constants (*J*) are quoted in Hertz (Hz) and splitting patterns reported in an abbreviated manner: app. (apparent), s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet). All fully characterised products were assigned with the aid of COSY, DEPT-135 and HMQC experiments. Where stated HMBC and NOESY experiments were also used to aid assignments. Compounds are numbered with respect to their IUPAC names. Where necessary, coloured text was used to distinguish similar protons and carbons. Diastereomeric ratios were calculated by analysis of the ¹H NMR spectra and

diastereomers were assigned through the interpretation of coupling constants, NOESY spectra, and through small molecule crystallographic studies. Small molecule X-ray crystallography studies were performed by Dr Christopher Pask.

5.2 General procedures

General procedure A: Strong cation exchange solid phase extraction (SCX SPE)

TfOH (0.5 M in MeOH, 10 mL / 5 g SCX SPE) was dripped through the SCX SPE cartridge prior to use. MeOH (20 mL) was then flushed through using pressurised air. The crude residue (3.5 mmol / 5 g SCX SPE silica) was loaded in the minimum amount of MeOH. The cartridge was flushed with MeOH and the fractions were collected and monitored by TLC. The cartridge was then flushed with sat. NH₃/MeOH and the fractions were collected and monitored by TLC. Fractions containing product were combined and concentrated.

General Procedure B: Hydrogenation catalysed by Pd/C or Pd(OH₂)/C

The substrate (1.0 eq.) was dissolved in MeOH or EtOH (~20 mL g⁻¹) and added *via* syringe to a round-bottomed flask containing 10 wt% Pd/C (% w/w as specified) or 20 wt% Pd(OH)₂/C (% w/w as specified) pre-submerged in minimal solvent (MeOH or EtOH) under N₂. If required, conc. HCl (~12 M) was added as specified. The head space of the flask was exposed to a sequence of vacuum/H₂ flushes (×3), then exposed to an atmosphere of H₂ (balloon). The reaction was monitored by TLC until complete. At this point the balloon was removed and the reaction mixture was fitted with a gas outlet (wide bore syringe needle) and purged with N₂ for 5 minutes. The reaction mixture was filtered through Celite eluting with MeOH, then concentrated *in vacuo*. The product was typically used in the next step without further purification.

General procedure C: Reductive amination

NaBH(OAc)₃ (3.0 eq.) was added to a stirred solution of amine (1.0 eq.) and aldehyde (2.5-5.0 eq., as specified) in CH₂Cl₂ (0.2 M). The reaction mixture was stirred at rt (unless otherwise specified) for 15 h, then flushed through a pad of Celite eluting with CH₂Cl₂ and concentrated *in vacuo*. Products were purified by flash chromatography.

General procedure D: *N*-Formylation

Ac₂O (10-30 eq., as specified) was added to a stirred solution of amine (1.0 eq.) in $30:70 \text{ CH}_2\text{Cl}_2$ – HCO₂H acid (0.1 M). The reaction mixture was stirred at rt for 1 h, then concentrated *in vacuo*. Products were purified by flash chromatography.

General procedure E: *N*-Acylation

Ac₂O (2.0 eq.) was added to a stirred solution of substrate (1.0 eq.) and Et₃N (3.0 eq.) in CH₂Cl₂ (0.2 M) at 0 °C. The reaction mixture was warmed to rt, stirred for 1 h, then concentrated *in vacuo*. Products were purified by flash chromatography.

General procedure F: Methyl carbamate formation

Methyl chloroformate (10 eq.) was added to a stirred solution of amine (1.0 eq.) and Et₃N (10 eq.) in CH₂Cl₂ (0.1 M) at 0 °C. The reaction mixture was warmed to rt and stirred for 1 h. The reaction mixture was concentrated *in vacuo*. Products were purified by SCX SPE or flash chromatography.

General procedure G: O-Silyl deprotection using (±)-camphorsulfonic acid

(±)-Camphorsulfonic acid (4.0-10 eq., as specified) was added to a stirred suspension of amine (1.0 eq.) in MeOH (0.3 M). The reaction mixture heated at 45 °C for 15 h, then concentrated *in* vacuo. Products were purified by flash chromatography.

General procedure H: O-Silyl deprotection using TBAF

TBAF (1.0 M in THF, 2.0 eq.) was added a stirred solution of substrate (1.0 eq.) in THF (0.1 M). The reaction mixture was stirred for 0.5 h, then concentrated *in vacuo*. Products were purified by flash chromatography.

General procedure I: Deprotection of tert-butylcarbamoyl (Boc) amines

To a solution of Boc-amine (1.0 eq.) in CH₂Cl₂ (0.5 M) was added TFA (1 volume) and the resulting solution was stirred at rt for 1 h then concentrated *in vacuo*. Products were purified by SCX SPE eluting with MeOH, then sat. NH₃/MeOH.

5.3 A note on NMR assignments

Where compounds have been assigned through analysis of the corresponding NOESY spectrum, protons labelled 'A' are on the 'bottom' face of the molecules (as drawn), while protons labelled 'B' are on the 'top' face of the molecules (as drawn), see compound **S13** below as an example.

Where the polycyclic assemblies **were not** assigned using NOESY the 'A' and 'B' descriptors are reported through analysis of the coupling constants or otherwise arbitrarily.

5.4 Compound data

5.4.1 Preparation of cycloaddition precursors and cycloadducts

5.4.1.1 Preparation of each intermediate in the synthesis of O-bridged cycloadduct 2a

5-[(tert-Butyldimethylsilyl)oxy]-2-(hydroxymethyl)-4H-pyran-4-one S1

Following a procedure by Miyazaki,^{S7} TBSCI (5.3 g, 35 mmol, 1.0 eq.) was added to a stirred suspension of kojic acid (5.0 g, 35 mmol, 1.0 eq.), Et₃N (7.4 mL, 100 mmol, 2.90 eq.) and DMAP (5 mg, 0.04 mmol, 0.001 eq.) in CHCl₃ (50 mL) at 0 °C. The reaction mixture was stirred at this temperature for 1 h then aqueous KHSO₄ (5 wt%, 50 mL) was added. The phases were separated and the organic phase was washed with brine (50 mL), dried, filtered and concentrated *in vacuo*. Flash chromatography

eluting with 1:1 pentane–EtOAc gave the title compound **S1** (8.1 g, 32 mmol, 90%) as a colourless amorphous solid.^{*} **R**_f 0.57 (1:1 petrol–EtOAc). ¹**H NMR** (500 MHz, CDCl₃): δ 7.65 (1H, s, 6-H), 6.47 (1H, s, 3-H), 4.46 (2H, d, *J* 6.3, *CH*₂OH), 3.13 (1H, t, *J* 6.3, *OH*), 0.95 (9H, s, SiC(CH₃)₃), 0.21 (6H, s, 2 × SiCH₃). ¹³**C NMR** (125 MHz, CDCl₃): δ 176.1 (4-C), 166.6 (2-C), 144.6 (5-C), 144.2 (6-C), 112.4 (3-C), 61.1 (CH₂OH), 25.8 (SiC(*C*H₃)₃), 18.7 (SiC_q), -4.4 (2 × SiCH₃). **IR** v_{max}(film)/cm⁻¹ 3358 (br., OH), 2954, 2857, 1651 (CO), 1629, 1268, 1211, 874. **LRMS** (HPLC-MS): C₁₂H₂₁O₄Si; found 257.1 [M+H]⁺. Spectral data are consistent with the literature values.^{S8}

{5-[(tert-Butyldimethylsilyl)oxy]-4-oxo-4H-pyran-2-yl}methyl methanesulfonate S2

Et₃N (3.30 mL, 23.4 mmol, 2.00 eq.) was added to a stirred solution of silyl protected kojic acid **S1** (3.00 g, 11.7 mmol, 1.00 eq.) in CH₂Cl₂ (24 mL). The reaction mixture was cooled to 0 °C, then methanesulfonyl chloride (1.1 mL, 14 mmol, 1.2 eq.) was added dropwise. The reaction mixture was stirred at 0 °C for 0.5 h, then warmed to rt and partitioned with H₂O (25 mL). The phases were separated and the aqueous phase was extracted with CH₂Cl₂ (25 mL). The combined organic phases were dried over MgSO₄, filtered and concentrated *in*

vacuo to give the *title compound* **S2** (3.31 g, 9.89 mmol, 85% mass recovery) which was used subsequently without further purification. **R**_f 0.62 (1:1 petrol–EtOAc). ¹**H NMR** (300 MHz, CDCl₃, characteristic peaks): δ 7.69 (1H, s, 6-H), 6.48 (1H, s, 3-H), 4.97 (2H, s, CH₂), 3.11 (3H, s, SO₂CH₃), 0.95 (9H, s, SiC(CH₃)₃), 0.23 (6H, s, 2 × SiCH₃).

^{*} Compound **S1** and related silvlated pyranone derivatives **S2-S6** slowly decomposed on standing in air or in mildly acidic solvents (e.g. CDCl₃). Compounds of this type should be stored in a freezer at -18 °C. N.b. derived cycloadducts **2a-c** were bench stable at rt for several weeks.

5-[(tert-Butyldimethylsilyl)oxy]-2-{[(prop-2-en-1-yl)amino]methyl}-4H-pyran-4-one S3

Et₃N (3.5 mL, 35 mmol, 1.0 eq.) was added to a stirred solution of mesylate **S2** (11.8 g, 35 mmol, 1.0 eq.) in THF (120 mL). Allylamine (8.0 mL, 106 mmol, 3.0 eq.) was added and the reaction mixture was stirred for 15 h, then concentrated *in vacuo*. The resulting residue was diluted in EtOAc (50 mL) and washed with sat. aq. NaHCO₃ solution (50 mL). The phases were separated and the aqueous phase was extracted with EtOAc (50 mL). The combined organics were washed with brine

(50 mL), dried over MgSO₄, filtered and concentrated *in vacuo*. The residue was washed through a pad of silica with 9:1 EtOAc–MeOH to give the *title compound* **S3** (5.9 g, 20.0 mmol, 56%) as a dark brown oil. **R**f 0.57 (1:1 petrol–EtOAc). ¹**H NMR** (500 MHz, CDCl₃): δ 7.64 (1H, s, 6-H), 6.36 (1H, s, 3-H), 5.86 (1H, ddt, *J* 16.8, 10.3, 6.0, C*H*=CH₂), 5.20 (1H, app. dq, *J* 16.8, 1.4, CH=C*H*_AH_B), 5.14 (1H, ddd, *J* 10.3, 2.7, 1.4, C*H*=CH_AH_B), 3.62 (2H, s, CqC*H*₂NH), 3.27 (2H, dt, *J* 6.0, 1.4, NHC*H*₂CH=CH₂), 0.96 (9H, s, SiC(CH₃)₃), 0.23 (6H, s, 2 × SiCH₃). ¹³C NMR (125 MHz, CDCl₃): δ 175.7 (4-C), 165.7 (2-C), 145.5 (5-C), 144.2 (6-C), 135.9 (CH=CH₂), 117.1 (CH=CH₂), 113.7 (3-C), 51.5 (CH₂CH=CH₂), 49.8 (CqCH₂NH), 25.8 (SiC(CH₃)₃), 18.7 (SiCq), -4.3 (2 × SiCH₃). **IR** v_{max} (film)/cm⁻¹ 2954, 2930, 2857, 1651 (CO), 1232, 919, 879, 786. **LRMS** (HPLC-MS): C₁₅H₂₅NO₃Si; found 296.1 [M+H]⁺.

Benzyl *N*-({5-[(*tert*-butyldimethylsilyl)oxy]-4-oxo-4*H*-pyran-2-yl}methyl)-*N*- (prop-2-en-1-yl)carbamate S4

Benzyl chloroformate (180 μ L, 1.28 mmol, 2.6 eq.) was added to a stirred solution of the amine **S3** (145 mg, 0.49 mmol, 1.0 eq.) and Et₃N (180 μ L, 1.28 mmol, 2.6 eq.) in CH₂Cl₂ (5.0 mL) at 0 °C. The reaction mixture warmed to rt and stirred for 15 h, then concentrated *in vacuo*. Flash chromatography eluting with 9:1 EtOAc–MeOH gave the *title compound* **S4** (145 mg, 0.34 mmol, 69%) as a pale yellow oil. **R**_f 0.82 (1:1 petrol–EtOAc). **See Section 5.4.1.2 for the spectral data and optimised route to prepare this compound.**

5.4.1.2 Telescoped synthesis of O-bridged cycloadducts 2a-b

General procedure J: Four-step telescoped procedure to prepare cycloaddition precursors S4 and S6

TBSCI (10.7 g, 71.0 mmol, 1.01 eq.) was added to a stirred solution of kojic acid (10.0 g, 70.4 mmol, 1.00 eq.), Et₃N (10.8 mL, 77.9 mmol, 1.10 eq.) and DMAP (258 mg, 2.11 mmol, 0.03 eq.) in CH₂Cl₂ (150 mL) at 0 °C. The reaction mixture was warmed to rt and stirred for 45 min. The reaction mixture was guenched with sat. ag. NH₄Cl solution (100 mL) and H₂O (100 mL). After separation, the aqueous phase was extracted with CH₂Cl₂ (2 × 150 mL). The organic extracts were combined, dried over Na₂SO₄ and concentrated in vacuo. To the residue S1 (70.4 mmol) in CH₂Cl₂ (150 mL) at 0 °C was added Et₃N (12.0 mL, 86.5 mmol, 1.23 eq.) and methanesulfonyl chloride (6.0 mL, 78 mmol, 1.1 eq.) dropwise. The reaction mixture was warmed to rt and stirred for 0.5 h, then guenched with water (150 mL). After phase separation, the aqueous phase was extracted using CH₂Cl₂ (2 × 150 mL). The organic extracts were combined, dried over Na₂SO₄ and concentrated *in vacuo*. To the residue **S2** (70.4 mmol) in CH₂Cl₂ (150 mL) at 0 °C was added Et₃N (10.0 mL, 72.0 mmol, 1.02 eq.) and amine (as specified below, 3.80 eq.). The reaction mixture warmed to rt, stirred for 15 h, then guenched with H₂O (150 mL). After phase separation, the agueous phase was extracted using CH₂Cl₂ (2 × 150 mL). The organic extracts were combined, dried over Na₂SO₄ and concentrated in vacuo. To the residue S3 or S5 (70.4 mmol) in CH₂Cl₂ (150 mL) at 0 °C was added Et₃N (17.0 mL, 121 mmol, [1.72 eq.]) followed by the very slow addition (exothermic – gas outlet *necessary!*) of benzyl chloroformate (15.0 mL, 106 mmol, 1.50 eq.). The reaction mixture warmed to rt and stirred 2 h. The reaction mixture was quenched with sat. aq. NH_4Cl solution (150 mL) and H_2O (150 mL). After phase separation, the aqueous phase was extracted with CH_2Cl_2 (2 × 150 mL). The organic extracts were combined, dried over Na_2SO_4 and concentrated *in vacuo*.

Benzyl *N*-({5-[(*tert*-butyldimethylsilyl)oxy]-4-oxo-4*H*-pyran-2-yl}methyl)-*N*- (prop-2-en-1yl)carbamate S4

General procedure **J** was followed using kojic acid (10.0 g, 70.4 mmol, 1.00 eq) and allylamine (20.0 mL, 267 mmol, 3.80 eq.). Flash chromatography eluting with 9:1 to 8:2 pentane–EtOAc gave the *title compound* **S4** (15.9 g, 37.0 mmol, 53%, 4 steps) as a pale yellow oil. **R**_f 0.82 (1:1 petrol–EtOAc). ¹H NMR (500 MHz, CDCl₃, 330 K): δ 7.56 (1H, s, 6-H), 7.39-7.27 (5H, m, Cbz Ar-H), 6.23 (1H, s, 3-H), 5.81-5.70 (1H, m, C*H*=CH₂), 5.21-5.10 (4H, m, CH=C*H*₂ and OC*H*₂Ph), 4.26 (2H, s, Cq*C*H₂N), 3.96 (2H, s, NC*H*₂CH=CH₂), 0.97 (9H, s, SiC(CH₃)₃), 0.24 (6H, s, 2 × SiCH₃). ¹³C NMR (125 MHz, CDCl₃, 330 K): δ 175.3 (4-C), 163.3 (2-C), 156.1 (N(CO)O), 145.8 (5-C), 144.0 (6-C), 136.5 (*C*H=CH₂), 132.9 (Ar-C_q),

128.7 (Ar-C), 128.4 (Ar-C), 128.2 (Ar-C), 118.2 (CH=CH₂), 113.7 (3-C), 65.6 (OCH₂Ph), 50.3 (CH₂CH=CH₂), 47.6 (C_qCH₂NH), 25.8 (SiC(CH₃)₃), 18.7 (SiC_q), -4.3 (2 × SiCH₃). IR ν_{max} (film)/cm⁻¹ 2953, 2929, 2857, 1702 (CO), 1649, 1460, 1410, 1210. HRMS (ESI): C₂₃H₃₂NO₅Si [M+H]⁺; calculated 430.2058, found 430.2044.

Benzyl *N*-({5-[(tert-butyldimethylsilyl)oxy]-4-oxo-4*H*-pyran-2-yl}methyl)-N-(prop-2-yn-1yl)carbamate S6

General procedure **J** was followed using kojic acid (10.0 g, 70.4 mmol, 1.00 eq) and propargylamine (17.0 mL, 267 mmol, 3.80 eq.).^{*} Flash chromatography eluting with 9:1 to 8:2 pentane–EtOAc gave the *title compound* **S6** (12.1 g, 28.3 mmol, 40%, 4 steps) as a pale yellow oil. **R**_f 0.20 (4:1 petrol–EtOAc). ¹H NMR (500 MHz, CDCl₃, 329 K): δ 7.57 (1H, s, 6-H), 7.38-7.29 (5H, m, Cbz Ar-H), 6.28 (1H, s, 3-H), 5.19 (2H, s, OC*H*₂Ph), 4.42 (2H, s, Cq*CH*₂N), 4.18 (2H, br. s, NC*H*₂C≡CH), 2.26 (1H, t, *J* 2.5, C≡CH), 0.97 (9H, s, SiC(CH₃)₃), 0.24 (6H, s, 2 × SiCH₃). ¹³C NMR (125 MHz, CDCl₃, 329 K): δ 175.3 (4-C), 162.7 (2-C), 155.5 (N(CO)O), 145.9 (5-C), 144.0 (6-C), 136.2 (Ar-Cq),

^{*} Crude amine **S5** characteristic ¹H NMR peaks (300 MHz, CDCl₃): δ 7.65 (1H, s, 6-H), 6.39 (1H, s, 3-H), 3.73 (2H, s, C_qCH₂NH), 3.47 (2H, d, J 2.4, NHCH₂C≡CH), 2.27 (1H, t, J 2.4, C≡CH), 0.95 (9H, s, SiC(CH₃)₃), 0.23 (6H, s, 2 × SiCH₃).

128.8 (Ar-C), 128.5 (Ar-C), 128.3 (Ar-C), 114.0 (3-C), 78.1 (CH₂*C*=CH), 73.3 (CH₂C=CH), 68.5 (O*C*H₂Ph), 47.5 (C_q*C*H₂N), 37.2 (*C*H₂C=CH), 25.9 (SiC(*C*H₃)₃), 18.7 (SiC_q), -4.3 (2 × SiCH₃). **IR** ν_{max} (film)/cm⁻¹ 2953, 2930, 2857, 1708 (CO), 1650, 1498, 1455, 1216. **HRMS** (ESI): C₂₃H₃₀NO₅Si [M+H]⁺; calculated 428.1888, found 428.1889.

5.4.1.3 Preparation of O-bridged cycloadducts 2a and 2b

Benzyl (*1R**,5S*,7S*)-9-[(tert-butyldimethylsilyl)oxy]-8-oxo-11-oxa-3zatricyclo[5.3.1.0^{1,5}]undec-9-ene-3-carboxylate 2a

A stirred solution of compound **S3** (15.9 g, 37.0 mmol) in xylenes (36 mL) was heated to reflux (155 °C) and stirred for 15 h. The reaction mixture was cooled to rt then concentrated *in vacuo*. Flash chromatography eluting with 9:1 to 8:2 pentane–EtOAc gave the *title compound* **2a** (13.8 g, 32.1 mmol, 87%) as a colourless amorphous solid.^{*} **M.p.** 96-98 °C, colourless plates, hexane–EtOAc. **R**_f 0.18 (4:1 petrol–EtOAc). ¹H NMR (500 MHz, CDCl₃, 50:50 mixture

of rotamers): δ 7.41-7.29 (5H, m, Cbz Ar-H), 6.29 (0.5H, s, 10-H), 6.26 (0.5H, s, 10-H), 5.15 (1H, app. d, *J* 12.0, OCH_AH_BPh), 4.78 (1H, d, *J* 8.2, 7-H), 4.04-3.90 (2H, m, 2-H_B and 4-H_A), 3.68 (0.5H, d, *J* 12.8, 2-H_A), 3.64 (0.5H, d, *J* 12.8, 2-H_A), 3.22-3.13 (1H, m, 4-H_B), 2.84-2.74 (1H, m, 5-H), 2.34-2.21 (1H, m, 6-H_B), 1.89 (1H, app. td, *J* 13.2, 8.2, 6-H_A), 0.94 (4H, s, SiC(CH₃)₃), 0.93 (5H, s, SiC(CH₃)₃), 0.16 (6H, m, 2 × SiCH₃). ¹³C NMR (125 MHz, CDCl₃, mixture of two rotamers): δ 193.7 (8-C), 154.5 (N(CO)O), 154.3

^{*} Compound 2a and related cycloadducts 2b-c were stable for several months when stored in a freezer at -18 °C.

(N(CO)O), 148.1 (9-C), 136.8 (Ar-C_q), 138.7 (Ar 1-C), 128.7 (Ar-C), 128.3 (Ar-C), 128.2 (Ar-C), 128.1 (Ar-C), 127.3 (10-C), 127.2 (10-C), 90.6 (1-C), 89.8 (1-C), 83.4 (7-C), 67.2 (OCH₂Ph), 53.9 (2-C or 4-C), 53.5 (2-C or 4-C), 53.1 (2-C or 4-C), 52.7 (2-C or 4-C), 47.1 (5-C), 46.2 (5-C), 31.6 (6-C), 31.5 (6-C), 25.7 (SiC(CH₃)₃), 18.6 (SiC_q), -4.5 (2 × SiCH₃) [28 of 36 expected peaks observed]. **IR** ν_{max} (film)/cm⁻¹ 2954, 2953, 1703 (CO), 1652, 1419, 1347, 1163, 919. **HRMS** (ESI): C₂₃H₃₂NO₅Si [M+H]⁺; calculated 430.2044, found 430.2048. **X-ray crystallography**: CCDC 1526777 contains the supplementary crystallographic data for this compound. Crystals were grown by slow evaporation from diethyl ether.

2a Crystal Structure:

Benzyl (*1R**,*7R**)-9-[(*tert*-butyldimethylsilyl)oxy]-8-oxo-11-oxa-3azatricyclo[5.3.1.0^{1,5}]undeca-5,9-diene-3-carboxylate 2b

In three batches, stirred solutions of compound **S6** (3×3.9 g, 3×9.1 mmol [9.1 mmol in each batch, 27.3 mmol over three batches]) in PhMe (3×10 mL [10 mL in each batch, 30 mL overall]) were heated at 180 °C under microwave irradiation for 6 h. The three batches were combined and concentrated *in vacuo*. Flash chromatography eluting with 9:1 pentane–EtOAc gave the *title compound* **2b** (5.5 g, 12.9 mmol, 47%) as a colourless amorphous solid. **R**_f 0.39 (4:1 petrol–EtOAc).

¹H NMR (500 MHz, CDCl₃, 329 K): δ 7.40-7.30 (5H, m, Cbz Ar-H), 6.36 (1H, s, 10-H), 6.04 (1H, s, 6-H), 5.19 (2H, s, OC*H*₂Ph), 5.17-5.15 (1H, m, 7-H), 4.25 (1H, d, *J* 16.7, 2-H_A), 4.14 (1H, app. dd, *J* 16.7, 1.4, 2-H_B), 4.05-3.87 (1H, m, 4-H_A), 3.51 (1H, d, *J* 11.3, 4-H_B), 0.94 (9H, s, SiC(CH₃)₃), 0.17 (3H, s, SiCH₃), 0.16 (3H, s, SiCH₃). ¹³C NMR (125 MHz, CDCl₃, mixture of two rotamers): δ 190.8

(2 peaks, 8-C), 156.4 (9-C), 155.6 (9-C), 154.7 (N(CO)O), 154.5 (N(CO)O), 143.7 (5-C), 136.3 (Ar-C_q), 128.6 (Ar-C), 128.3 (Ar-C), 128.1 (Ar-C), 127.5 (10-C), 127.4 (10-C), 118.0 (6-C), 93.9 (7-C), 92.2 (1-C), 91.4 (1-C), 67.4 (OCH₂Ph), 51.9 (2 peaks, 4-C), 43.6 (2-C), 43.5 (2-C), 25.5 (SiC(CH₃)₃), 18.4 (SiC_q), -4.6 (SiCH₃), -4.7 (SiCH₃) [26 of 36 expected peaks observed]. **IR** v_{max}(film)/cm⁻¹ 2955, 2930, 2887, 2856, 1704, 1606, 1412, 1358. **HRMS** (ESI): C₂₃H₃₀NO₅Si [M+H]⁺; calculated 428.1888, found 428.1889.

5.4.1.4 Preparation of O-bridged cycloadduct 2c

3-[(tert-Butyldimethylsilyl)oxy]-2-methyl-4H-pyran-4-one S7

TBSCI (12.1 g, 80.1 mmol, 1.01 eq.) was added to a stirred suspension of maltol (10.0 g, 79.3 mmol, 1.0 eq.), Et₃N (12.2 mL, 87.2 mmol, 1.1 eq.) and DMAP (290 mg, 2.40 mmol, 0.03 eq.) in CH₂Cl₂ (150 mL) at 0 °C. The ice-bath was removed and the reaction mixture was stirred for 3 h. The reaction mixture was poured into a solution of 1:1 sat. aq. NH₄Cl: H₂O (200 mL). The phases were separated and the aqueous phase was extracted with CH₂Cl₂ (2 × 50 mL), dried, filtered and concentrated *in vacuo* to give the title compound

S7 (19.0 g, 79.0 mmol, 99%) as a colourless amorphous solid which was not purified further. ¹**H NMR** (300 MHz, CDCl₃, characteristic peaks): δ 7.57 (1H, d, *J* 5.7, 6-H), 6.30 (1H, d, *J* 5.7, 5-H), 2.31 (3H, s, CH₃), 0.97 (9H, s, SiC(CH₃)₃), 0.26 (6H, s, 2 × SiCH₃). Spectral data are consistent with the literature values.^{S9}

Benzyl (*1R**,*5R**,*7R**)-9-[(*tert*-butyldimethylsilyl)oxy]-10-oxo-11-oxa-3azatricyclo[5.3.1.0^{1,5}]undec-8-ene-3-carboxylate 2c

LiHMDS (46.0 mL, 46.0 mmol, 1.10 eq.) was added dropwise to a stirred solution of compound **S7** (10.0 g, 41.6 mmol, 1.00 eq.) in THF (150 mL) at -78 °C. The reaction mixture was stirred at -78 °C for 1 h, then transferred dropwise *via* cannula to a stirred solution of NCS (5.60 g, 41.6 mmol, 1.00 eq.) in THF (150 mL) at -78 °C. The reaction mixture was stirred for 1 h at -78 °C.

warmed to rt. H₂O (10 mL) was added, then the reaction mixture was concentrated in vacuo. The residue was partitioned between pentane^{*} (100 mL) and sat. aq. NaHCO₃ solution (100 mL). The phases were separated and the ageuos layer was further extracted with pentane (4 × 25 mL). The combined organic layers were dried over MgSO₄, filtered, and concentrated *in vacuo* to give the crude chloride **S8** as an orange oil (10.8 g), which was not purified further {characteristic ¹H NMR peaks (500 MHz, CDCl₃): δ 7.57 (1H, d, J 5.5, 6-H), 6.25 (1H, d, J 5.5, 5-H), 4.46 (2H, s, CH₂Cl), 0.88 (9H, s, SiC(CH₃)₃), 0.20 (6H, s, 2 × SiCH₃)}. To the residue **S8** (41.6 mmol) in THF (100 mL) was added Et₃N (5.8 mL, 41.6 mmol, 1.0 eq.), allylamine (4.7 mL, 108 mmol, 2.6 eq.) and NaI (6.2 g, 41.6 mmol, 1.0 eq.) at rt, in the order stated. The reaction mixture was stirred at rt for 15 h, then concentrated in vacuo. The resulting residue was diluted in EtOAc (100 mL) and washed with H₂O (100 mL). The aqueous layer was extracted with EtOAc (4 × 25 mL). The combined organic layers were washed with brine (50 mL), dried over MgSO₄, filtered, and concentrated *in vacuo* to give the crude amine **S9** as a brown oil which was not purifed further {characteristic ¹H NMR peaks (500 MHz, CDCl₃): δ 7.56 (1H, d, J 5.6, 6-H), 6.23 (1H, d, J 5.6, 5-H), 5.79 (1H, ddt, J 16.8, 10.3, 6.1, CH₂CH=CH_AH_B), 5.10 (1H, dd, J16.8, 1.3, CH=CH_AH_B), 5.03 (1H, dd, J10.3, 1.3, CH=CH_AH_B), 3.75 (2H, s, CqCH₂NH), 3.17 (2H, d, J 6.1, NHCH₂CH=CH₂), 0.86 (9H, s, SiC(CH₃)₃), 0.18 (6H, s, 2 × SiCH₃)}. To the residue S9 (41.6 mmol) in CH₂Cl₂ (100 mL) was added Et₃N (10.0 mL, 136 mmol, 3.30 eq.) followed by the very slow addition (exothermic - gas outlet necessary!) of CbzCl (8.8 mL, 43.1 mmol, 1.05 eq.) at 0 °C. The reaction mixture was warmed to rt and stirred for 2 h. The reaction mixture was quenched with sat. aq. NH₄Cl solution (150 mL) and H₂O (150 mL). After phase separation, the aqueous phase was extracted with CH_2Cl_2 (2 × 150 mL). The organic extracts were combined, dried over Na₂SO₄ and concentrated *in vacuo*. The resulting residue was flushed through a pad of SiO₂ eluting with EtOAc to give the crude Cbz-protected amine **S10** (15.0 g) as a brown oil {characteristic ¹H NMR peaks (300 MHz, CDCl₃, 50:50 mixture of rotamers): 7.61 (0.5H,

^{*} Analysis of the crude reaction product by ¹H NMR spectroscopy at 300 MHz suggested that extraction with pentane removed the majority of the unreacted *N*-chlorosuccinimide.

br. s, 6-H), 7.48 (0.5H, br. s, 6-H), 7.41-7.27 (5H, m, Cbz Ar-H), 6.30 (1H, br. s, 5-H), 5.86-5.62 (1H, m, CH=CH₂), 5.23-4.99 (2H, m, CH=CH₂), 5.18 (2H, s, OCH₂Ph), 4.77-4.51 (2H, m, NCH₂CH=CH₂), 3.93 (1H, s, CH₂N^{rotA}), 3.86 (1H, s, CH₂N^{rotB}), 0.94 (9H, s, SiC(CH₃)₃), 0.26 (6H, s, SiCH₃)}. The residue **S10** was diluted in xylenes (30 mL) and heated at 155 °C for 15 h. The reaction mixture was cooled to rt and concentrated in vacuo. Flash chromatography eluting with 4:1 pentane-EtOAc gave the title compound 2c (10.5 g, 24.4 mmol, 59%, 4 steps) as a yellow oil. Rf 0.11 (4:1 petrol-EtOAc). ¹H NMR (500 MHz, CDCl₃, 60:40 mixture of rotamers): δ 7.39–7.34 (4H, m, Cbz Ar-H), 7.34–7.28 (1H, m, Cbz Ar-H), 6.37–6.32 (1H, m, 8-H), 5.13 (2H, s, OCH₂Ph), 5.00 (1H, app. t, J 5.8, 7-H), 4.41–4.33 (1H, m, 2-H_A, includes at δ 4.36: 0.6H, d, *J* 13.0), 4.10–3.97 (1H, m, 4-H_A), 3.72–3.60 (1H, m, 2-H_B, includes at δ 3.69: 0.4H, d, J 13.0; and at δ 3.64: 0.6 H, d, J 13.0), 3.41–3.30 (1H, m, 4-H_B), 2.73–2.63 (1H, m, 5-H), 2.23–2.13 (1H, m, 6-H_A), 2.12–2.00 (1H, m, 6-H_B), 0.93 (9H, s, SiC(CH₃)₃), 0.18–0.12 (6H, m, 2 × SiCH₃, includes at δ 0.16: 3.6H, s; and at δ 0.14: 2.4H, s). ¹³C NMR (125 MHz, CDCl₃, mixture of two rotamers, 328 K): δ 191.6 (10-C), 154.6 (N(CO)O), 146.1 (9-C), 137.0 (Ar-C_q), 129.4 (8-C), 128.6 (Ar-C), 128.1 (Ar-C), 128.0 (Ar-C), 97.2 (1-C), 76.2 (7-C), 67.2 (OCH₂Ph), 53.4 (4-C), 49.5 (2-C), 43.9 (5-C), 43.1 (5-C), 37.7 (6-C), 25.7 (SiC(CH₃)₃), 18.5 (SiC_q), -4.5 (SiCH₃), -4.6 (SiCH₃) [20 of 36 expected peaks observed]. **IR** v_{max}(film)/cm⁻¹ 2955, 2931, 2885, 2858, 1704 (CO), 1622, 1419, 1361, 1338, 1261. HRMS (ESI): C23H32NO5Si [M+H]+; calculated 430.2044, found 430.2050.

5.4.1.5 Preparation of precursors to *N*-bridged cycloadducts 2d-g

[(3-Hydroxypyridin-2-yl)methyl]trimethylazanium iodide S11

Methyl iodide (8.40 mL, 132 mmol, 1.00 eq.) was added to stirred solution of 2-(dimethylaminomethyl)-3-hydroxypyridine (20.1 g, 132 mmol, 1.00 eq.) in acetone (66 mL) at 0 °C. The resulting mixture was warmed to rt and stirred for 2 h, during which time a pale yellow precipitate formed. The solid was collected by filtration to give the title compound S11 (34.1 g, 115.9, 88%) as a pale yellow solid. **M.p.** Decomposition observed above 164 °C. ¹**H NMR** (D₂O, 400 MHz): 8.21 (1H, dd, J 3.9, 2.1, 5-H), 7.56-7.47 (2H, m, 4-H and 6-H), 4.61 (2H, s, CH₂Ar), 3.21 (9H, s, N⁺(CH₃)₃). ¹³C NMR (D₂O, 100 MHz): 154.3, 141.1, 134.7, 127.6, 125.7, 64.5, 53.2. IR vmax(film)/cm⁻¹ 3381, 1629, 1583, 1484, 1462, 1300. HRMS (ESI): C₉H₁₅N₂O [M]⁺; calculated 167.1184, found 167.1186.

tert-Butyl N-[(3-hydroxypyridin-2-yl)methyl]-N-(prop-2-en-1-yl)carbamate S12

N-Boc-allylamine (10.2 g, 65.1 mmol, 1.00 eq.) was added to a stirred suspension of NaH (60% dispersion in mineral oil, 5.47 g, 137 mmol, 2.10 eq.) in THF (280 mL) at 0 °C. The resulting suspension was stirred at rt for 2 h. After this time, the suspension was cooled to 0 °C and trimethyl ammonium salt S11 (21.1 g, 71.6 mmol, 1.10 eq.) was added in one portion. The suspension was stirred at reflux for 2 h, then cooled to rt and quenched with sat. aq. NH₄Cl solution (100 mL).

EtOAc (100 mL) was added and the layers were separated. The aqueous layer was extracted with EtOAc (2 x 100 mL). The combined organic layers were dried over MgSO₄, filtered, and concentrated in vacuo to deliver a crude brown oil. Flash chromatography eluting with (4:5:1 petrol-CH₂Cl₂-EtOAc) gave the *title compound* **S12** (9.47 g, 35.8 mmol, 55%) as a colourless solid. ¹H NMR (MeOD-d₄, 500 MHz, 333 K): 7.87 (1H, dd, J 4.4, 1.7, 6-H), 7.08 (1H, dd, J 8.1, 1.6, 4-H), 7.05 (1H, dd, J 8.1, 4.4, 5-H), 5.67 (1H, ddt, J 17.0, 10.4, 5.6, CH=CH₂), 4.98 (1H, app. dq, J 17.0, 1.7, CH=CH_AH_B), 4.96 (1H, app dq, J10.4, 1.5, CH=CH_AH_B), 4.37 (2H, s, CH₂Ar), 3.80 (2H, d, J5.6, NCH₂CH=CH₂), 1.33 (9H, s, C_q(CH₃)₃). ¹³C NMR (MeOD-d₄, 125 MHz, 333 K): 158.3, 153.7, 146.0, 140.6, 134.9, 124.9, 124.3, 116.7, 81.7, 50.9, 48.7, 28.7. **IR** v_{max}(film)/cm⁻¹ 3271, 1651, 1447, 1414, 1161. HRMS (ESI): C₁₄H₂₁N₂O₃ [MH]⁺; calculated 265.1547, found 265.1551.

5.4.1.6 Preparation of the *N*-bridged cycloadducts 2d-g

General procedure K: Synthesis of N-bridged cycloadducts 2d-g

Alkyl halide (RX, 1.1 eq.) was added to a stirred solution of compound **S12** (1.0 eq.) in MeCN (0.5 M) and the resulting solution was stirred at reflux for 18 h. After cooling to rt, DABCO (3.0 eq.) was added in one portion and the resulting suspension was stirred at reflux for 2 h, then cooled to rt. H_2O (3 volumes) and CH_2Cl_2 (3 volumes) were added and the layers were separated. The aqueous layer was extracted with CH_2Cl_2 (3 volumes) and the combined organic layers were dried over MgSO₄, filtered, and concentrated *in vacuo* to give a crude material. The crude products were purified by flash chromatography.

tert-Butyl (*1R**,*5R**,*7R**)-11-methyl-10-oxo-3,11-diazatricyclo[5.3.1.0^{1,5}]undec-8-ene-3-carboxylate 2d

General procedure **K** was followed using compound **S12** (7.8 g, 29.5 mmol) and methyl iodide. Flash chromatography eluting with 4:5:1 petrol– CH_2Cl_2 – EtOAc gave the *title compound* **2d** (4.88 g, 17.5 mmol, 59%) as a yellow solid. ¹**H NMR** (MeOD-d₄, 500 MHz, 333 K): 6.95 (1H, dd, *J* 9.8, 4.8, 8-H), 5.90 (1H,

d, *J* 9.8, 9-H), 3.96 (1H, d, *J* 12.4, 2-H_A), 3.86 (1H, td, *J* 5.2, 0.9, 7-H), 3.81 (1H, dd, *J* 10.9, 9.4, 4-H_B), 3.21 (1H, dd, *J* 10.9, 8.1, 4-H_A), 3.18 (1H, d, *J* 12.4, 2-H_B), 2.57-2.47 (1H, m, 5-H), 2.25 (3H, s, NCH₃), 1.98-1.89 (2H, m, 6-H), 1.37 (9H, s, C_q(CH₃)₃). ¹³C NMR (MeOD-d₄, 125 MHz, 333 K): 197.4, 156.0, 151.3, 127.2, 82.7, 81.1, 64.9, 54.3, 47.1, 45.7, 35.6, 32.5, 28.8. IR ν_{max} (film)/cm⁻¹ 1675, 1403, 1365, 1165, 1140, 1125, 1113, 881. HRMS (ESI): C₁₅H₂₃N₂O₃ [MH]⁺; calculated 279.1703, found 279.1704. **X-ray crystallography**: CCDC 1526780 contains the supplementary crystallographic data for this compound. Crystals were grown by slow evaporation from dichloromethane.

2d Crystal Structure:

tert-Butyl (1*R**,5*R**,7*R**)-11-[(2-bromophenyl)methyl]-10-oxo-3,11diazatricyclo[5.3.1.0^{1,5}]undec-8-ene-3-carboxylate 2e

General procedure **K** was followed using compound **S12** (1.2 g, 4.5 mmol) and 2-bromobenzyl bromide. Flash chromatography eluting with 9:1 CH₂Cl₂–EtOAc gave the *title compound* **2e** (617 mg, 1.42 mmol, 31%) as a yellow oil. ¹H **NMR** (MeOD-d₄, 500 MHz, 333 K): 7.43 (1H, dd, *J* 8.0, 1.1, Ar 3-H), 7.26 (1H, dd, *J* 7.6, 1.6, Ar 6-H), 7.19 (1H, app.

td, *J* 7.5, 1.1, Ar 5-H), 7.05 (1H, app. td, *J* 7.7, 1.6, Ar 4-H), 7.04 (1H, dd, *J* 9.8, 4.7, 8-H), 6.00 (1H, d, *J* 9.8, 9-H), 3.99 (1H, d, *J* 12.6, 2-H_A), 3.82 (1H, dd, *J* 10.8, 9.2, 4-H_B), 3.76 (1H, d, *J* 14.1, NC*H*_AH_BAr), 3.76-3.71 (1H, m, 7-H), 3.65 (1H, d, *J* 14.1, NCH_AH_BAr), 3.40 (1H, d, *J* 12.6, 2-H_B), 3.30 (1H, dd, *J* 10.8, 8.0, 4-H_A), 2.55 (1H, app. qd, *J* 8.4, 4.5, 5-H), 1.93 (1H, dd, *J* 12.2, 8.5, 6-H_A), 1.90-1.78 (1H, m, 6-H_B), 1.35 (9H, s, C_q(CH₃)₃). ¹³**C** NMR (MeOD-d₄, 125 MHz, 333 K): 197.0, 156.1, 152.7, 139.3, 134.0, 131.8, 130.0, 128.6, 127.8, 125.1, 82.7, 81.0, 61.3, 54.5, 50.3, 47.4, 45.4, 35.5, 28.8. IR ν_{max} (film)/cm⁻¹ 1676, 1406, 1167, 1122, 887. HRMS (ESI): C₂₁H₂₆⁷⁹BrN₂O₃ [MH]⁺; calculated 433.1121, found 433.1115.

tert-Butyl (*1R**,*5R**,*7R**)-11-benzyl-10-oxo-3,11-diazatricyclo[5.3.1.0^{1,5}]undec-8-ene-3-carboxylate 2f

General procedure **K** was followed using compound **S12** (8.57 g, 32.4 mmol) and benzyl bromide. Flash chromatography eluting with 4:5:1 petrol– CH_2Cl_2 –EtOAc gave the *title compound* **2f** (7.42 g, 20.9 mmol, 65%) as a yellow oil. ¹H NMR (MeOD-d₄, 500 MHz, 333 K): 7.21-7.09 (5H, m, Bn Ar-H), 6.95 (1H, dd, *J* 9.8, 4.8, 8-H), 5.99 (1H, d,

J 9.8, 9-H), 3.98 (1H, d, J 12.5, 2-H_A), 3.82 (1H, dd, J 10.9, 9.2, 4-H_B), 3.76-3.69 (1H, m, 7-H), 3.63 (1H, d, J 13.7, NCH_AH_BPh), 3.56 (1H, d, J 13.7, NCH_AH_BPh), 3.31 (1H, dd, J 10.9, 7.9, 4-H_A), 3.30-3.23 (1H, m, 2-H_B), 2.55 (1H, app. qd, J 8.5, 4.7, 5-H), 1.93 (1H, dd, J 12.1, 8.5, 6-H_A), 1.80-1.89 (1H, m, 6-H_B), 1.36 (9H, s, C_q(CH₃)₃). ¹³**C NMR** (MeOD-d₄, 125 MHz, 333 K): 197.3, 156.1, 152.1, 140.3, 129.4, 129.3, 128.2, 127.9, 82.7, 81.1, 61.4, 54.3, 50.4, 47.6, 45.8, 35.3, 28.7. **IR** ν_{max} (film)/cm⁻¹ 1681, 1403, 1365, 1167, 1125, 882. **HRMS** (ESI): C₂₁H₂₇N₂O₃ [MH]⁺; calculated 355.2016, found 355.2023.

tert-Butyl (*1R**,*5R**,*7R**)-11-(2-ethoxy-2-oxoethyl)-10-oxo-3,11-diazatricyclo[5.3.1.0^{1,5}]undec-8-ene-3-carboxylate 2g

General procedure **K** was followed using compound **S12** (2.44 g, 9.23 mmol) and ethyl bromoacetate. Flash chromatography eluting with 3:5:2 petrol– CH_2Cl_2 –EtOAc gave the *title compound* **2g** (1.10 g, 3.14 mmol, 34%) as a yellow oil. ¹H NMR (MeOD-d₄, 500 MHz, 333 K): 7.01 (1H, dd, *J* 9.8, 4.8, 8-H), 5.93 (1H, d, *J* 9.8, 9-H), 4.20-4.12 (1H, m,

7-H), 4.11-4.02 (2H, m, CO₂C*H*₂CH₃), 3.99 (1H, d, *J* 12.5, 2-H_A), 3.82 (1H, dd, *J* 10.8, 9.2, 4-H_B), 3.33 -3.24 (2H, m, 4-H_A and NC*H*_AH_BCO₂Et), 3.18 (1H, *J* 16.6, NCH_A*H*_BCO₂Et), 3.17 (1H, d, *J* 12.5, 2-H_B), 2.51 (1H, app. qd, *J* 8.5, 4.9, 5-H), 2.03-1.91 (2H, m, 6-H), 1.36 (9H, s, C_q(CH₃)₃), 1.15 (3H, t, *J* 7.1, CO₂CH₂C*H*₃). ¹³C NMR (MeOD-d₄, 125 MHz, 333 K, one C not observed): 196.3, 172.3, 156.1, 152.5, 127.9, 81.2, 62.7, 62.0, 54.2, 48.6, 47.7, 47.6, 35.2, 28.8, 14.4. **IR** ν_{max}(film)/cm⁻¹ 1746, 1682, 1406, 1164, 1128, 766. **HRMS** (ESI): C₁₈H₂₇N₂O₅ [MH]⁺; calculated 351.1914, found 351.1917.

5.4.2 Preparation of scaffolds

5.4.2.1 Scaffolds derived from cycloadduct 2a

5.4.2.1.1 Preparation of cyclic amine 4, and diols 7 and S13

Benzyl (*1R**,*5R**,*7R**,*8R**,*9R**)-8,9-dihydroxy-11-oxa-3-azatricyclo[5.3.1.0^{1,5}]undecane-3carboxylate S13

NaBH₄ (832 mg, 22.0 mmol, 2.20 eq.) was added to a stirred solution of cycloadduct **2a** (4.30 g, 10.0 mmol, 1.0 eq.) in MeOH (60 mL) at 0 °C. The reaction mixture was stirred at 0 °C for 5 min, warmed to rt and stirred for 0.5 h, then concentrated *in vacuo*. The residue was diluted in CH₂Cl₂ (50 mL) and washed with 1N HCl (50 mL). The

aqueous phase was extracted with CH₂Cl₂ (50 mL). The organic extracts were combined, washed with brine (50 mL), dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue (10.0 mmol) was dissolved in MeOH (60 mL) and (±)-camphorsulfonic acid (3.02 g, 13.0 mmol, 1.30 eq.) was added. The reaction mixture was heated at 45 °C for 15 h, then concentrated *in vacuo*. The residue was diluted in CH₂Cl₂ (50 mL) and washed with 1:1 sat. aq. NaHCO₃:H₂O (100 mL). The aqueous phase was extracted with CH₂Cl₂ (2 × 50 mL). The organic extracts were combined, dried over Na₂SO₄ and concentrated *in vacuo*. Flash chromatography eluting with 0-10% MeOH in EtOAc gave the *title compound* **S13** (2.45 g, 7.67 mmol, 77%, 2 steps) as a colourless oil. **R**_f 0.58 (9:1 EtOAc–MeOH). ¹**H NMR** (500 MHz, CDCl₃, 50:50 mixture of rotamers): δ 7.41-7.27 (5H, m, Cbz Ar-H), 5.11 (2H, s, OC*H*₂Ph), 4.35 (1H, dd, *J* 7.2, 4.8, 7-H), 4.15-4.10 (1H, m, 9-H), 3.93-3.85 (1H, m, 4-H_A, includes at δ 3.91: 0.5H, d, *J*, 10.5; and at δ 3.87: 0.5H, d, *J*, 10.5), 3.86-3.80 (1H, m, 8-H), 3.79-3.71 (1H, m, 2-H_A, includes at δ 3.76: 0.5H, d, *J*, 12.6; and at δ 3.74: 0.5H, d, *J*, 12.6), 3.41 (0.5H, d, *J* 12.6, 2-H_B), 3.36 (0.5H, d, *J* 12.6, 2-H_B), 3.24-3.15 (1H, m, 4-H_B), 3.08-3.00 (1H, m, 5-H), 2.63 (1H, app. td, *J* 12.7, 8.5, 6-H_A), 2.49 (2H, br. s, 2 × OH), 2.19 (0.5H, dd, *J* 14.7, 4.3, 10-H_B), 2.13
(0.5H, dd, *J* 14.7, 4.3, 10-H_B), 1.97-1.90 (1H, m, 10-H_A, includes at δ 1.95: 0.5H, d, *J* 14.7; and at δ 1.93: 0.5H, d, *J* 14.7), 1.78-1.66 (1H, m, 6-H_B). ¹³**C** NMR (125 MHz, DMSO-d₆, mixture of two rotamers): δ 153.5 (N(CO)O), 153.4 (N(CO)O), 137.1 (Ar-C_q), 128.4 (Ar-C), 127.7 (Ar-C), 127.5 (Ar-C), 88.7 (1-C), 87.7 (1-C), 79.0 (7-C), 68.0 (8-C), 65.9 (9-C), 65.7 (OCH₂Ph), 54.8 (2-C or 4-C), 54.5 (2-C or 4-C), 54.2 (2-C or 4-C), 54.0 (2-C or 4-C), 44.2 (5-C), 43.2 (5-C), 38.0 (10-C), 37.9 (10-C), 32.7 (6-C), 32.6 (6-C) [22 of 30 expected peaks observed]. IR _{Vmax}(film)/cm⁻¹ 3423 (OH), 2948, 2884, 1683 (CO), 1425, 1350, 1149, 1107. HRMS (ESI): C₁₇H₂₂NO₅ [M+H]⁺; calculated 320.1495, found 320.1496.

Benzyl (1R*,5R*,7R*)-9-benzyl-12-oxa-3,9-diazatricyclo[5.4.1.0^{1,5}]dodecane-3-carboxylate 4

NalO₄ (105 mg, 0.490 mmol, 2.00 eq.) was added to a stirred solution of diol **S13** (78 mg, 0.24 mmol, 1.0 eq.) in 8:2 MeOH–H₂O (10 mL) at 0 °C. The reaction mixture was warmed to rt an stirred for 2 h. The reaction mixture was concentrated *in vacuo* and the residue was diluted in CH₂Cl₂ (10 mL), and washed with H₂O (10 mL). The phases were separated, and the aqueous phase extracted with CH₂Cl₂ (2 × 10 mL). The organic extracts were combined, washed with brine, dried over Na₂SO₄ and

concentrated *in vacuo*. The resulting crude dialdehyde was dissolved in CH₂Cl₂ (10 mL). BnNH₂ (26 μ L, 0.25 mmol, 1.0 eq.), NaBH(OAc)₃ (153 mg, 0.72 mmol, 3.0 eq.) and 4 Å MS (10 mg) were added. The reaction mixture was stirred for 15 h then filtered through Celite and concentrated *in vacuo*. The resulting residue was diluted in EtOAc (25 mL) and washed with brine (25 mL). The aqueous phase was extracted with EtOAc (2 × 10 mL). The combined organic phase was dried over MgSO₄, filtered and concentrated *in vacuo*. Flash chromatography eluting with 0-100% EtOAc in pentane gave the *title compound* **4** (30 mg, 76 µmol, 32%, 2 steps) as a colourless oil. **R**_f 0.74 (1:1 petrol–EtOAc). ¹**H NMR** (500 MHz, CDCl₃, 50:50 mixture of rotamers): δ 7.39-7.21 (10H, m, Ar-H), 5.11 (2H, s, OCH₂Ph), 4.43-4.38 (1H, m, 7-H, includes at δ 4.41: 0.5H, d, J8.1; and at δ 4.40: 0.5H, d, J 8.1), 3.89 (1H, d, J 12.3, 2-H_A), 3.64-3.53 (3H, includes: 1H, m, 4-H_A; at δ 3.61: 1H, d, J 13.3, NCH_AH_BPh; and at δ 3.55: 1H, d, J 13.3, NCH_AH_BPh), 3.52-3.33 (1H, m, 4-H_B), 3.22-3.06 (1H, m, 2-H_B), 2.90-2.80 (1H, m, 5-H), 2.77-2.68 (1H, m, 10-H_A), 2.58-2.44 (2H, includes: 1H, m, 10-H_B; and at δ 2.52: 1H, d, J 12.4, 8-H_A), 2.43-2.36 (1H, m, 8-H_B, includes at δ 2.40: 0.5H, d, J12.4;

and at δ 2.39: 0.5H, d, *J* 12.4), 2.28-2.21 (1H, m, 6-H_A), 1.92-1.74 (3H, m, 6-H_B and 11-H). ¹³C NMR (125 MHz, CDCl₃, mixture of two rotamers): δ 155.1 (N(CO)O), 139.9 (Ar-C_q) 137.1 (Ar-C_q), 128.8 (Ar-C), 128.6 (Ar-C), 128.5 (Ar-C), 128.0 (2 peaks, 2 × Ar-C), 127.2 (Ar-C), 93.2 (1-C), 92.2 (1-C), 80.2 (7-C), 66.9 (O*C*H₂Ph), 64.3 (NCH₂Ph), 63.6 (8-C), 57.9 (2-C), 57.5 (2-C), 54.0 (4-C), 53.8 (4-C), 53.6 (10-C), 50.1 (5-C), 38.3 (11-C), 36.6 (6-C) [23 of 40 expected peaks observed]. **IR** vmax(film)/cm⁻¹ 2930, 2865, 1702 (CO), 1451, 1419, 1360, 1217, 1143. **HRMS** (ESI): C₂₄H₂₉N₂O₃ [M+H]⁺; calculated 393.2173, found 393.2185.

Benzyl (2*R**,3*aR**,6*aR**)-6a-(2-hydroxyethyl)-2-(hydroxymethyl)-hexahydro-2H-furo[2,3c]pyrrole-5-carboxylate 7

NalO₄ (4.30 g, 20.1 mmol, 2.60 eq.) was added to a stirred solution of diol **S13** (2.45 g, 7.67 mmol, 1.0 eq.) in 2:1 MeOH–H₂O (60 mL) at 0 °C. The reaction mixture was warmed to rt, stirred for 2 h, then concentrated *in vacuo*. The residue was diluted in CH₂Cl₂ (50 mL) and washed with H₂O (50 mL). The aqueous phase was extracted with EtOAc (2 × 50 mL). The combined organic extracts were dried over

MgSO₄, filtered and concentrated *in vacuo* to give crude aldehyde **S14** {characteristic ¹H NMR peaks (300 MHz, CDCl₃): δ 9.82 (1H, t, J1.9, CH₂CHO), 9.64 (1H, d, J1.4, CHCHO), 7.42-7.28 (5H, m, Cbz Ar-H), 5.13 (2H, s, OCH₂Ph)}. NaBH₄ (720 mg, 18.6 mmol, 2.40 eg.) was added to a stirred solution of the crude aldehyde S14 in MeOH (50 mL) at 0 °C. The reaction mixture was warmed to rt, stirred 1 h, then concentrated in vacuo. The residue was diluted in CH₂Cl₂ (50 mL) and washed with brine (50 mL). The aqueous phase was extracted with EtOAc (3 x 50 mL). The combined organic phase was dried over MgSO₄, filtered and concentrated *in vacuo*. Flash chromatography eluting with 9:1 EtOAc-MeOH gave the title compound 7 (1.10 g, 3.40 mmol, 44%, 2 steps) as a colourless oil. Rf 0.43 (9:1 EtOAc-MeOH). ¹H NMR (500 MHz, CDCl₃, 2 × OH not observed): δ 7.40-7.28 (5H, m, Cbz Ar-H), 5.13 (2H, s, OCH₂Ph), 4.33-4.26 (1H, m, 2-H), 3.93-3.79 (4H, m, 6-H_A, CHC*H*_AH_BOH and CH₂C*H*₂OH), 3.74 (1H, dd, *J*11.4, 9.1, 4-H_B), 3.50 (1H, dd, *J*12.5, 3.0, CHCH_A*H*_BOH), 3.47-3.28 (2H, m, 4-H_A and 6-H_B), 2.71-2.64 (1H, m, 3a-H), 2.21 (1H, ddd, *J* 12.8, 9.7, 7.3, 3-H_A), 2.03-1.95 (1H, m, CH_AH_BCH₂OH), 1.89-1.76 (2H, m, 3-H_B and CH_AH_BCH₂OH). ¹³C NMR (125 MHz, CDCl₃, one C_q not observed): δ 154.9 (N(CO)O), 137.1 (Ar-C_q), 128.7 (Ar-C), 128.2 (Ar-C), 128.1 (Ar-C), 80.1 (2-C), 67.2 (OCH₂Ph), 64.1 (CHCH₂OH), 60.2 (CH₂CH₂OH), 57.1 (6-C), 51.6 (4-C), 47.3 (3a-C), 39.8 (3-C), 33.0 (CH₂CH₂OH). **IR** v_{max}(film)/cm⁻¹ 3401 (OH), 2938, 2880, 1684 (CO), 1422, 1351,1217, 1100. HRMS (ESI): C17H24NO5 [M+H]+; calculated 322.1649, found 322.1649.

5.4.2.1.2 Preparation of imidazole scaffolds 5 and S16

Benzyl (*1R**,*8R**)-5-phenyl-14-oxa-4,6,12-triazatetracyclo[6.5.1.0^{1,10}.0^{3,7}]tetradeca-3(7),4-diene-12-carboxylate 5

PhCHO (18 μL, 0.17 mmol, 1.0 eq.) and NH₄OAc (135 mg, 1.70 mmol, 10.0 eq.) were added to a suspension of cycloadduct **2a** (75 mg, 0.17 mmol, 1.0 eq.) in AcOH (3.0 mL). The resulting mixture was heated under microwave irradiation at 180 °C for 5 min. The reaction mixture was concentrated *in vacuo*, then partitioned between CH₂Cl₂ (25 mL) and NaHCO₃ (25 mL). The

phases were separated and the aqueous phase was extracted with CH₂Cl₂ (2 × 10 mL). The combined organic extracts were dried, filtered and concentrated *in vacuo*. Flash chromatography eluting with 0-100% EtOAc in pentane gave the *title compound* **5** (64 mg, 0.16 mmol, 91%) as a pale brown oil. **R**_f 0.12 (1:1 petrol–EtOAc). ¹**H NMR** (500 MHz, CDCl₃, imidazole NH not observed): δ 7.76 (2H, d, *J* 7.3, Ar-H), 7.43-7.28 (8H, m, Ar-H), 5.28 (1H, d, *J* 5.7, 8-H), 5.25-5.17 (2H, m, OC*H*₂Ph), 4.07 (1H, d, *J* 12.6, 13-H_A), 3.85-3.73 (1H, m, 11-H_A), 3.55-3.36 (2H, m, 11-H_B and 13-H_B), 3.28-3.16 (1H, m, 2-H_A), 2.73-2.64 (1H, m, 10-H), 2.61 (1H, d, *J* 15.4, 2-H_B), 2.58-2.47 (1H, m, 9-H_A), 2.16-2.05 (1H, m, 9-H_B). ¹³**C NMR** (125 MHz, CDCl₃, mixture of two rotamers, 2 × imidazole C_q not observed): δ 154.9 (N(CO)O), 145.6 (5-C), 136.7 (Ar-C_q), 130.4 (Ar-C_q), 129.1 (Ar-C), 128.6 (Ar-C), 128.2 (Ar-C), 128.0 (2 peaks, Ar-C), 125.1 (Ar-C), 91.1 (1-C), 90.1 (1-C), 77.4 (8-C), 67.2 (OCH₂Ph), 55.4 (13-C), 55.0 (13-C), 53.6 (11-C), 53.5 (11-C), 47.1 (10-C), 46.1 (10-C), 45.8 (9-C), 45.6 (9-C), 32.8 (2-C) [23 of 40 expected peaks observed]. **IR** v_{max}(film)/cm⁻¹ 3274, 2241, 1682 (CO), 1448, 1418, 1348, 1116, 909. **HRMS** (ESI): C₂₄H₂₄N₃O₃ [M+H]⁺; calculated 402.1812, found 402.1825.

Benzyl (*1R**,8*R**,10*R**)-14-oxa-4,6,12-triazatetracyclo[6.5.1.0^{1,10}.0^{3,7}]tetradeca-3(7),4-diene-12carboxylate S16

In two equally sized batches, p-formaldehyde $(2 \times 245 \text{ mg}, 2 \times 8.20 \text{ mmol}, 2.00 \text{ eq}. [8.20 \text{ mmol} in each batch, 16.4 \text{ mmol} overall]) and NH₄OAc <math>(2 \times 3.10 \text{ g}, 2 \times 41.0 \text{ mmol}, 2 \times 10.0 \text{ eq}. [41.0 \text{ mmol} in each batch, 82.0 \text{ mmol} overall]) were added to a suspension of cycloadduct$ **2a** $<math>(2 \times 1.75 \text{ g}, 2 \times 4.10 \text{ mmol}, 2 \times 1.00 \text{ eq}. [4.10 \text{ mmol} in mediate content in the state content in the state content is a suspension of the state content in the state content in the state content is a suspension of the state content in the state content is a suspension of the state content in the state content is a suspension of the state content in the state content is a suspension of the state content in the state content is a suspension of the state content in the state content is a suspension of the state content in the state content is a suspension of the state content in the state content is a suspension of the state content in the state content is a suspension of the state content in the state content is a suspension of the state content in the state content is a suspension of the state content in the state content is a state content in the state content in the state content is a state content in the state content in$

each batch, 8.20 mmol overall]) in AcOH (2 × 5 mL [5 mL in each batch, 10 mL overall]). Each reaction mixture was stirred at rt for 10 mins, then heated at heated at 180 °C under microwave irradiation for 5 min. The two batches were combined and concentrated in vacuo. The residue was diluted in EtOAc (50 mL) and washed with sat. aq. NaHCO₃ (50 mL). The ageuous layer was extracted with EtOAc (4 × 20 mL). The combined organic layers were washed with H₂O (2 × 25 mL) and brine (25 mL), then dried over MgSO₄, filtered and concentrated in vacuo. Purification by SCX SPE following general procedure A, eluting with MeOH, then sat. NH₃/MeOH, followed by flash chromatography eluting with 90:9:1 CH₂Cl₂-EtOH-NH₃/MeOH gave the title compound S16 (2.24 g, 6.9 mmol, 84%) as a pale brown foam. Rf 0.64 (50:8:1 CH₂Cl₂-EtOH-NH₃/MeOH). ¹H NMR (400 MHz, CDCl₃, imidazole NH not observed): δ 7.43 (1H, s, 5-H), 7.40-7.28 (5H, m, Cbz Ar-H), 5.25 (1H, d, J 5.9, 8-H), 5.16 (1H, d, J 13.0, OCH_AH_BPh), 5.11 (1H, d, J 13.0, OCH_AH_BPh), 4.06 (1H, d, J12.7, 13-H_A), 3.82-3.71 (1H, m, 11-H_A), 3.54-3.34 (2H, m, 11-H_B and 13-H_B), 3.26-3.10 (1H, m, 2-H_A), 2.70-2.61 (1H, m, 10-H), 2.58 (1H, d, J 15.4, 2-H_B), 2.53-2.42 (1H, m, 9-H_A), 2.15-2.03 (1H, m, 9-H_B). ¹³C NMR (100 MHz, CDCl₃, mixture of two rotamers, 2 × imidazole C_g not observed): δ 154.9 (N(CO)O), 136.8 (Cbz Ar-C_q), 136.7 (Cbz Ar-C_q), 133.6 (2 peaks, Ar-C), 128.6 (Ar-C), 128.2 (Ar-C), 128.0 (Ar-C), 91.1 (1-C), 90.2 (1-C), 76.4 (8-C), 67.2 (OCH₂Ph), 55.4 (13-C), 55.0 (13-C), 53.6 (11-C), 47.1 (10-C), 46.1 (10-C), 45.8 (9-C), 45.7 (9-C), 32.7 (2-C) [20 of 32 expected peaks observed]. **IR** v_{max}(film)/cm⁻¹ 2958, 1694 (CO), 1423, 1352, 1239, 1218, 1115, 732. HRMS (ESI): C₁₈H₂₀N₃O₃ [M+H]⁺; calculated 326.1499, found 326.1500.

5.4.2.1.3 Preparation of silyl-protected amino alcohol scaffold 6

Benzyl (*1R**,*5R**,*7R**,*8S**)-8-[(*tert*-butyldimethylsilyl)oxy]-8-methyl-9-oxo-11-oxa-3azatricyclo[5.3.1.0^{1,5}]undecane-3-carboxylate S17

MeLi (1.6 M in Et₂O, 0.37 mL, 0.60 mmol, 1.30 eq.) was added to a stirred solution of cycloadduct **2a** (200 mg, 0.46 mmol, 1.00 eq.) in THF (15 mL) at -78 °C. The reaction mixture was stirred at this temperature for 0.5 h, then sat. aq. brine (1 mL) was added. The reaction mixture was warmed to rt, then partitioned between

EtOAc (25 mL) and brine (25 mL). The aqueous phase was extracted with EtOAc (2 × 10 mL). The combined organic extracts were dried, filtered and concentrated in vacuo. Flash chromatography eluting with 95:5 pentane-EtOAc gave the title compound S17 (187 mg, 0.420 mmol, 91%) as a yellow oil. Rf 0.30 (3:1 petrol-EtOAc). ¹H NMR (500 MHz, CDCl₃, 50:50 mixture of rotamers): δ 7.39-7.28 (5H, m, Cbz Ar-H), 5.12 (2H, s, OCH₂Ph), 4.21-4.15 (1H, m, 7-H), 3.95-3.83 (2H, m, 2-H_B and 4-H_A), 3.43 (0.5H, d, J 12.6, 2-H_A), 3.38 (0.5H, d, J 12.6, 2-H_A), 3.20-3.09 (1H, m, 4-H_B), 2.92 (0.5H, d, J 15.3, 10-H_B), 2.86 (0.5H, d, J 15.3, 10-H_B), 2.55-2.46 (1H, m, 5-H), 2.37 (0.5H, d, J 3.3, 10-H_A), 2.34 (0.5H, d, J 3.3, 10-H_A), 2.27-2.14 (1H, m, 6-H_A), 1.91-1.76 (1H, m, 6-H_B), 1.46 (1.5H, s, C_qCH₃), 1.45 (1.5H, s, C_qCH₃), 0.85 (9H, s, SiC(CH₃)₃), 0.17 (3H, s, SiCH₃), 0.13 (3H, s, SiCH₃). ¹³C NMR (125 MHz, CDCl₃, mixture of two rotamers): δ 208.0 (9-C), 207.9 (9-C), 154.4 (N(CO)O), 136.8 (Ar-C_a), 128.6 (Ar-C), 128.2 (Ar-C), 128.12 (Ar-C), 91.5 (1-C), 90.7 (1-C), 85.4 (7-C), 81.4 (8-C), 67.1 (OCH₂Ph), 54.2 (2-C or 4-C), 53.8 (2-C or 4-C), 53.7 (2-C or 4-C), 47.3 (10-C), 45.7 (5-C), 44.8 (5-C), 31.7 (6-C), 31.4 (6-C), 26.0 (SiC(CH₃)₃), 24.4 (C_qCH₃), 18.5 (SiCq), -2.3 (SiCH₃), -2.6 (SiCH₃) [25 of 38 expected peaks observed]. IR v_{max}(film)/cm⁻¹ 2954, 2953, 2930, 2887, 1702 (CO), 1629,1593, 1419 HRMS (ESI): C24H36NO5Si [M+H]+; calculated 446.2357, found 446.2360.

Benzyl (*1R**,*5R**,*7R**,*8R**,*9R**)-9-amino-8-[(*tert*-butyldimethylsilyl)oxy]-8-methyl-11-oxa-3-azatricyclo[5.3.1.0^{1,5}]undecane-3-carboxylate 6

Ti($O^{i}Pr$)₄ (4.30 mL, 14.4 mmol, 2.00 eq.) was added to a stirred solution of compound **S17** (3.21 g, 7.20 mmol, 1.00 eq.) in sat. NH₃/MeOH (100 mL). The reaction mixture was stirred for 15 h then NaBH₄ (409 mg, 10.8 mmol, 1.5 eq.) was added at 0 °C. The reaction mixture was warmed to rt, stirred for 2 h then

concentrated in vacuo. The residue was diluted in EtOAc (50 mL) and sat. aq. brine (50 mL) and stirred vigorously. The phases were separated and the aqueous phase was extracted with EtOAc (2 × 25 mL). The combined organic phase was dried over MgSO₄, filtered, and concentrated in vacuo. Flash chromatography eluting with EtOAc, then 9:1 EtOAc-MeOH, gave the title compound 6 (2.46 g, 5.51 mmol, 77%) as a colourless oil. ¹H NMR (500 MHz, CDCl₃, 50:50 mixture of rotamers, NH2 not observed): § 7.38-7.27 (5H, m, Cbz Ar-H), 5.10 (2H, s, OCH2Ph), 4.00 (1H, d, J 7.5, 7-H), 3.92-3.82 (1H, m, 4-H_A), 3.75-3.68 (1H, m, 2-H_B, includes at δ 3.72: 0.5H, d, J 12.5; and at δ 3.71: 0.5H, d, J 12.5), 3.38 (0.5H, d, J 12.5, 2-H_A), 3.33 (0.5H, d, J 12.5, 2-H_A), 3.23-3.12 (2H, m, 4-H_B and 9-H), 3.11-3.03 (1H, m, 5-H), 2.96-2.87 (1H, m, 6-H_A), 2.16 (0.5H, dd, J 14.2, 5.4, 10-H_B), 2.11 (0.5H, dd, J 14.2, 5.4, 10-H_B), 1.72-1.60 (1H, m, 6-H_B), 1.57-1.50 (1H, m, 10-H_A, includes at δ 1.54: 0.5H, d, J 14.2; and at δ 1.53: 0.5H, d, J 14.2), 1.37 (1.5H, s, C_qCH₃), 1.36 (1.5H, s, C_qCH₃), 0.91 (9H, s, SiC(CH₃)₃), 0.13 (3H, s, SiCH₃), 0.12-0.10 (3H, m, SiCH₃). ¹³C NMR (125 MHz, DMSO-d₆, mixture of two rotamers): δ 153.6 (N(CO)O), 153.4 (N(CO)O), 137.1 (Ar-C_a), 128.4 (Ar-C), 127.7 (Ar-C), 127.5 (Ar-C), 89.3 (1-C), 88.4 (1-C), 83.2 (7-C), 73.1 (8-C), 65.7 (OCH₂Ph), 54.7 (2-C or 4-C), 54.6 (2-C or 4-C), 54.1 (2-C or 4-C), 54.0 (2-C or 4-C), 53.8 (9-C), 44.4 (5-C), 43.4 (5-C), 36.7 (10-C), 36.6 (10-C), 32.9 (6-C), 32.8 (6-C), 27.5 (C_qCH₃), 25.8 (SiC(CH₃)₃), 18.0 (SiC_q), -2.0 (SiCH₃), -2.2 (SiCH₃) [27 of 38 expected peaks observed]. IR vmax(film)/cm⁻¹ 2952, 2931, 1704 1346. 2882, 2856, (CO), 1419. 1362, HRMS (ESI): C₂₄H₃₉N₂O₄Si [M+H]⁺; calculated 447.2674, found 447.2679.

6 NOESY correlations:

Me: 7-H; 9-H **7-H:** Me; 6-H_B **9-H:** Me; 10-H_B

5.4.2.1.4 Preparation of oxazolidinone scaffold 8

Benzyl (*1R**,*5R**,*7R**,*8R**,*9R**)-8-[(*tert*-butyldimethylsilyl)oxy]-9-[(methoxycarbonyl)amino]-8methyl-11-oxa-3-azatricyclo[5.3.1.0^{1,5}]undecane-3-carboxylate S18

Methyl chloroformate (2.1 mL, 28 mmol, 5.0 eq.) was added to a stirred solution of compound **6** (2.5 g, 5.5 mmol, 1.0 eq.) and Et₃N (3.8 mL, 28 mmol, 5.0 eq.) in CH₂Cl₂ (50 mL) at 0 °C. The reaction mixture was warmed to rt and stirred for 1 h. The reaction mixture was washed with sat. NH₄Cl solution (25 mL). The aqueous layer was extracted with CH₂Cl₂ (2 × 20 mL). The combined organic phases were washed with brine (25 mL), then

dried over MgSO₄, filtered, and concentrated *in vacuo*. Flash chromatography eluting with 0-20% EtOAc in pentane gave the *title compound* **S18** (1.74 g, 3.44 mmol, 63%) as a colourless oil. **R**_f 0.19 (4:1 pentane–EtOAc). ¹**H NMR** (400 MHz, CDCl₃, 50:50 mixture of rotamers): δ 7.38-7.28 (5H, m, Cbz Ar-H), 5.50 (1H, s, NH), 5.10 (2H, s, OCH₂Ph), 4.00 (1H, d, *J* 7.3, 7-H), 3.93-3.79 (1H, m, 4-H_A), 3.77-3.60 (4H, m, includes: 1H, 2-H_A; and at δ 3.66: 3H, s, NHCO₂CH₃), 3.57-3.50 (1H, m, 9-H), 3.37 (0.5H, d, *J* 12.6, 2-H_B), 3.33 (0.5H, d, *J* 12.6, 2-H_B), 3.23-3.10 (1H, m, 4-H_B), 2.94-2.81 (1H, m, 5-H), 2.50-2.37 (1H, m, 6-H_A), 2.27-2.16 (1H, m, 10-H_A), 2.16-2.01 (1H, m, 10-H_B), 1.84-1.69 (1H, m, 6-H_B), 1.47 (3H, s, CqCH₃), 0.91 (9H, s, SiC(CH₃)₃), 0.13 (3H, s, SiCH₃), 0.11 (3H, s, SiCH₃). ¹³**C NMR** (100 MHz, CDCl₃, mixture of two rotamers): δ 157.5 (NH(CO)O), 154.4 (N(CO)O), 137.0 (Ar-Cq), 128.6 (Ar-C), 128.1 (Ar-C), 128.0 (Ar-C), 90.0 (1-C), 89.1 (1-C), 84.2 (7-C), 71.8 (8-C), 66.9 (OCH₂Ph), 55.1 (2-C or 4-C), 55.0 (2-C or 4-C), 54.7 (2-C or 4-C), 54.6 (2-C or 4-C), 54.3 (9-C), 52.2 (NHCO₂CH₃), 43.9 (5-C), 43.0 (5-C), 34.4 (10-C), 33.1 (6-C), 32.9 (6-C), 27.5 (CqCH₃), 26.0 (SiC(CH₃)₃), 18.4 (SiCq), -1.7 (SiCH₃), -2.2 (SiCH₃) [27 of 42 expected peaks observed]. **IR** v_{max}(film)/cm⁻¹ 2953, 2884, 2857, 1728, 1707, 1419, 1055, 834. **HRMS** (ESI): C₂₆H₄₁N₂O₆Si [M+H]⁺; calculated 505.2728, found 505.2735.

Benzyl ($1R^*$, $3R^*$, $7R^*$, $8R^*$, $10R^*$)-7-methyl-5-oxo-6,14-dioxa-4,12diazatetracyclo[6.5.1.0^{1,10}.0^{3,7}]tetradecane-12-carboxylate 8

TBAF (1.0 M in THF, 6.7 mL, 6.7 mmol, 2.0 eq.) was added to a stirred solution of compound **S18** (1.70 g, 3.37 mmol, 1.00 eq) in THF (50 mL). The reaction mixture was stirred for 0.5 h then concentrated *in vacuo*. The residue was subjected to by SCX SPE following general procedure **A**, eluting with MeOH. The resulting

residue was dissolved in DMF (50 mL), and NaH (60% dispersion in oil, 408 mg, 10.2 mmol, 3.0 eq.) was added at 0 °C. The reaction mixture was warmed to rt and stirred for 15 h. The reaction mixture was quenched by the addition of sat. aq. NH₄Cl solution (5 mL). The reaction mixture was diluted in EtOAc (50 mL) and washed with H₂O (50 mL). The aqueous layer was extracted with EtOAc (2 × 25 mL). The combined organic layers were dried over dried over MgSO₄, filtered, and concentrated in vacuo. Flash chromatography eluting with 98:2:0.1 CH₂Cl₂-EtOH-NH₃/MeOH gave the title compound 8 (356 mg, 0.99 mmol, 29%) as a colourless oil. Rf 0.30 (98:2:0.1 CH₂Cl₂-EtOH-NH₃/MeOH). ¹H NMR (500 MHz, CDCl₃, 50:50 mixture of rotamers): δ 7.37-7.28 (5H, m, Cbz Ar-H), 6.01 (0.5H, s, NH), 5.91 (0.5H, s, NH), 5.11 (1H, 2 peaks, 2 x s, OCH₂Ph), 4.29 (1H, d, J7.7, 8-H), 3.93-3.85 (1H, m, 11-H_A), 3.85-3.77 (2H, m, 3-H and 13-H_A), 3.39 (0.5H, d, J 12.6, 13-H_B), 3.33 (0.5H, d, J 12.6, 13-H_B), 3.30-3.17 (1H, m, 11-H_B), 2.88-2.78 (1H, m, 10-H), 2.45-2.34 (1H, m, 9-H_A), 2.17 (0.5H, app. dd, J15.0, 5.7, 2-H_A), 2.11 (0.5H, app. dd, J15.0, 5.7, 2-H_A), 1.94-1.80 (2H, m, includes: 1H, 9-H_B; and at δ 1.85: 1H, d, J 15.0, 2-H_B), 1.58 (3H, s, C_qCH₃). ¹³C NMR (125 MHz, CDCl₃, mixture of two rotamers): δ 159.4 (5-C), 154.5 (N(CO)O), 136.8 (Ar-C_q), 128.6 (Ar-C), 128.2 (Ar-C), 128.1 (Ar-C), 89.4 (1-C), 88.6 (1-C), 82.7 (8-C), 78.9 (7-C), 67.1 (OCH₂Ph), 55.4 (3-C), 55.2 (11-C or 13-C), 55.1 (11-C or 13-C), 54.8 (11-C or 13-C), 54.7 (11-C or 13-C), 45.1 (10-C), 44.1 (10-C), 34.0 (2-C), 33.4 (9-C), 33.1 (9-C), 24.7 (C_qCH₃) [22 of 34 expected peaks observed]. IR v_{max}(film)/cm⁻¹ 3282, 2939, 2884, 1759, 1701, 1421, 1109. HRMS (ESI): C₁₉H₂₃N₂O₅ [M+H]⁺; calculated 359.1601, found 359.1603.

5.4.2.1.5 Preparation of pyrazine scaffold 9

Benzyl (*1R**,*9R**,*11R**)-15-oxa-4,7,13-triazatetracyclo[7.5.1.0^{1,11}.0^{3,8}]pentadeca-3(8),4,6-triene-13-carboxylate 9

In two equally sized batches, ethylene diamine $(2 \times 0.55 \text{ mL}, 2 \times 8.20 \text{ mmol}, 2 \times 2.00 \text{ eq.} [8.20 \text{ mmol} in each batch, 16.4 \text{ mmol} overall]) was added to a suspension of cycloadduct$ **2a** $<math>(2 \times 1.75 \text{ g}, 2 \times 4.10 \text{ mmol}, 2 \times 1.0 \text{ eq.} [4.10 \text{ mmol} in each batch, 8.20 \text{ mmol} overall]) in AcOH <math>(2 \times 5 \text{ mL} [5 \text{ mL} in each batch, 10 \text{ mL} overall])$. Each

reaction mixture was stirred at rt for 10 mins, then heated at 180 °C under microwave irradiation for 15 min. The two batches were combined and concentrated in vacuo. The residue was diluted in EtOAc (50 mL) and washed with sat. aq. NaHCO₃ (50 mL). The ageuous layer was extracted with EtOAc (4 \times 20 mL). The combined organic layers were washed with H₂O (2 \times 25 mL) and brine (25 mL), then dried over MgSO₄, filtered and concentrated in vacuo. Flash chromatography eluting with 98:2:0.1 CH₂Cl₂-EtOH-NH₃/MeOH gave the title compound 9 (1.1 g, 3.3 mmol, 40%) as a colourless amorphous solid. Rf 0.17 (98:2:0.1 CH₂Cl₂-EtOH-NH₃/MeOH). ¹H NMR (400 MHz, CDCl₃): δ 8.41 (1H, d, J 2.6, 5-H or 6-H), 8.30 (1H, d, J 2.6, 5-H or 6-H), 7.41-7.28 (5H, m, Cbz Ar-H), 5.30 (1H, d, J 6.8, 9-H), 5.21-5.08 (2H, m, OCH₂Ph), 4.09 (1H, d, J 12.7, 14-H_A), 3.90 (1H, dd, J 11.4, 9.3, 12-H_B), 3.62-3.34 (3H, m, 2-H_A, 12-H_A and 14-H_B), 2.93 (1H, d, J 17.6, 2-H_B), 2.78-2.64 (1H, m, 11-H), 2.48-2.34 (1H, m, 10-H_A), 2.34-2.19 (1H, m, 10-H_B). ¹³C NMR (100 MHz, CDCl₃, mixture of two rotamers): δ 155.4 (8-C), 154.6 (N(CO)O), 149.3 (3-C), 143.6 (5-C or 6-C), 141.7 (5-C or 6-C), 136.8 (Ar-C_q), 128.6 (Ar-C), 128.2 (Ar-C), 128.1 (Ar-C), 91.2 (1-C), 90.3 (1-C), 80.6 (9-C), 67.2 (OCH₂Ph), 66.9 (OCH₂Ph), 55.1 (14-C), 54.7 (14-C), 54.4 (12-C), 54.1 (12-C), 46.7 (11-C), 45.7 (11-C), 43.4 (10-C), 43.2 (10-C), 39.5 (2-C) [23 of 34 expected peaks observed]. IR vmax(film)/cm⁻¹ 2953, 2880, 1703 (CO), 1420, 1349, 1190, 699. HRMS (ESI): C19H20N3O3 [M+H]+; calculated 338.1499, found 338.1503.

81

5.4.2.1.6 Preparation of piperazine scaffolds S19-S20

4,7,13-Tri-*tert*-butyl (*1R**,*3S**,*8S**,*9R**,*11R**)-15-oxa-4,7,13triazatetracyclo[7.5.1.0^{1,11}.0^{3,8}]pentadecane-4,7,13-tricarboxylate S19 and 4,7,13-tri-*tert*-butyl (*1R**,*3R**,*8R**,*9R**,*11R**)-15-oxa-4,7,13-triazatetracyclo[7.5.1.0^{1,11}.0^{3,8}]pentadecane-4,7,13tricarboxylate S20

Hydrogenation was carried out following general procedure **B**, using pyrazine **9** (1.1 g, 3.3 mmol, 1.0 eq.), $Pd(OH)_2/C$ (2 × 200 mg,^{*} 20% w/w) and conc. HCI (12 M, 0.4 mL) in MeOH (20 mL) over 4 days. The residue was purified by SCX SPE following general procedure **A**, eluting first with MeOH, then sat. NH₃/MeOH to give a brown oil. The residue (404 mg, [estimate 1.90 mmol of the triamine, 1.00 eq.]) was dissolved in 9:1 MeOH–H₂O (25 mL) and Boc₂O (1.90 g, 8.70 mmol, 4.50 eq.) was added. The reaction mixture was stirred for 2 days, then concentrated *in vacuo*. Flash chromatography eluting with 4:6 pentane–EtOAc gave the *title compounds* **S19** (134 mg, 0.26 mmol, 8%, 2 steps) and **S20** (234 mg, 0.46 mmol, 14%) as colourless amorphous solids.

4,7,13-Tri-*tert*-butyl(1R*,3S*,8S*,9R*,11R*)-15-oxa-4,7,13

triazatetracyclo[7.5.1.0^{1,11}.0^{3,8}]pentadecane-4,7,13-tricarboxylate
S19: R_f 0.55 (4:6 pentane-EtOAc). ¹H NMR (500 MHz, MeOD-d₄,
333 K): δ 4.77 (1H, d, J 8.1, 9-H), 4.65-4.48 (1H, m, 3-H), 4.20-4.07 (1H, m, 5-H_A), 3.82 (1H, dd,
J 10.9, 9.9, 12-H_A), 3.70 (1H, app. d, J 7.1, 8-H), 3.65 (1H, d, J 12.6, 14-H_A), 3.55 3.40 (2H, m, 5-H_B and 6-H_A), 3.34-3.29 (2H, 6-H_B and 14-H_B), 3.03 (1H, dd, J 10.9, 7.9, 12-H_B),
2.80-2.57 (1H, m, 11-H), 2.11-1.89 (4H, m, 2-H and 10-H), 1.48 (9H, s, NCO₂C(CH₃)₃), 1.47 (9H, s,

^{*} The reaction mixture was filtered and exposed to fresh catalyst after 3 days.

NCO₂C(CH₃)₃), 1.45 (9H, s, NCO₂C(CH₃)₃). ¹³C NMR (100 MHz, MeOD-d₄, 298 K, mixture of 2 rotamers): δ 156.9 (N(CO)O), 156.4 (N(CO)O), 155.9 (N(CO)O), 91.0 (1-C), 90.1 (1-C), 81.9 (NCO₂C_q(CH₃)₃), 81.8 (NCO₂C_q(CH₃)₃), 81.6 (9-C), 81.1 (NCO₂C_q(CH₃)₃), 56.3 (8-C), 56.2 (14-C), 56.1 (14-C), 55.7 (12-C), 55.3 (12-C), 45.0 (11-C), 44.1 (11-C), 43.8 (6-C), 43.7 (3-C), 43.3 (6-C), 39.2 (5-C), 37.4 (10-C), 36.9 (10-C), 34.6 (2-C), 34.5 (2-C), 28.7 (NCO₂C(CH₃)₃), 28.6 (2 peaks, 2 × NCO₂C(CH₃)₃) [27 of 40 expected peaks observed]. IR v_{max}(film)/cm⁻¹ 2974, 2932, 1683 (CO), 1392, 1364, 1157, 1112, 729. HRMS (ESI): C₂₆H₄₄N₃O₇ [M+H]⁺; calculated 510.3174, found 510.3190.

4,7,13-Tri-tert-butyl(1R*,3R*,8R*,9R*,11R*)-15-oxa-4,7,13-

triazatetracyclo[7.5.1.0^{1,11}.0^{3,8}]pentadecane-4,7,13-tricarboxylate S20: R_f 0.46 (4:6 pentane-EtOAc). ¹H NMR (500 MHz, CHCl₃, 330 K): δ 4.84 (1H, app. t, *J* 7.6, 9-H), 4.44 (1H, dd, *J* 17.3, 8.1, 3-H), 4.36 (1H, app. t, *J* 7.8, 8-H), 4.01 (1H, d, *J* 13.3, 6-H_A), 3.83 (1H, d, *J* 12.2, 14-H_A), 3.77 (1H, app. t, *J* 9.8, 12-H_A), 3.56 (1H, ddd, *J* 12.6, 10.8, 5.4, 5-H_A), 3.37 (1H, dt, *J* 12.6, 4.0, 5-H_B), 3.29-3.21 (2H, m, 6-H_B and 14-H_B), 3.15-3.06 (1H, m, 12-H_B), 2.50 (1H, dd, *J* 14.1, 9.3, 2-H_B), 1.78-1.70 (1H, m, 10-H_B), 1.48 (9H, s, NCO₂C(CH₃)₃), 1.48 (9H, s, NCO₂C(CH₃)₃), 1.45 (9H, s, NCO₂C(CH₃)₃), 1.45 (9H, s, NCO₂C(CH₃)₃). 1³C NMR (100 MHz, CHCl₃, 298 K, mixture of 2 rotamers): δ 155.1 (N(CO)O), 154.8 (N(CO)O), 154.1 (N(CO)O), 88.6 (1-C), 87.8 (1-C), 80.7 (NCO₂C_q(CH₃)₃), 78.5 (NCO₂C_q(CH₃)₃), 55.6 (12-C), 55.3 (12-C), 54.4 (14-C), 54.0 (14-C), 52.8 (8-C), 48.4 (11-C), 47.4 (11-C), 44.0 (3-C), 42.4 (5-C and 6-C), 35.7 (2-C), 31.0 (10-C), 30.6 (10-C), 28.5 (NCO₂C_q(CH₃)₃), 28.5 (NCO₂C_q(CH₃)₃), 28.4 (NCO₂C(CH₃)₃) [24 of 40 expected peaks observed]. IR v_{max}(film)/cm⁻¹ 2976, 2933, 2882, 1682, 1393, 1365, 1160, 1114, 909, 727. HRMS (ESI): C₂6H₄₄N₃O7 [M+H]⁺; calculated 510.3174, found 510.3183.

5.4.2.1.7 Preparation of quinoxaline scaffold S21

Benzyl (*1R**,*13R**,*15R**)-19-oxa-4,11,17-triazapentacyclo [11.5.1.0^{1,15}.0^{3,12}.0^{5,10}]nonadeca-3,5(10),6,8,11-pentaene-17-carboxylate S21

1,2-Diaminobenzene (270 mg, 2.50 mmol, 1.10 eq.) was added to a stirred suspension of cycloadduct **2a** (1.0 g, 2.3 mmol, 1.0 eq.) in AcOH (10 mL). The reaction mixture was heated under microwave irradiation at 180 °C for 10 min. The reaction mixture was concentrated *in vacuo* then partitioned between CH₂Cl₂ (25 mL) and sat. aq. NaHCO₃ (25 mL). The ageuous

phase was extracted with CH₂Cl₂ (2 × 10 mL). The combined organic phases were dried, filtered and concentrated *in vacuo*. Flash chromatography eluting with 0-100% EtOAc in pentane gave the *title compound* **S21** (789 mg, 2.04 mol, 89%) as a colourless oil. **R**_f 0.51 (1:2 petrol–EtOAc). ¹H **NMR** (500 MHz, CDCl₃): δ 8.02-7.97 (2H, m, 6-H and 9-H), 7.75-7.69 (2H, m, 7-H and 8-H), 7.42-7.30 (5H, m, Cbz Ar-H), 5.50 (1H, d, *J* 6.8, 13-H), 5.17 (1H, s, OC*H*₂Ph), 5.16 (1H, s, OC*H*₂Ph), 4.14 (1H, d, *J* 12.7, 18-Ha), 3.93 (1H, dd, *J* 11.3, 9.4, 16-Ha), 3.71-3.53 (2H, m, 2-Ha and 18-H_B), 3.53-3.37 (1H, m, 16-H_B), 3.15 (1H, d, *J* 17.8, 2-H_B), 2.83-2.70 (1H, m, 15-H), 2.49-2.30 (2H, m, 14-H). ¹³C **NMR** (125 MHz, CDCl₃, mixture of two rotamers): δ 154.9 (2 peaks, Ar-Cq), 154.7 (N(CO)O), 150.0 (Ar-Cq), 142.3 (Ar-Cq), 140.7 (Ar-Cq), 136.8 (Cbz Ar-Cq), 129.9 (2 peaks, 2 × Ar-C), 129.0 (Ar-C), 128.7 (2 peaks, 2 × Ar-C), 128.2 (2 peaks, 2 × Ar-C), 91.4 (1-C), 90.5 (1-C), 81.3 (13-C), 67.2 (OCH₂Ph), 55.3 (16-C or 18-C), 54.9 (16-C or 18-C), 54.5 (16-C or 18-C), 54.2 (16-C or 18-C), 45.6 (15-C), 42.8 (2-C), 42.4 (2-C), 40.4 (14-C) [27 of 42 expected peaks observed]. **IR** v_{max} (film)/cm⁻¹ 2952, 2884, 1702 (CO), 1421, 1358, 1274, 1112, 769. **HRMS** (ESI): C₂₃H₂₂N₃O₃ [M+H]⁺; calculated 388.1656, found 388.1660.

5.4.2.2 Scaffolds derived from cycloadduct 2b

Benzyl (1*R**,3*R**,7*R**,8*R**)-5,5-dimethyl-4,6,14-trioxa-12-azatetracyclo[6.5.1.0^{1,10}.0^{3,7}]tetradec-9-ene-12-carboxylate S22

NaBH₄ (0.196 g, 5.20 mmol, 2.0 eq) was added slowly over 10 min to a solution of cycloadduct **2b** (1.11 g, 2.60 mmol, 1.0 eq) in MeOH (43 mL) at room temperature (n.b the substrate is not soluble in cold solvent). The reaction mixture was stirred for 2 h before being quenched by the addition of H₂O (1.0 mL) and concentrated *in vacuo*.

The resulting product was then suspended in 2,2-dimethoxy propane (43 mL) and to this was added p-toluenesulfonic acid (2.15 g, 5% w/v). The reaction mixture heated at 60 °C for 12 h before being diluted with EtOAc (50 mL) and washed with saturated aqueous NaHCO₃ (100 mL). The phases were separated and the aqueous phase extracted with EtOAc (50 mL). The combined organic phase was then washed with water (100 mL) and brine (100 mL), dried (MgSO₄), filtered and concentrated in vacuo. The crude product was purified by flash column chromatography (dry load), eluting with 65:35 petrol-EtOAc to furnish the title compound S22 (662 mg, 1.85 mmol, 71%) as a pale yellow amorphous solid. Rf 0.30 (7:3 petrol-EtOAc). ¹H NMR (500 MHz, CDCl₃): δ (500 MHz, DMSO-d₆, 343 K) 7.37-7.30 (5H, m, Cbz Ar-H), 5.94 (1H, app. s, 9-H), 5.10 (2H, s, OCH₂Ph), 4.90 (1H, dd, J 5.4, 1.5, 8-H), 4.52 (1H, app. t, J 6.8, 3-H), 4.18 (1H, dd, J 6.6, 5.7, 7-H), 4.09 (1H, d, J 14.4, 11-H_A), 3.90 (1H, d, J14.4, 11-H_B), 3.50 (1H, d, J10.9, 13-H_A), 3.29-3.24 (1H, m, 13-H_B), 2.16 (1H, dd, J15.0, 6.8, 2-H_B), 1.94 (1H, app. d, J15.0, 2-H_A), 1.32 (3H, s, acetonide CH₃), 1.23 (3H, s, acetonide CH₃). ¹³C NMR (125 MHz, DMSO-d₆, 343 K): δ 153.6 (N(CO)O), 136.5 (Ar-C_q), 127.9 (Ar-C), 127.3 (Ar-C), 126.9 (Ar-C), 122.1 (9-C), 107.7 (5-C), 85.7 (8-C), 71.6 (3-C), 68.1 (7-C), 65.7 (OCH₂Ph), 52.1 (13-C), 42.9 (11-C), 29.2 (2-C), 25.5 (C(CH₃)₂), 24.4 (C(CH₃)₂) - signals for 1-C and 10-C are not observed in DMSO-d₆ at 343 K due to rotameric effects; two signals were observed for each carbon on a spectrum recorded at 75 MHz in CDCl₃ at 300 K: 148.0 and 147.3 (10-C), 90.0 and 89.3 (1-C). IR vmax(neat)/cm⁻¹ 2936, 1710, 1409, 1353, 1214, 1136, 1122, 1069. HRMS (ESI): $C_{20}H_{23}NNaO_5$ [M+Na]⁺; calculated 380.1468, found 380.1469. X-Ray crystallography: CCDC 1526779 contains the supplementary crystallographic data for this compound. Crystals were grown by slow evaporation of EtOH.

S22 Crystal structure:

Benzyl (3a*R**,4*R**,4'S*,6S*,7a*R**)-4'-hydroxy-4-(hydroxymethyl)-2,2-dimethyl-tetrahydro-2H-spiro[[1,3]dioxolo[4,5-c]pyran-6,3'-pyrrolidine]-1'-carboxylate 3

 O_3 was bubbled through a solution of acetonide **S22** (200 mg, 0.56 mmol, 1.00 eq) in CH₂Cl₂ (6.0 mL) at -78 °C. After 15 min the solution turned blue in colour and O_3 was exchanged for N₂ for 20 min. Dimethyl sulfide (62.0 µL, 0.840 mmol, 1.5 eq) was then added at -78 °C. After 10 min the reaction mixture was warmed to rt and stirred for 2 h. After establishing no peroxides were present (starch iodine paper) the reaction mixture was concentrated *in vacuo*

to furnish a keto-aldehyde that was used immediately with no further purification. NaBH₄ (63.0 mg, 1.68 mmol, 3.0 eq) was added to a solution of the crude keto-aldehyde in MeOH (6.0 mL) at 0 °C. The reaction mixture was warmed to rt with stirring over 4 h before being guenched by the addition of H₂O (0.10 mL) and concentrating in vacuo. The resulting crude product was suspended in 9:1 EtOAc-MeOH with sonication and filtered through celite. The filtrate was concentrated in vacuo and purified by flash chromatography, eluting with EtOAc to furnish the *title compound* **3** (103 mg, 0.25 mmol, 44%, dr 92:8) as a colourless waxy solid. Rf 0.31 (EtOAc). ¹H NMR (500 MHz, MeOD-d₄, 333 K): δ 7.36-7.28 (5H, m, Cbz Ar-H), 5.11 (2H, s, OCH₂Ph), 4.49-4.45 (1H, m, 7a-H), 4.16 (1H, app. d, J 5.9, 3a-H), 4.02 (1H, app. t, J 5.9, 4'-H), 3.75-3.69 (3H, m, 4-H and CH₂OH), 3.65-3.59 (2H, m, 2'-H_A and 5'-H_A), 3.38-3.35 (2H, m, 2'-H_B and 5'-H_B), 1.94 (1H, dd, J 14.7, 6.2, 7-H_A), 1.86 (1H, dd, J14.7, 4.5, 7-H_B), 1.47 (3H, s, acetonide CH₃), 1.32 (3H, s, acetonide CH₃). ¹³C NMR (125 MHz, MeOD-d₄, 333 K, mixture of two rotamers): δ 156.9 (N(CO)O), 138.2 (Ar-C_q), 129.5 (Ar-C), 129.0 (Ar-C), 128.8 (Ar-C), 110.2 (2-C), 80.7 (2 peaks, 6/3'-C), 76.9 (4'-C), 76.3 (4'-C), 74.0 (4-C), 73.5 (3a-C), 72.2 (7a-C), 68.2 (OCH₂Ph), 62.9 (CH₂OH), 52.9 (5'-C), 51.8 (2'-C), 51.6 (2'-C), 32.4 (7-C), 27.3 (acetonide CH₃), 25.6 (acetonide CH₃) [21 of 36 expected peaks observed]. IR vmax(neat)/cm⁻¹ 3423, 2934, 1695, 1420, 1355, 1213, 1090. HRMS (ESI): C₂₀H₂₇NNaO₇ [M+Na]⁺; calculated 416.1679, found 416.1675.

> **3 NOESY correlations: 4'-H**: 7-H_A and 7-H_B **7-H_A**: 4'-H **7-H_B**: 4'-H

(3*R**,7*S**,8*R**)-5,5,12-Trimethyl-4,6-dioxa-12-azatricyclo[8.3.0.0^{3,7}]tridec-1(10)-en-8-ol 12 (≡ F12)

LiAlH₄ (1.0 M solution in THF, 5.60 mL, 5.60 mmol, 10.0 eq) was added drop-wise over 15 min to a solution of acetonide **S22** (200 mg, 0.56 mmol, 1.00 eq) in THF (4.0 mL) at rt. Upon completion of addition the reaction mixture was heated at reflux for 4 days before being cooled rt and guenched by the

sequential slow addition of H₂O (0.2 mL), 2 M aqueous NaOH (0.2 mL) and water (0.6 mL). The resulting suspension was stirred vigorously for 2 h before being diluted with MeOH (20 mL), filtered through celite and concentrated *in vacuo*. The crude product was purified by SCX SPE to furnish the *title compound* **12** (\equiv **F12**: 100 mg, 0.42 mmol, 75%) as an off-white waxy solid. **R**_f 0.34 (9:1 CH₂Cl₂–sat. NH₃/MeOH). ¹H **NMR** (500 MHz, CDCl₃): δ 4.29 (1H, ddd, *J* 11.3, 6.8, 4.3, 3-H), 4.12 (1H, ddd, *J* 11.1, 9.0, 3.5, 8-H), 4.07 (1H, dd, *J* 9.0, 6.8, 7-H), 3.47-3.35 (4H, m, 11-H and 13-H), 2.41 (3H, s, NCH₃), 2.39-2.31 (2H, m, 2-H_A and 9-H_B), 2.20 (1H, dd, *J* 11.1, 3.5, 9-H_A), 2.13 (1H, dd, *J* 15.4, 4.3, 2-H_B), 1.47 (3H, s, acetonide CH₃), 1.35 (3H, s, acetonide CH₃). ¹³C **NMR** (125 MHz, CDCl₃) 130.9 (1-C or 10-C), 128.4 (1-C or 10-C), 108.3 (5-C), 82.2 (8-C), 74.9 (3-C), 68.3 (7-C), 66.6 (11-C or 13-C), 66.4 (11-C or 13-C), 42.0 (NCH₃), 3.3.0 (9-C), 28.6 (2-C), 27.8 (C(CH₃)₂), 25.0 (C(CH₃)₂). **IR** v_{max}(neat)/cm⁻¹ 3340, 2922, 2772, 1450, 1375, 1240, 1211, 1167, 1142, 1114, 1069, 1031. **HRMS** (ESI) C₁₃H₂₂NO₃ [M+Na]⁺; calculated 240.1594, found 240.1595.

5.4.2.2.2 Preparation of quinoxaline scaffold 10

Benzyl (*1R**,*13R**)-19-oxa-4,11,17-triazapentacyclo[11.5.1.0^{1,15}.0^{3,12}.0^{5,10}]nonadeca-3,5(10),6,8,11,14-hexaene-17-carboxylate 10

1,2-Diaminobenzene (28 mg, 0.26 mmol, 1.1 eq.) was added to a stirred suspension of cycloadduct **2b** (100 mg, 0.23 mmol, 1.00 eq.) in AcOH (3 mL). The reaction mixture was heated in a sealed tube at 60 °C for 15 h.^{*} The reaction mixture was concentrated *in vacuo* then partitioned between CH_2Cl_2 (10 mL) and sat. aq. NaHCO₃ (10 mL). The aqeuous phase was extracted

with CH₂Cl₂ (2 × 10 mL). The combined organic phases were dried over MgSO₄, filtered and concentrated *in vacuo*. Flash chromatography eluting with 4:1 pentane–EtOAc gave the *title compound* **10** (19 mg, 49 μmol, 21%) as a colourless oil. **R**_f 0.07 (4:1 petrol–EtOAc). **1H NMR** (500 MHz, CDCl₃, 50:50 mixture of rotamers): δ 8.02-7.95 (2H, m, 6-H and 9-H), 7.76-7.65 (2H, m, 7-H and 8-H), 7.45-7.29 (5H, m, Cbz Ar-H), 6.37 (0.5H, app. s, 14-H), 6.33 (0.5H, app. s, 14-H), 5.82 (1H, app. s, 13-H), 5.25-5.14 (2H, m, OCH₂Ph), 4.25 (1H, app. dd, *J* 16.1, 11.5, 16-H_A), 4.12 (1H, app. dd, *J* 16.1, 8.6, 16-H_B), 3.97 (0.5H, d, *J* 11.2, 18-H_A), 3.90 (0.5H, d, *J* 11.2, 18-H_B), 3.71 (1H, d, *J* 11.2, 18-H_B), 3.59 (1H, app. t, *J* 18.1, 2-H_A), 3.19 (1H, d, *J* 18.1, 2-H_B). **1³C NMR** (125 MHz, CDCl₃, mixture of two rotamers): δ 155.0 (N(CO)O), 154.8 (N(CO)O), 152.9 (Ar-Cq), 151.4 (Ar-Cq), 129.8 (Ar-C), 129.6 (Ar-C), 128.9 (Ar-C), 128.7 (Ar-C), 128.6 (Ar-C), 128.4 (Ar-C), 128.2 (Ar-C), 128.2 (Ar-C), 126.5 (2 peaks, 14-C), 91.7 (1-C), 90.9 (1-C), 89.1 (13-C), 67.5 (OCH₂Ph), 53.5 (18-C), 43.6 (16-C), 43.4 (16-C), 37.6 (2-C), 37.5 (2-C) [28 of 42 expected peaks observed]. **IR** v_{max} (film)/cm⁻¹ 2928, 1704, 1415, 1358, 1343, 1126, 1100, 764. **HRMS** (ESI): C₂₃H₂₀N₃O₃ [M+H]⁺; calculated 386.1499, found 386.1499.

^{*} N.b. under µW irradiation this reaction mainly gave decomposition products at 180 °C (as judged by analysis of the crude reaction product by ¹H NMR spectroscopy at 300 MHz).

5.4.2.2.3 Preparation of imidazole scaffold 11

Benzyl (*1R**,*8R**)-14-oxa-4,6,12-triazatetracyclo[6.5.1.0^{1,10}.0^{3,7}]tetradeca-3(7),4,9-triene-12carboxylate 11

p-Formaldehyde (15 mg, 0.50 mmol, 2.0 eq.) and NH₄OAc (177 mg, 2.29 mmol, 10.0 eq.) were added to a suspension of cycloadduct **2b** (100 mg, 0.23 mmol, 1.0 eq.) in AcOH (3.0 mL). The reaction mixture was heated in a sealed tube at 60 °C for 3 days.^{*} The reaction mixture was concentrated *in vacuo*, then partitioned between EtOAc (10 mL)

and NaHCO₃ (10 mL). The phases were separated and the aqueous phase was extracted with EtOAc (2 × 10 mL). The combined organic extracts were dried over MgSO₄, filtered and concentrated *in vacuo*. Flash chromatography eluting with 90:9:1 CH₂Cl₂–EtOH–NH₃/MeOH gave the *title compound* **11** (28 mg, 87 µmol, 38%) as a colourless foam. **R**_f 0.15 (90:9:1 CH₂Cl₂–EtOH–NH₃/MeOH). ¹**H NMR** (500 MHz, CDCl₃, imidazole NH not observed): δ 7.43-7.29 (6H, m, 5-H and Cbz Ar-H), 6.45 (0.5H, app. s, 9-H), 6.43 (0.5H, app. s, 9-H), 5.65 (1H, app. s, 8-H), 5.21-5.11 (2H, m, OCH₂Ph), 4.16 (1H, app. dd, *J* 15.8, 6.1, 11-Ha), 4.08 (1H, app. ddd, *J* 15.8, 4.2, 2.2, 11-H_B), 3.87 (0.5H, d, *J* 11.2, 13-Ha), 3.79 (0.5H, d, *J* 11.2, 13-Ha), 3.62 (1H, app. dd, *J* 11.2, 3.1, 13-H_B), 3.19 (1H, app. t, *J* 16.2, 2-Ha), 2.75 (1H, d, *J* 16.2, 2-H_B). ¹³**C NMR** (125 MHz, CDCl₃, mixture of two rotamers, 2 × imidazole C_q not observed): δ 155.1 (N(CO)O), 154.9 (N(CO)O), 146.0 (10-C), 136.7 (Ar-C_q), 132.1 (Ar-C), 131.4 (Ar-C), 128.7 (Ar-C), 128.3 (Ar-C), 128.2 (Ar-C), 91.2 (1-C), 90.4 (1-C), 84.8 (9-C), 77.3 (8-C), 67.4 (OCH₂Ph), 53.9 (13-C), 43.5 (11-C), 43.4 (11-C), 30.2 (2-C), 30.1 (2-C) [19 of 32 expected peaks observed]. **IR** v_{max}(film)/cm⁻¹ 2957, 1701 (CO), 1417, 1358, 1216, 1115, 733. **HRMS** (ESI): C₁₈H₁₈N₃O₃ [M+H]⁺; calculated 324.1343, found 324.1342.

^{*} N.b. **under μW irradiation** this reaction mainly gave decomposition products at 180 °C (as judged by analysis of the crude reaction product by ¹H NMR spectroscopy at 300 MHz).

5.4.2.3 Scaffolds derived from cycloadduct 2c

5.4.2.3.1 Preparation of silyl-protected amino alcohol scaffold 13 and alcohol S24

Benzyl (*1R**,*5R**,*7R**,*10R**)-10-[(*tert*-butyldimethylsilyl)oxy]-10-methyl-9-oxo-11-oxa-3azatricyclo[5.3.1.0^{1,5}]undecane-3-carboxylate S23

MeLi (1.6 M in Et₂O, 5.9 mL, 9.5 mmol, 1.2 eq.) was added to a stirred solution of cycloadduct **2c** (3.4 g, 7.9 mmol, 1.0 eq.) in THF (125 mL) at -78 °C. The reaction mixture was stirred at this temperature for 1 h, then warmed to rt. H₂O (5 mL) was added then the reaction mixture was concentrated *in vacuo*. The residue was diluted in EtOAc (50 mL) and washed with brine (50 mL). The aqueous phase was extracted with EtOAc (2 × 25 mL). The combined organic extracts were dried, filtered

and concentrated *in vacuo*. Flash chromatography eluting with 4:1 pentane–EtOAc gave the *title compound* **S23** (1.86 g, 4.20 mmol, 53%) as a colourless oil. **R**_f 0.10 (4:1 petrol–EtOAc). ¹H **NMR** (500 MHz, CHCl₃, 50:50 mixture of rotamers): δ 7.39-7.27 (5H, m, Cbz Ar-H), 5.13 (2H, s, OCH₂Ph), 4.79-4.72 (1H, m, 7-H), 3.95-3.65 (3H, m, 2-H and 4-HA), 3.27-3.18 (1H, m, 5-H), 2.90-2.72 (2H, m, 4-H_B and 8-H_B), 2.29 (1H, d, *J* 15.0, 8-HA), 2.01-1.87 (2H, m, 6-H), 1.44 (1.5H, s, CqCH₃), 1.40 (1.5H, s, CqCH₃), 0.85 (4.5H, s, SiCq(CH₃)₃), 0.83 (4.5H, s, SiCq(CH₃)₃), 0.17 (3H, s, (SiCH₃)A), 0.16 (1.5H, s, (SiCH₃)_B), 0.15 (1.5H, s, (SiCH₃)_B). ¹³C **NMR** (125 MHz, CHCl₃, mixture of two rotamers, 1-C not observed): δ 207.8 (9-C), 154.6 (N(CO)O), 137.0 (Ar-Cq), 128.6 (Ar-C), 128.1 (Ar-C), 127.1 (Ar-C), 81.7 (10-C), 77.1 (7-C), 67.1 (OCH₂Ph), 54.5 (2-C or 4-C), 54.2 (2-C or 4-C), 50.5 (2-C or 4-C), 50.1 (2-C or 4-C), 47.2 (8-C), 40.9 (5-C), 37.9 (6-C), 37.7 (6-C), 26.0 (SiCq(CH₃)₃), 22.2 (CqCH₃), 18.7 (SiCq), -2.6 (SiCH₃) [21 of 38 expected peaks observed]. **IR** $\nu_{max}(film)/cm^{-1}$ 2953, 2930, 2883, 2855, 1707 (CO), 1418, 1359, 1345. **HRMS** (ESI): C₂₄H₃₆NO₅Si [M+H]⁺; calculated 446.2357, found 446.2360.

Benzyl (*1R**,*5R**,*7R**,*9S**,*10S**)-9-amino-10-[(*tert*-butyldimethylsilyl)oxy]-10-methyl-11-oxa-3azatricyclo[5.3.1.0^{1,5}]undecane-3-carboxylate 13 and benzyl (*1R**,*5R**,*7R**,*9S**,*10S**)-10-[(*tert*butyldimethylsilyl)oxy]-9-hydroxy-10-methyl-11-oxa-3-azatricyclo[5.3.1.0^{1,5}]undecane-3carboxylate S24

Ti(O[/]Pr)⁴ (2.4 mL, 8.1 mmol, 2.0 eq.) was added to a stirred solution of ketone **S23** (1.8 g, 4.1 mmol, 1.0 eq.) in sat. NH₃/MeOH (50 mL). The reaction mixture was stirred for 15 h then NaBH₄ (230 mg, 6.09 mmol, 1.5 eq.) was added at 0 °C. The reaction mixture was warmed to rt, stirred for 2 h then concentrated *in vacuo.*^{*} The residue was diluted in EtOAc (50 mL) and sat. aq. brine (50 mL) was added and the mixture was stirred vigorously. The phases were separated and the aqueous phase was extracted with EtOAc (2 × 25 mL). The combined organic phase was washed with H₂O (25 mL), then dried over MgSO₄, filtered, and concentrated *in vacuo*. Flash chromatography eluting with 98:2:0.1 CH₂Cl₂–EtOH–NH₃/MeOH gave the *title compounds* **13** (416 mg, 0.93 mmol, 22%) and **S24** (542 mg, 1.21 mmol, 30%) as colourless oils. **Benzyl (1***R****,5***R****,7***R****,9***S****,10***S****)-9-amino-10-[(***tert***-butyldimethylsilyl) oxy]-10-methyl-11-oxa-3-azatricyclo[5.3.1.0^{1,5}]undecane-**

3-carboxylate 13 \mathbf{R}_{f} 0.10 (98:2:0.1 CH₂Cl₂–EtOH–NH₃/MeOH). ¹H NMR (500 MHz, CHCl₃, 50:50 mixture of rotamers, NH₂ not observed) δ 7.38-7.28 (5H, m, Cbz Ar-H), 5.18-5.05 (2H, m, OCH₂Ph), 4.50-4.44 (1H, m, 7-H), 3.93 (0.5H, app. t, *J* 10.2, 4-H_A), 3.86 (0.5H, app. t, *J* 10.2, 4-H_A), 3.74 (1H, app. t, *J* 12.5, 2-H_A), 3.59-3.44 (2H, m, includes: 1H, 9-H; and at δ 3.56: 0.5H, d, *J* 11.9, 2-H_B; and at δ 3.48: 0.5H, d, *J* 11.9, 2-H_B), 3.20 (1H, dd, *J* 10.2, 7.9, 4-H_B), 3.16 (1H, app. t, *J* 5.6, 5-H), 2.58 (1H, dd, *J* 11.9, 8.9, 8-H_B), 2.14-2.05 (1H, m, 6-H_A), 1.85-1.73 (1H, m, 8-H_A), 1.59-1.42 (1H, m, 6-H_B), 1.38 (1.5H, s, C_qCH₃), 1.34 (1.5H, s, C_qCH₃), 0.90 (4.5H, s, SiC_q(CH₃)₃), 0.88 (4.5H, s, SiC_q(CH₃)₃), 0.19 (1.5H, s, SiCH₃), 0.16 (1.5H, s, SiCH₃), 0.15 (1.5H, s, SiCH₃), 0.13 (1.5H, s, SiCH₃). ¹³C NMR (100 MHz, CHCl₃, mixture of two rotamers): δ 154.6 (N(CO)O), 137.3 (Ar-C_q), 128.6 (Ar-C), 128.0 (2 peaks, Ar-C), 127.9 (Ar-C), 95.4 (1-C), 94.4 (1-C), 78.1 (7-C), 77.9 (7-C), 74.8 (10-C), 74.7 (10-C), 66.8 (OCH₂Ph), 55.7 (9-C), 55.1 (4-C), 54.8 (4-C), 51.6 (2-C), 51.1 (2-C), 41.2 (5-C), 40.4 (5-C), 38.6 (8-C), 38.4 (8-C), 36.8 (6-C), 26.0 (2 peaks, SiC_q(CH₃)₃), 25.0 (C_qCH₃), 18.6 (SiC_q), -1.6 (SiCH₃), -2.3 (SiCH₃) [29 of 38 expected

^{*} Analysis of the crude reaction product using ¹H NMR at 300 MHz suggested that a 1:1 mixture of **13:S24** was formed.

peaks observed]. **IR** ν_{max} (film)/cm⁻¹ 2951, 2931, 2883, 2856, 1704 (CO), 1419, 1160, 937, 773. **HRMS** (ESI): C₂₄H₃₉N₂O₄Si [M+H]⁺; calculated 447.2674, found 447.2680.

Benzyl (1R*,5R*,7R*,9S*,10S*)-10-[(tert-butyldimethylsilyl)oxy]-9-hydroxy-10-methyl-11-oxa-3-azatricyclo[5.3.1.01,5]undecane-3-carboxylate S24 **R**f 0.28 (98:2:0.1 CH₂Cl₂–EtOH– NH₃/MeOH). ¹H NMR (500 MHz, CHCl₃, 50:50 mixture of rotamers, OH not observed): δ 7.39-7.27 (5H, m, Cbz Ar-H), 5.12 (2H, s, OCH₂Ph), 4.52-4.44 (1H, m, 7-H), 3.99-3.89 (1H, m, 4-H_A), 3.87 (0.5H, d, J12.1, 2-H_A), 3.82 (0.5H, d, J12.1, 2-H_A), 3.69 (1H, d, J4.3, 9-H), 3.60 (0.5H, d, J 12.1, 2-H_B), 3.54 (0.5H, d, J 12.1, 2-H_B), 3.25-3.05 (2H, m, 4-H_B and 5-H), 2.44-2.35 (1H, m, 8-H_B), 2.19-2.10 (1H, m, 6-H_A), 1.86-1.74 (1H, m, 6-H_B), 1.68 (1H, d, J 14.3, 8-H_A), 1.29 (1.5H, s, CqCH₃), 1.26 (1.5H, s, CqCH₃), 0.94 (4.5H, s, SiCq(CH₃)₃), 0.94 (4.5H, s, SiCq(CH₃)₃), 0.12 (6H, s, 2 × SiCH₃). ¹³C NMR (125 MHz, CHCl₃, mixture of two rotamers, N(CO)O not observed): 137.2 (Ar-Cq), 128.6 (Ar-C), 128.1 (Ar-C), 128.0 (Ar-C), 95.4 (1-C), 76.8 (2 peaks, 7-C), 74.5 (9-C), 70.0 (10-C), 69.9 (10-C), 67.0 (OCH₂Ph), 66.9 (OCH₂Ph), 55.2 (4-C), 54.9 (4-C), 51.2 (2-C), 50.7 (2-C), 40.7 (5-C), 39.8 (5-C), 37.3 (8-C), 37.0 (6-C), 25.9 (SiCq(CH₃)₃), 22.4 (CqCH₃), 18.1 (SiCq), -4.3 (SiCH₃), -5.3 (SiCH₃) [25 of 38 expected peaks observed]. IR v_{max}(film)/cm⁻¹ 2951, 2930, 2885, 2856, 1703 (CO), 1419, 1085, 1072. HRMS (ESI): C₂₄H₃₈NO₅Si [M+H]⁺; calculated 448.2514, found 448.2518.

5.4.2.3.2 Preparation of quinoxaline scaffold 14

Benzyl (*1R**,*13R**,*15R**)-19-oxa-3,10,17-triazapentacyclo[11.5.1.0^{1,15}.0^{2,11}.0^{4,9}]nonadeca-2(11),3,5,7,9-pentaene-17-carboxylate 14

1,2-Diaminobenzene (270 mg, 2.50 mmol, 1.10 eq.) was added to a stirred suspension of cycloadduct **2c** (1.0 g, 2.3 mmol, 1.0 eq.) in AcOH (10 mL). The reaction mixture was heated under microwave irradiation at 180 °C for 10 min. The reaction mixture was concentrated *in vacuo* then partitioned between CH_2Cl_2 (25 mL) and sat. aq. NaHCO₃ (25 mL). The aqeuous phase was extracted with CH_2Cl_2 (2 × 10 mL). The combined organic phases were dried, filtered

and concentrated *in vacuo*. Flash chromatography eluting with 1:1 pentane–EtOAc in pentane gave the *title compound* **14** (281 mg, 0.73 mmol, 32%) as an amorphous orange solid. **R***f* 0.61 (4:1 petrol–EtOAc). ¹**H NMR** (500 MHz, CDCl₃, 50:50 mixture of rotamers): δ 8.04-7.94 (2H, m, 5-H and 8-H), 7.77-7.64 (2H, m, 6-H and 7-H), 7.48-7.30 (5H, m, Cbz Ar-H), 5.23-5.15 (2H, m, OC*H*₂Ph), 5.12 (1H, app. t, *J* 6.6, 13-H), 5.04 (0.5H, d, *J* 12.8, 18-H_B), 4.96 (0.5H, d, *J* 12.8, 18-H_B), 4.14-4.02 (1H, m, 18-H_A), 3.99 (1H, dd, *J* 12.7, 7.8, 16-H_B), 3.70 (1H, dd, *J* 18.0, 5.3, 12-H_B), 3.40-3.26 (1H, m, 16-H_A), 3.04-2.91 (2H, m, 12-H_A and 15-H), 2.37-2.21 (1H, m, 14-H_B), 2.12-2.00 (1H, m, 14-H_A). ¹³**C NMR** (125 MHz, CDCl₃, mixture of two rotamers): 154.8 (N(CO)O), 152.2 (Ar-Cq), 150.6 (Ar-Cq), 142.3 (Ar-Cq), 140.5 (Ar-Cq), 137.0 (Ar-Cq), 130.1 (Ar-C), 129.7 (Ar-C), 129.4 (Ar-C), 129.3 (Ar-C), 128.6 (Ar-C), 128.5 (Ar-C), 128.1 (Ar-C), 92.9 (1-C), 92.2 (1-C), 76.5 (13-C), 67.1 (OCH₂Ph), 54.1 (16-C), 53.7 (16-C), 51.8 (15-C), 50.9 (15-C), 50.8 (18-C), 50.3 (18-C), 40.6 (12-C), 36.3 (14-C), 36.1 (14-C) [26 of 42 expected peaks observed]. **IR** ν_{max} (film)/cm⁻¹ 2954, 2888, 1701 (CO), 1447, 1359, 1348, 1319, 1116. **HRMS** (ESI): C₂₃H₂₁N₃O₃ [M+H]⁺; calculated 388.1656, found 388.1653.

5.4.2.3.3 Preparation of diol S25 and cyclic amine 15

Benzyl (*1R**,*5R**,*7R**,*9S**,*10S**)-9,10-dihydroxy-11-oxa-3-azatricyclo[5.3.1.0^{1,5}]undecane-3carboxylate S25

NaBH₄ (1.40 g, 35.8 mmol, 2.20 eq.) was added to a stirred solution of cycloadduct **2c** (7.0 g, 16.3 mmol, 1.0 eq.) in MeOH (100 mL) at 0 °C. The reaction mixture was stirred at 0 °C for 5 min, warmed to rt, stirred for 1 h, then concentrated *in vacuo*. The residue was diluted in CH₂Cl₂ (100 mL) and washed with 1N HCl (100 mL). The aqueous phase

was extracted with CH₂Cl₂ (50 mL). The organic extracts were combined, washed with brine (50 mL), dried over Na₂SO₄ and concentrated *in vacuo*. The residue (16.3 mmol) was dissolved in MeOH (100 mL) and (±)-camphorsulfonic acid (4.90 g, 21.2 mmol, 1.30 eq.) was added. The reaction mixture was heated at 45 °C for 15 h, then concentrated *in vacuo*. The residue was diluted in CH₂Cl₂ (50 mL). Saturated aqueous NaHCO₃ (50 mL) and H₂O (50 mL) were added and the phases were separated. The aqueous phase was extracted using CH₂Cl₂ (2 × 50 mL). The organic extracts were combined, dried over Na₂SO₄ and concentrated *in vacuo*. Flash chromatography eluting with 100% EtOAc gave the *title compound* **S25** (1.75 g, 5.48 mmol, 34%, 2 steps) as a pale brown oil. **R**_f 0.08 (2:3 pentane–EtOAc). ¹**H NMR** (500 MHz, CDCl₃, 50:50 mixture of rotamers, 2 × OH not observed): δ 7.38-7.27 (5H, m, Cbz Ar-H), 5.10 (1H, 2 × s, OC*H*₂Ph), 4.48 (1H, dd, *J* 7.1, 4.5, 7-H), 4.17-4.08 (1H, m, 9-H), 3.97-3.82 (2H, m, includes: 1H, 2-H_A; and at δ 3.90: 0.5H, dd, *J* 12.2, 4-H_A and at δ 3.85: 0.5H, dd, *J* 12.2, 4-H_A), 3.79 (0.5H, d, *J* 4.6, 10-H), 3.75 (0.5H, d, *J* 4.6, 10-H), 3.56 (1H, dd, *J* 12.2, 5.9, 4-H_B), 3.23-3.11 (2H, m, 2-H_B and 5-H), 2.52-2.44 (1H, m, 6-H_A), 2.10-2.00 (1H, m, 8-H_B), 1.96-1.75 (2H, m, includes: 1H, 6-H_B; and at

δ 1.87: 1H, app. d, *J* 14.3, 8-H_A). ¹³**C NMR** (125 MHz, CDCl₃, mixture of two rotamers): δ 154.9 (N(CO)O), 154.7 (N(CO)O), 137.0 (Ar-C_q), 136.8 (Ar-C_q), 128.6 (Ar-C), 128.1 (Ar-C), 128.1 (Ar-C), 128.1 (Ar-C), 128.0 (2 peaks, Ar-C), 92.5 (1-C), 91.5 (1-C), 76.7 (7-C), 76.5 (7-C), 68.2 (10-C), 67.8 (10-C), 67.4 (9-C), 67.3 (9-C), 67.1 (OCH₂Ph), 67.0 (OCH₂Ph), 55.2 (2-C), 54.8 (2-C), 52.1 (4-C), 51.5 (4-C), 40.8 (5-C), 39.8 (5-C), 38.1 (8-C), 37.6 (8-C), 37.0 (6-C), 36.7 (6-C) [30 of 30 expected peaks observed]. **IR** ν_{max}(film)/cm⁻¹ 3414 (br., OH), 2948, 2885, 1675, 1424, 1349, 1114, 1076. **HRMS** (ESI): C₁₇H₂₂NO₅ [M+H]⁺; calculated 320.1492, found 320.1494.

(*1S**,*5R**,*7R**)-10-[(2,4-dimethoxyphenyl)methyl]-12-oxa-3,10diazatricyclo[5.4.1.0^{1,5}]dodecane-3-carboxylate 15

NaIO₄ (2.14 g, 10.0 mmol, 2.00 eq.) was added to a stirred solution of diol S25 (1.6 g, 5.0 mmol, 1.0 eq.) in 2:1 MeOH-H₂O (45 mL) at 0 °C. The reaction mixture was warmed to rt and stirred for 15 h. The reaction mixture was concentrated in vacuo, then diluted in CH₂C_{l2} (50 mL) and washed with brine (50 mL). The phases were separated and the aqueous laver was extracted with CH_2CI_2 (3 × 25 mL). The resulting crude dialdehyde was dissolved CH₂Cl₂ (50 mL), and (2,4-dimethoxyphenyl)methanamine in

(1.0 mL, 6.3 mmol, 1.3 eq.) and NaBH(OAc)₃ (2.76 g, 13.0 mmol, 2.60 eq.) were added. The reaction mixture was stirred for 15 h then filtered through Celite and concentrated *in vacuo*. The resulting reside was diluted in EtOAc (50 mL) and washed with brine (50 mL). The aqueous phase was extracted with EtOAc (2 × 25 mL). The combined organic phase was dried over MgSO₄, filtered and concentrated *in vacuo*. Flash chromatography eluting with 98:2:0.1 CH₂Cl₂–EtOH–NH₃/MeOH gave the *title compound* **15** (685 mg, 1.51 mmol, 30%, 2 steps) as a colourless oil. **R**_f 0.51 (29:1:0.1 CH₂Cl₂–EtOH–NH₃/MeOH). ¹H **NMR** (500 MHz, CDCl₃): δ 7.38-7.27 (6H, m, Cbz Ar-H and DMB 6-H), 6.47 (1H, dd, *J* 8.3, 2.2, DMB 5-H), 6.44 (1H, d, *J* 2.2, DMB 3-H), 5.09 (2H, s, OCH₂Ph),

4.62 (1H, td, J8.3, 3.5, 7-H), 3.81 (3H, s, OCH₃), 3.79-3.74 (4H, m, includes: 1H, 4-H_A; and at δ 3.78: 3H, s, OCH₃), 3.65 (1H, d, *J* 12.2, 2-H_A), 3.56 (1H, d, *J* 13.9, NCH_AH_BAr), 3.53 (1H, d, *J* 13.9, NCH_AH_BAr), 3.33-3.11 (2H, m, 2-H_B and 4-H_B), 2.77 (1H, dd, *J* 13.3, 6.8, 9-H_A), 2.69 (1H, d, *J* 12.2, 11-H_A), 2.66-2.46 (3H, m, 5-H, 9-H_B and 11-H_B), 2.34-2.23 (1H, m, 6-H_A), 2.14-2.01 (1H, m, 6-H_B), 1.98-1.89 (1H, m, 8-H_A), 1.63-1.52 (1H, m, 8-H_B). ¹³**C** NMR (125 MHz, CDCl₃, 329 K, mixture of two rotamers, DMB 1-C not observed): δ 159.9 (DMB 2-C or 4-C), 158.8 (DMB 2-C or 4-C), 154.7 (N(CO)O), 137.1 (Ar-Cq), 130.4 (Ar-C), 128.6 (Ar-C), 128.0 (Ar-C), 120.4 (DMB 6-C), 104.2 (DMB 5-C), 98.5 (DMB 3-C), 94.0 (1-C), 77.7 (7-C), 66.9 (OCH₂Ph), 66.1 (OCH₂Ph), 64.4 (11-C), 64.2 (11-C), 57.1 (NCH₂Ar), 55.5 (2 peaks, 2 × OCH₃), 55.3 (2-C), 54.9 (2-C), 53.6 (4-C), 53.2 (4-C), 53.0 (9-C), 46.3 (5-C), 45.3 (5-C), 40.9 (6-C), 40.5 (6-C), 36.8 (8-C) [29 of 48 expected peaks observed]. IR v_{max}(film)/cm⁻¹ 2935, 1704 (CO), 1612, 1587, 1505, 1455, 1208. HRMS (ESI): C₂₆H₃₃N₂O₅ [M+H]⁺; calculated 453.2384, found 453.2392.

5.4.2.3.4 Preparation of oxazolidinone scaffold 16

Benzyl ($1R^*$, $2S^*$, $6S^*$, $8R^*$, $10R^*$)-2-methyl-4-oxo-3,14-dioxa-5,12diazatetracyclo[6.5.1.0^{1,10}.0^{2,6}]tetradecane-12-carboxylate 16

Methyl chloroformate (130 μ L, 1.70 mmol, 10.0 eq.) was added to a stirred solution of compound **13** (74 mg, 0.17 mmol, 1.00 eq.) and Et₃N (240 μ L, 1.70 mmol, 10.0 eq.) in CH₂Cl₂ at 0 °C. The reaction mixture was warmed to rt and stirred for 15 h. The reaction mixture was diluted with CH₂Cl₂ (20 mL) and washed with sat. aq. NH₄Cl solution (25 mL). The aqueous layer was extracted with CH₂Cl₂ (2 × 10 mL).

The combined organic phases were washed with brine (25 mL), then dried over MgSO₄, filtered, and concentrated *in vacuo* to give a colourless oil (75 mg), which was carried on to the next step without further purification. The residue was diluted in THF (5 mL) and TBAF (1.0 M in THF, 0.38 mL, 0.38 mmol, 2.25 eq.) was added. The reaction mixture was stirred for 0.5 h, then concentrated *in vacuo*. Purification by SCX SPE following general procedure **A**, eluting with MeOH gave a colourless oil (39 mg), which was carried on to the next step without further purification. The residue on to the next step without further purification.

in DMF (3.0 mL) and NaH (60% dispersion in oil, 20 mg, 0.5 mmol, 3.0 eq.) was added. The reaction mixture was stirred at rt for 15 h, then sat. aq. NH₄Cl solution (0.2 mL) was added. The reaction mixture was diluted in EtOAc (25 mL) and washed with brine (10 mL). The aqueous phase was extracted with EtOAc (2 × 10 mL), then then dried over MgSO₄, filtered, and concentrated in vacuo. Flash chromatography eluting with 98:2:0.1 CH₂Cl₂-EtOH-NH₃/MeOH gave the title compound 16 (20 mg, 56 µmol, 34%, [three steps]) as a colourless oil. Rr 0.07 (98:2:0.1 CH2Cl2–EtOH–NH3/MeOH). ¹H NMR (500 MHz, CHCl3, 50:50 mixture of rotamers): δ 7.41-7.28 (5H, m, Cbz Ar-H), 5.12 (2H, s, OCH₂Ph), 5.10 (1H, s, NH), 4.64-4.58 (1H, m, 8-H), 4.00-3.89 (1H, m, 11-H_A), 3.88-3.81 (1H, m, 6-H), 3.80-3.62 (2H, m, 13-H), 3.31-3.17 (1H, m, 11-H_B), 3.07-2.92 (1H, m, 10-H), 2.33-2.23 (1H, m, 9-H_A), 2.17-2.09 (1H, m, 7-H_A), 2.03-1.91 (1H, m, 9-H_B), 1.76 (1H, dd, J 15.8, 3.2, 7-H_B), 1.56 (1.5H, s, CH₃), 1.55 (1.5H, s, CH₃). ¹³C NMR (100 MHz, CHCl₃, mixture of two rotamers): δ 159.1 (oxazolidinone N(CO)O), 154.5 (Cbz N(CO)O), 136.9 (Ar-C_q), 128.6 (Ar-C), 128.1 (Ar-C), 128.1 (Ar-C), 93.2 (1-C), 92.3 (1-C), 80.1 (2-C), 80.0 (2-C), 76.2 (8-C), 76.1 (8-C), 67.1 (OCH₂Ph), 56.4 (6-C), 55.0 (11-C), 54.6 (11-C), 51.5 (13-C), 51.0 (13-C), 41.4 (10-C), 40.5 (10-C), 37.4 (9-C), 37.3 (9-C), 32.6 (7-C), 21.7 (C_qCH₃) [24 of 34 expected peaks observed]. IR v_{max}(film)/cm⁻¹ 3275 (NH), 2954, 2884, 1757 (CO), 1697, 1420, 1114, 958. HRMS (ESI): C₁₉H₂₃N₂O₅ [M+H]⁺; calculated 359.1601, found 359.1602.

5.4.2.4 Scaffolds derived from cycloadduct 2d

5.4.2.4.1 Preparation of scaffold 17

tert-Butyl (1*R**,8*R**,10*R**)-4,14-dimethyl-2-oxo-6-oxa-5,12,14triazatetracyclo[6.5.1.0^{1,10}.0^{3,7}]tetradeca-3(7),4-diene-12-carboxylate S26

To a stirred solution of enone **2d** (1.21 g, 4.35 mmol, 1.00 eq.) in Et₂O (9.0 mL) at rt was added nitroethane (0.62 mL, 8.70 mmol, 2.00 eq.), trimethylamine (30 μ L, 0.22 mmol, 0.05 eq.) and phenylisocyanate (1.89 mL, 17.4 mmol, 4.00 eq.). The resulting solution was stirred for 20 h and then filtered and concentrated *in vacuo* to give a crude orange oil. The

crude material was dissolved in PhMe (20 mL) and DDQ (1.97 g, 8.70 mmol, 2.00 eq.) was added. The resulting suspension was heated at reflux for 1 h, cooled, filtered through celite and concentrated *in vacuo* to give a crude oil. Flash chromatography eluting with 9:1 CH₂Cl₂–EtOAc gave the *title compound* **S26** (531 mg, 1.59 mmol, 36%) as a pale yellow oil. ¹H NMR (MeOD-d₄, 500 MHz, 333 K): δ 4.56 (1H, d, J 6.3, 8-H), 4.05 (1H, d, J 12.5, 13-H), 3.79 (1H, dd, J 10.8, 9.4, 11-H_B), 3.29 (1H, d, J 12.5, 13-H_A), 3.23 (1H, dd, J 10.8, 7.6, 11-H_A), 2.58 (1H, app. qd, J 8.7, 4.8, 10-H), 2.33 (3H, s, NCH₃), 2.20 (3H, s, C_qCH₃), 2.17 (1H, ddd, J 12.7, 6.3, 4.6, 9-H_B), 2.02 (1H, dd, J 12.7, 8.6, 9-H_A), 1.38 (9H, s, C_q(CH₃)₃). ¹³C NMR (MeOD-d₄,

125 MHz, 333 K, one C not observed): 192.2, 182.5, 158.2, 156.0, 112.0, 82.9, 81.2, 64.0, 54.5, 46.8, 46.3, 36.1, 32.5, 28.6, 10.4. **IR** $v_{max}(film)/cm^{-1}$ 1692, 1646, 1407, 1167. **HRMS** (ESI): C₁₇H₂₄N₃O₄ [M+H]⁺; calculated 334.1761, found 334.1764. The regioselectivity was confirmed by determination of the structure of the fragment **F21** in complex with ATAD2, and is consistent with precedent.^{S10}

tert-Butyl (1*R**,2*S**,8*R**,10*R**)-2-hydroxy-4,14-dimethyl-6-oxa-5,12,14triazatetracyclo[6.5.1.0^{1,10}.0^{3,7}]tetradeca-3(7),4-diene-12-carboxylate 17

To a stirred solution of isoxazole **S26** (498 mg, 1.48 mmol, 1.00 eq.) in MeOH (7.0 mL) at -78 °C was added CeCl₃·7H₂O (664 mg, 1.78 mmol, 1.20 eq.) followed by NaBH₄ (67 mg, 1.78 mmol, 1.20 eq.). After 2 h, the solvent was removed *in vacuo* and the residue dissolved in CH₂Cl₂ (10

mL) and H₂O (10 mL). The layers were separated and the aqueous layer extracted with CH₂Cl₂ (2 x 10 mL). The combined organic layers were dried over MgSO₄, filtered and concentrated *in vacuo* to give a crude colourless oil. Flash chromatography eluting with 3:2 CH₂Cl₂–EtOAc gave the *title compound* **17** (431 mg, 1.29 mmol, 87%) as a colourless oil. ¹H NMR (MeOD-d₄, 500 MHz, 333 K): δ 4.91 (1H, d, *J* 8.0, 2-H), 4.20 (1H, d, *J* 5.7, 8-H), 3.82-3.67 (1H, m, 11-H_A), 3.60 (1H, d, *J* 12.0, 13-H_A), 3.51 (1H, app. t, *J* 10.1, 11-H_B), 3.39-3.25 (1H, m, 13-H_B), 3.14-3.00 (1H, m, 10-H), 2.38 (3H, s, CH₃), 2.33 (3H, s, CH₃), 2.19-2.07 (1H, m, 9-H_B), 2.06-1.96 (1H, m, 9-H_A), 1.49 (9H, s, Cq(CH₃)₃). ¹³C NMR (MeOD-d₄, 125 MHz, 333 K, 2 × Cq and 2 × depressed pyrrolidine carbons not observed): 158.5, 154.9, 111.1, 79.7, 62.7, 61.2, 38.1, 30.5, 27.3, 8.9. IR v_{max}(film)/cm⁻¹ 3334, 1649, 1419, 1166. HRMS (ESI): C₁₇H₂₆N₃O₄ [M+H]⁺; calculated 336.1923, found 336.1918.

5.4.2.4.2 Preparation of scaffold S27

tert-Butyl (1*R**,8*R**,10*R**)-14-methyl-2-oxo-5,12,14-triazatetracyclo[6.5.1.0^{1,10}.0^{3,7}]tetradeca-3,6-diene-12-carboxylate S27

To a solution of cycloadduct **2d** (1.80 g, 6.47 mmol, 1.00 eq.) in THF (32 mL) at 0 °C was added TOSMIC (1.26 g, 6.47 mmol, 1.00 eq) followed by ^{*t*}BuOK (2.18 g, 19.4 mmol, 3.00 eq.). The resulting suspension was warmed to rt and stirred for 2 h. Sat. aq. NH₄Cl solution (50 mL) and

EtOAc (50 mL) were added and the layers were separated. The aqueous layer was extracted with EtOAc (2 x 50 mL). The combined organic layers were dried over MgSO₄, filtered and concentrated *in vacuo* to give a yellow oil. Flash chromatography 97:3:0.3 CH₂Cl₂–EtOAc–NH₄OH gave the *title compound* **S27** (1.71 g, 5.39 mmol, 83%) as a yellow oil. ¹H NMR (500 MHz, MeOD-d₄, 333 K): δ 7.27 (1H, d, *J* 1.7, 4-H), 6.53 (1H, d, *J* 1.7, 6-H), 4.26 (1H, d, *J* 6.0, 8-H), 4.13 (1H, d, *J* 12.3, 13-H_A), 3.77 (1H, dd, 10.9, 9.5, 11-H_B), 3.29-3.18 (2H, m, 11-H_A and 13-H_B), 2.59 (1H, app. qd, *J* 8.8, 5.1, 10-H), 2.14 (3H, s, NCH₃), 2.02-2.09 (1H, m, 9-H_B), 1.87 (1H, dd, *J* 12.0, 8.8, 9-H_A), 1.38 (9H, s, Cq(CH₃)₃). ¹³C NMR (125 MHz, MeOD-d₄, 333 K, one C not observed): 194.6, 156.3, 128.9, 121.7, 118.6, 114.9, 81.0, 63.1, 54.7, 47.5, 46.8, 39.4, 33.0, 28.7. IR v_{max}(film)/cm⁻¹ 3271, 2972, 1655, 1518, 1476, 1448, 1417, 1392, 1349, 1166, 1121. HRMS (ESI): C₁₇H₂₄N₃O₃ [M+H]⁺; calculated 318.1812, found 318.1820.

5.4.2.5 Scaffold derived from cycloadduct 2e

5.4.2.5.1 Preparation of scaffold 19

tert-Butyl (1*R**,10*R**,13*R**,17*R**)-12-oxo-2,15-diazapentacyclo[8.8.0.0^{2,13}.0^{4,9}.0^{13,17}]octadeca-4(9),5,7-triene-15-carboxylate 19

To a solution of cycloadduct **2e** (140 mg, 0.32 mmol, 1.00 eq) in THF (1.0 mL) was added Pd(OAc)₂ (15 mg, 65 μ mol, 20 mol%), PPh₃ (34 mg, 0.129 mmol, 40 mol%) and Et₃N (90 μ L, 0.65 mmol, 2.00 eq.). The resulting suspension was heated to reflux, stirred over

night, then concentrated *in vacuo*. Flash chromatography eluting with 9:1 CH₂Cl₂:EtOAc, followed by mass-directed preparative HPLC (50-90% MeOH–H₂O) gave the *title compound* **19** (12 mg, 34 μmol, 11%) as a brown oil. ¹**H NMR** (500 MHz, MeOD-d₄, 333 K): δ 7.10-7.01 (2H, m, Ar-H), 6.95-6.90 (2H, m, Ar-H), 4.24 (1H, d, *J* 18.6, 3-H_A), 3.93 (1H, d, *J* 18.6, 3-H_B), 3.83 (1H, dd, *J* 10.3, 9.6, 16-H_B), 3.74 (1H, d, *J* 12.6, 14-H_A), 3.67 (1H, d, *J* 6.6, 1-H), 3.31 (1H, d, *J* 12.6, 14-H_B), 3.24 (1H, d, *J* 6.3, 10-H), 3.17 (1H, d, *J* 9.6, 16-H_A), 3.02 (1H, dd, *J* 15.0, 6.3, 11-H_B), 2.82 (1H, app. qd, *J* 9.1, 3.1, 17-H), 2.30 (1H, dd, *J* 13.4, 8.8, 18-H_A), 2.10 (1H, ddd, *J* 13.4, 6.6, 3.1, 18-H_B), 2.04 (1H, d, *J* 15.0, 11-H_A), 1.37 (9H, s, Cq(CH₃)₃). ¹³C NMR (125 MHz, MeOD-d₄, 333 K): δ 197.8, 156.1, 140.3, 133.0, 128.9, 128.2, 127.8, 126.7, 93.4, 81.1, 60.8, 49.4, 49.2, 47.3, 46.3, 44.8, 33.5, 28.7 (2 peaks). LRMS (HPLC-MS): C₂₁H₂₇N₂O₃; found 355.2 [M+H]⁺.

5.4.2.6 Scaffolds derived from cycloadduct 2f

5.4.2.6.1 Preparation of scaffold 18

tert-Butyl (1*R**,8*R**,10*R**)-14-benzyl-4-methyl-2-oxo-6-oxa-5,12,14triazatetracyclo[6.5.1.0^{1,10}.0^{3,7}]tetradeca-3(7),4-diene-12-carboxylate S28

To a stirred solution of cycloadduct **2f** (1.80 g, 5.08 mmol, 1.00 eq.) in Et_2O (10 mL) at rt was added $EtNO_2$ (0.73 mL, 10.2 mmol, 2.00 eq.), PhNCO (2.21 mL, 20.3 mmol, 4.00 eq.) and Et_3N (0.05 mL, 0.254 mmol, 5 mol%). The resulting solution was stirred at rt for 2 days (during which time a colourless solid precipitated). The suspension was filtered (washing with Et_2O) and the filtrate was evaporated to give a brown oil.

The residue was dissolved in PhMe (25 mL) and DDQ (2.31 g, 10.2 mmol, 2.00 eq.) was added. The resulting suspension was heated to 80 °C for 16 h, then filtered through celite and concentrated *in vacuo* to give a crude brown oil. Flash chromatography eluting with 4:1 CH₂Cl₂–EtOAc gave the *title compound* **S28** (549 mg, 1.34 mmol, 26%) as a yellow oil. ¹H **NMR** (500 MHz, MeOD-d₄, 333 K): δ 7.32-7.22 (3H, m, Bn Ar-H), 7.19-7.12 (2H, m, Bn Ar-H), 4.50-4.44 (1H, m, 8-H), 4.19 (1H, d, *J* 12.6, 13-H_A), 3.91 (1H, dt, *J* 11.0, 9.2, 11-H_B), 3.84 (1H, d, *J* 13.9, CH_AH_BPh), 3.53 (1H, d, *J* 12.6, 13-H_B), 3.43 (1H, dd, *J* 11.0, 7.4, 11-H_A), 3.41 (1H, d, *J* 13.9, CH_AH_BPh), 2.72 (1H, dddd, *J* 9.2, 8.6, 7.4, 5.3, 10-H), 2.46 (3H, s, CH₃), 2.21 (1H, dd, *J* 12.7, 5.3, 9-H_A), 2.11 (1H, dd, *J* 12.7, 5.3, 9-H_B), 1.48 (9H, s, Cq(CH₃)₃). ¹³C NMR (125 MHz, MeOD-d₄, 333 K): δ 192.7, 182.9, 158.3, 156.1, 139.1, 129.6, 129.3, 128.6, 112.7, 82.5, 81.3, 60.7, 54.1, 50.8, 47.5, 47.0, 36.0, 28.7, 10.3. IR v_{max}(film)/cm⁻¹ 1691, 1455, 1406, 1365, 1167, 1139, 1113, 869. HRMS (ESI): C₂₃H₂₈N₃O₄ [M+H]⁺; calculated 410.2074, found 410.2080.

tert-Butyl (1*R**,5*R**,7*R**,9*E*)-9-(1-aminoethylidene)-8,10-dioxo-3,11diazatricyclo[5.3.1.0^{1,5}]undecane-3-carboxylate 18

Hydrogenation was carried out following general procedure **B**, using isoxazole **S28** (537 mg, 1.31 mmol, 1.00 eq), Pd(OH)₂/C (54 mg, 10% w/w) and conc. HCI (0.1 mL) in EtOH (7.0 mL) over 18 h. Filtration followed by concentration gave the *title compound* **18** (373 mg,

1.16 mmol, 89%) as a clear, colourless oil. ¹H NMR (500 MHz, MeOD-d₄, 333 K, 3 × NH not observed): δ 4.20 (1H, d, *J* 12.1, 2-H_A), 3.78 (1H, dd, *J* 10.8, 9.4, 4-H_A), 3.77-3.73 (1H, m, 7-H), 3.24 (1H, d, *J* 12.1, 2-H_B), 3.10 (1H, dd, *J* 10.8, 8.3, 4-H_B), 2.64-2.53 (1H, m, 5-H), 2.39 (3H, s, C_qCH₃), 1.98-1.91 (2H, m, 6-H), 1.37 (9H, s, C_q(CH₃)₃). ¹³C NMR (125 MHz, MeOD-d₄, 333 K): δ 201.4, 196.9, 177.6, 156.1, 103.9, 80.9, 79.2, 69.0, 54.7, 50.9, 46.8, 35.6, 28.9, 24.3. LRMS (HPLC-MS): C₁₆H₂₃NNa₃O₄ [M+Na]⁺; found 344.2.

5.4.2.6.2 Preparation of scaffolds 20 and S32-S34

General procedure L: Arylation of α , β -unsaturated ketone 2f

To a solution of cycloadduct **2f** (1.0 eq.) in 86:14 dioxane– H_2O (0.3 M) was added ArB(OH)₂ (1.5 eq.), Et₃N (1.0 eq.) and [Rh(cod)Cl]₂ (1 mol%). The resulting solution was warmed to 50 °C for 2 h before being concentrated *in vacuo*. The products were purified by flash chromatography.
tert-Butyl (1*R**,5*R**,7*R**,8*R**)-11-benzyl-8-(4-fluorophenyl)-10-oxo-3,11diazatricyclo[5.3.1.0^{1,5}]undecane-3-carboxylate S29

General procedure L was followed using cycloadduct **2f** (512 mg, 1.44 mmol) and 4-fluorophenylboronic acid. Flash chromatography eluting with 95:5 CH₂Cl₂–EtOAc gave the *title compound* **S29** (342 mg, 0.76 mmol, 53%) as a colourless oil. ¹H NMR (500 MHz, DMSO-d₆, 343 K): δ 7.13-6.93 (7H, m,

includes 5H, Bn Ar-H; and 2H, Ar 2-H), 6.84 (2H, d, *J* 7.0, Ar 3-H), 3.84 (1H, app. t, *J* 10.4, 4-H_A), 3.81 (1H, d, *J* 13.3, 2-H_A), 3.65 (1H, d, *J* 14.2, NC*H*_AH_BPh), 3.60-3.45 (2H, m, 2-H_B and 7-H), 3.36 (1H, d, *J* 14.2, NCH_AH_BPh), 3.27 (1H, app. d, *J* 8.6, 8-H), 3.18 (1H, dd, *J* 11.0, 7.6, 4-H_B), 3.11-3.05 (1H, m, 5-H), 3.01 (1H, dd, *J* 16.5, 8.7, 9-H_A), 2.55-2.45 (1H, m, 9-H_B), 2.27 (1H, dd, *J* 13.1, 8.6, 6-H_A), 2.19 (1H, ddd, *J* 13.1, 6.5, 4.7, 6-H_B), 1.35 (9H, s, Cq(CH₃)₃). ¹³C NMR (125 MHz, DMSO-d₆, 343 K, one C not observed): δ 204.4, 160.8 (d, *J* 238), 161.7, 159.8, 153.1, 140.1 (d, *J* 164), 129.2 (d, *J* 8.0), 128.2, 127.6, 126.4, 114.4 (d, *J* 21), 78.6, 68.8, 54.4, 52.1, 46.5, 45.2, 38.9, 35.6, 28.1. IR v_{max}(film)/cm⁻¹ 1680, 1023, 990, 826. HRMS (ESI): C₂₇H₃₂FN₂O₃ [M+H]⁺; calculated 451.2396, found 451.2396.

tert-Butyl (1*R**,5*R**,7*R**,8*R**)-10-oxo-8-phenyl-3,11-diazatricyclo[5.3.1.0^{1,5}]undecane-3-carboxylate S30

General procedure **L** was followed using cycloadduct **2f** (484 mg, 1.37 mmol) and PhB(OH)₂. Flash chromatography eluting with 9:1 CH₂Cl₂-EtOAc gave the crude ketone, which was contaminated with PhB(OH)₂ {¹H NMR peaks (MeOD-d₄, 500 MHz, 333 K,

characteristic peaks): δ 7.24-7.09 (5H, m, Bn Ar-H), 7.10-6.98 (3H, m, Ar-H), 6.89-6.73 (2H, m, Ar-H), 4.00-3.84 (2H, m, 2-H_A and 4-H_A), 3.73 (1H, d, *J* 14.1, *CH*_AH_BPh), 3.73 (1H, s, 7-H), 3.67-3.53 (1H, m, 8-H), 3.40 (1H, d, *J* 14.2, *CH*_A*H*_BPh), 3.33-3.23 (2H, m, 2-H_B and 4-H_B), 3.15-3.04 (1H, m, 5-H), 3.00 (1H, dd, *J* 16.5, 8.6, 9-H_B), 2.76 (1H, ddd, *J* 16.5, 2.3, 1.4, 9-H_A), 2.34 (1H, dd, *J* 13.1, 8.9, 6-H_A), 2.23 (1H, ddd, *J* 13.1, 6.4, 5.0, 6-H_B), 1.44 (9H, s, C_q(CH₃)₃). **LRMS** (HPLC-MS): C₂₀H₂₇N₂O₃ [M+H]⁺; found 433.5}. Hydrogenation of the crude residue was carried out following general procedure **B**, using Pd(OH)₂/C (44 mg, 10 w/w%) and conc. HCI (0.1 mL) in MeOH (5 mL) over 18 h. Flash chromatography eluting with 1:1 CH₂Cl₂–EtOAc gave the amine **S30** (218 mg, 0.64 mmol, 46% over two steps) as a colourless oil. ¹H **NMR** (500 MHz, MeOD-d₄, 333 K, NH not observed): δ 7.23 (2H, dd, *J* 8.2, 7.2, Ar-H), 7.15-7.10 (3H, m, Ar-H), 3.93 (1H, d, *J* 12.4, 2-H_A), 3.81 (1H, dd, *J* 10.8, 9.5, 4-H_B), 3.61 (1H, d, *J* 6.9, 7-H), 3.36 (1H, d, *J* 8.2, 8-H), 3.19 (1H, d, *J* 12.4, 2-H_A), 2.54

H_B), 3.10 (1H, dd, *J* 10.8, 8.6, 4-H_A), 2.87 (1H, dd, *J* 16.7, 8.2, 9-H_B), 2.80 (1H, app. qd, *J* 8.8, 3.7, 5-H), 2.52 (1H, d, *J* 16.7, 9-H_A), 2.24 (1H, dd, *J* 13.5, 8.5, 6-H_A), 2.03 (1H, ddd, *J* 13.5, 6.9, 3.7, 6-H_B), 1.35 (9H, s, C_q(CH₃)₃). ¹³**C** NMR (125 MHz, MeOD-d₄, 333 K): δ 208.3, 156.0, 145.0, 129.7, 128.4, 127.7, 93.4, 81.0, 64.5, 54.8, 51.1, 50.7, 46.5, 39.7, 37.1, 28.7. IR v_{max}(film)/cm⁻¹ 3290, 1648, 1406, 1171, 1118.

tert-Butyl (1*R**,5*R**,7*R**,8*R**)-8-(4-fluorophenyl)-10-oxo-3,11-diazatricyclo[5.3.1.0^{1,5}]undecane-3-carboxylate S31

Hydrogenation was carried out following general procedure **B**, using compound **S29** (284 mg, 0.63 mmol), $Pd(OH)_2/C$ (28 mg, 10% w/w) and conc. HCI (0.1 mL) in EtOH (3 mL) over 18 h. Flash chromatography eluting with 1:1 CH₂Cl₂–EtOAc gave the

title compound **S31** (225 mg, 0.62 mmol, 99%) as a colourless oil. ¹H NMR (500 MHz, DMSO-d₆, 343 K, NH not observed): δ 7.45 (2H, app. dd, J 8.1, 5.5, Ar 2-H), 7.16 (2H, app. t, J 8.7, Ar 3-H), 4.13 (1H, app. d, J 5.6, 7-H), 4.00 (1H, d, J 13.0, 2-H_A), 3.84 (1H, t, J 10.0, 4-H_A), 3.57 (1H, d, J 13.0, 2-H_B), 3.49-3.39 (1H, m, 8-H), 3.34-3.27 (1H, m, 4-H_B), 3.11-3.02 (2H, m, 9-H), 3.00 (1H, app. dd, *J* 17.3, 7.7, 5-H), 2.43 (1H, dd, *J* 13.2, 8.7, 6-H_A), 2.24-2.11 (1H, m, 6-H_B), 1.41 (9H, s, C_q(CH₃)₃). ¹³C NMR (500 MHz, DMSO-d₆, 343 K, one C not observed): δ 201.8, 161.3 (d, *J* 244), 152.9, 138.4, 129.6 (d, J 8.0), 115.3 (d, J 21.0), 79.1, 63.5, 52.4, 47.2, 44.6, 42.6, 39.6, 36.0, 28.2. **IR** v_{max}(film)/cm⁻¹ 3350, 1678, 1511, 1407, 1366, 1225, 1163, 1133, 1075. HRMS (ESI): C₁₆H₁₈FN₂O₃ [MH-^tBu]⁺; calculated 305.1301, found 305.1297.

tert-Butyl (1R*,5R*,7R*,8R*,10S*)-10-hydroxy-8-phenyl-3,11-

diazatricyclo[5.3.1.0^{1,5}]undecane-3-carboxylate 20 and *tert*-Butyl (1*R**,5*R**,7*R**,8*R**,10*R**)-10hydroxy-8-phenyl-3,11-diazatricyclo[5.3.1.0^{1,5}]undecane-3-carboxylate S32

To a stirred solution of compound **S31** (213 mg, 0.62 mmol, 1.00 eq.) in MeOH (3.0 mL) at rt was added NaBH₄ (26 mg, 0.69 mmol, 1.10 eq.). The resulting solution was stirred for 2 h. The reaction was quenched by addition of sat. aq. NH₄Cl solution (5 mL). CH₂Cl₂ (5 mL) was added and the layers were separated. The aqueous layer was extracted with CH₂Cl₂ (2 x 5 mL). The combined organic layers were

dried over MgSO₄, filtered and concentrated *in vacuo.*^{*} Flash chromatography eluting with 9:1 CH₂Cl₂–EtOAc gave the *title compounds* **20** (40 mg, 0.12 mmol, 19%) and **S32** (40 mg, 0.12 mmol, 19%), both as a colourless solids.

tert-Butyl (1R*,5R*,7R*,8R*,10S*)-10-hydroxy-8-phenyl-3,11-

diazatricyclo[5.3.1.0^{1,5}]undecane-3-carboxylate 20:

¹**H NMR** (500 MHz, MeOD-d₄, 333 K): δ 7.23-7.10 (5H, m, Ar-H), 3.87-3.78 (1H, m, 10-H), 3.68 (1H, app. t, *J* 10.0, 4-H_A), 3.57 (1H, d, *J* 11.9, 2-H_A), 3.55 (1H, d, *J* 7.4, 7-H), 3.07 (1H, d, *J* 11.9, 2-H_B), 2.96 (1H, dd, *J* 10.9, 8.5, 4-H_B), 2.85 (1H, app. d, *J* 7.3, 8-H), 2.72 (1H, app. qd, 8.9, 8.9, 3.8, 5-H), 2.21-2.10 (1H, m, 9-H_A), 1.97-1.87 (1H, m, 6-H_A), 1.87-1.78 (1H, m, 6-H_B), 1.71 (1H, ddd, *J* 14.4, 10.9, 7.2, 9-H_B), 1.28 (9H, s, C_q(CH₃)₃). ¹³**C** NMR (125 MHz, MeOD-d₄, 333 K, one C not observed): δ 156.2, 144.7, 129.5, 128.8, 127.1, 80.7, 67.8, 64.1, 63.9, 55.2, 52.0, 47.7, 40.0, 32.6, 28.8. IR ν_{max} (film)/cm⁻¹ 3408, 1671, 1411, 1172, 1103. HRMS (ESI): C₂₀H₂₉N₂O₃ [M+H]⁺; calculated 345.2178, found 345.2174.

tert-Butyl (1R*,5R*,7R*,8R*,10R*)-10-hydroxy-8-phenyl-3,11-

diazatricyclo[5.3.1.0^{1,5}]undecane-3-carboxylate S32:

¹**H NMR** (500 MHz, MeOD-d₄, 333 K): δ 7.63 (2H, d, *J* 7.8, Ar-H), 7.29 (2H, t, *J* 7.8, Ar-H), 7.17 (1H, t, *J* 7.8, Ar-H), 3.84 (1H, dd, *J* 11.0. 9.7, 4-H_B), 3.79-3.72 (2H, m, 7-H and 10-H), 3.48 (1H, d, *J* 12.2, 2-H_A), 3.36 (1H, d, *J* 12.2, 2-H_B), 3.17 (1H, dd, *J* 11.0, 8.3, 4-H_A), 2.70 (1H, d, *J* 8.2, 8-H), 2.52 (1H, app. qd, *J* 8.7, 3.9, 5-H), 2.26 (1H, ddd, *J* 15.7, 8.1, 4.7, 9-H_B), 2.15-1.87 (3H, m, 6-H and 9-H_A), 1.44 (9H, s, Cq(CH₃)₃). ¹³**C NMR** (125 MHz, MeOD-d₄, 333 K): δ 155.1, 144.9, 128.4, 128.3, 125.9, 79.9, 74.3, 69.9, 63.1, 55.2, 54.8, 43.6, 42.4, 36.2, 29.9, 27.0. **IR** v_{max} (film)/cm⁻¹ 3410, 1672, 1411, 1170, 1108. **HRMS** (ESI): C₂₀H₂₉N₂O₃ [M+H]⁺; calculated 345.2178, found 345.2174. **X-ray crystallography**: CCDC 1526778 contains the supplementary crystallographic data for this compound. Crystals were grown by slow evaporation from dichloromethane.

^{*} Analysis of the crude product by ¹H NMR spectroscopy at 500 MHz showed a 1:1 mixture of **20** and **S32**.

tert-Butyl (1*R**,5*R**,7*R**,8*R**,10*S**)-8-(4-fluorophenyl)-10-hydroxy-3,11diazatricyclo[5.3.1.0^{1,5}]undecane-3-carboxylate S33 *and tert*-Butyl (1*R**,5*R**,7*R**,8*R**,10*R**)-8-(4-fluorophenyl)-10-hydroxy-3,11-diazatricyclo[5.3.1.0^{1,5}]undecane-3-carboxylate S34

To a stirred solution of compound S31 (220 mg, 0.61 mmol, 1.00 eq.) in MeOH (3.0 mL) at -78 °C was added CeCl₃-7H₂O (327 mg, 0.88 mmol, 1.40 eq.) and NaBH₄ (33 mg, 0.88 mmol, 1.40 eg.). The resulting solution was stirred at rt for 2 h. The reaction was guenched by addition of sat. aq. NH₄Cl solution (5 mL). CH₂Cl₂ (5 mL) was added and the lavers were separated. The aqueous layer was extracted with CH₂Cl₂ (2 x 5 mL). The combined organic layers were dried over concentrated vacuo.* MgSO₄, filtered and in Flash chromatography eluting with 9:1 CH₂Cl₂-EtOAc gave the

title compounds **S33** and **S34** (165 mg, 0.46 mmol, 75%, 40:60 mixture of diastereomers) as a colourless oil. ¹H NMR (500 MHz, MeOD-d₄, 333 K): δ 7.60-7.50 (1.2H, m, major Ar 3-H), 7.29-7.22 (0.8H, m, minor Ar 3-H), 6.98-6.82 (2H, m, major and minor Ar 2-H), 3.87 (0.4H, dd, *J* 10.4, 5.6, minor 10-H), 3.74 (0.6H, dd, *J* 11.0, 9.6, major 4-H_B), 3.73 (0.4H, dd, *J* 10.8, 9.9, minor 4-H_B), 3.67 (0.6H, dd, *J* 4.7, 1.2, major 10-H), 3.63 (0.4H, d, *J* 11.7, minor 2-H_A), 3.62 (0.6H, d, *J* 6.2, major 7-H), 3.58 (0.4H, d, *J* 11.7, minor 2-H_B), 3.06 (0.6H, dd, *J* 11.0, 8.4, minor 4-H_A), 3.00 (0.4H, dd, *J* 11.0, 8.4, minor 4-H_A), 2.88 (0.4H, d, *J* 6.9, minor 8-H), 2.77 (0.4H, app. qd, *J* 8.7, 3.7, minor 5-H), 2.71 (0.6H, d, *J* 8.1, major 8-H), 2.52 (0.6H, app. qd, *J* 8.6, 3.8, major 5-H), 2.25 (0.6H, ddd, *J* 13.2, 8.5, major 6-H_A), 1.97-1.84 (2H, m, major 6-H_B and 9-H_B; minor 6-H_A and 6-H_B), 1.76 (0.4H, 14.4, 10.9, 7.2, minor 9-H_B), 1.34 (5.4H, s, major C_q(CH₃)₃). **IR** v_{max}(film)/cm⁻¹ 3350, 1678, 1511, 1407, 1366, 1225, 1163, 1133, 1075. **HRMS** (ESI): C₂₀H₂₇FN₂O₃ [MH]⁺; calculated 363.2078, found 363.2068.

^{*} Analysis of the crude product by ¹H NMR spectroscopy at 500 MHz showed a 60:40 mixture of S33 and S34.

tert-Butyl (1*R**,5*R**,7*R**,10*S**)-11-benzyl-10-hydroxy-3,11-diazatricyclo[5.3.1.0^{1,5}]undec-8-ene-3-carboxylate S35

To a solution of cycloadduct **2f** (2.52 g, 7.11 mmol, 1.00 mmol) in MeOH (35 mL) at -78 °C was added CeCl₃·7H₂O (3.18 g, 8.53 mmol, 1.20 eq.) followed by NaBH₄ (323 mg, 8.53 mmol, 1.20 eq.). The resulting solution was stirred at -78 °C for 2 h and then warmed

to rt over 2 h. EtOAc (100 mL) and H₂O (50 mL) were added and the layers were separated. The aqueous layer was extracted with EtOAc (2 x 50 mL). The combined organic layers were washed with brine (100 mL), dried over MgSO₄, filtered, and concentrated *in vacuo*. Flash chromatography eluting with 4:1 CH₂Cl₂-EtOAc gave the title compound S35 (1.97 g, 5.53 mmol, 70%) as a colourless solid. Mp: 159- 162 °C. ¹H NMR (500 MHz, CDCl₃): 7.26-7.04 (5H, m, Bn Ar-H), 5.74 (1H, dd, J 9.7, 4.6, 8-H), 5.56 (1H, d, J 9.7, 9-H), 4.34 (1H, app. s, 10-H), 3.78 (1H, d, J 19.3, CHAHBPh), 3.69-3.57 (2H, m, CHAHBPh and 4-HA), 3.50-3.41 (1H, m, 2-HA), 3.33 (1H, d, J 11.8, 2-H_B), 3.28-3.16 (2H, m, 4-H_B and 7-H), 3.09-2.96 (1H, m, 5-H), 1.89 (1H, app. t, J 10.0, 6-H_A), 1.62-1.48 (1H, m, 6-H_B), 1.36 (9H, s, Cq(CH₃)₃). ¹³C NMR (100 MHz, CDCl₃, mixture of two rotamers): 154.7 (N(CO)O), 154.6 (N(CO)O), 140.3 (2 peaks, Ar-Cq), 133.3 (8-C), 132.8 (8-C), 128.4 (Ar-C), 128.3 (Ar-C), 128.2 (Ar-C), 127.7 (9-C), 127.4 (9-C), 127.0 (Ar-C), 79.4 (Cq(CH₃)₃), 75.4 (1-C), 74.5 (1-C), 67.0 (10-C), 66.8 (10-C), 58.4 (7-C), 58.2 (7-C), 54.5 (4-C), 54.1 (4-C), 49.8 (2-C), 48.7 (2-C), 40.4 (5-C), 39.6 (5-C), 38.5 (6-C), 38.2 (6-C), 28.7 (Cq(CH₃)₃) [28 of 34 expected peaks observed]. IR $v_{max}(film)/cm^{-1}$ 3400, 2973, 1693, 1669, 1417. 1171. HRMS (ESI): C₂₁H₂₉N₂O₃ [MH]⁺; calculated 357.2173, found 357.2169.

5.4.3 Preparation of fragments

Note that the following fragments from the manuscript are detailed here using the aliases given below in parentheses:

- Compound **12** (**F12**)
- Compound **21** (**F8**)
- Compound 22 (F31)
- Compound 23 (F48)
- Compound 24 (CF1)
- Compound 25 (F32)

Ň

F37

S21

5.4.3.1 Preparation of fragments derived from cycloadduct 2g

Ethyl 2-[(1*R**,5*R**,7*R**)-3-methanesulfonyl-10-oxo-3,11-diazatricyclo[5.3.1.0^{1,5}]undec-8-en-11yl]acetate S36

Deprotection of the Boc-protected cycloadduct **2g** (119 mg, 0.74 mmol) was carried out by following general procedure **I**. The reaction mixture was concentrated *in vacuo* and the crude residue was used directly in the next step. MsCl (0.11 mL, 1.47 mmol, 3.20 eq.) was added to a stirred solution of the residue and Et₃N (0.61 mL, 9.7 eq.). The resulting solution was stirred at

rt for 2 h. H₂O (10 mL) and CH₂Cl₂ (10 mL) were added and the phases separated. The aqueous phase was extracted with CH₂Cl₂ (2 x 10 mL) and the combined organic layers were dried over MgSO₄, filtered and evaporated *in vacuo* to give a crude brown oil. Flash chromatography eluting with 3:2 CH₂Cl₂–EtOAc gave the *title compound* **S36** (150 mg, 0.46 mmol, 62% over two steps). ¹H NMR (500 MHz, MeOD-d₄, 333 K): δ 7.01 (1H, dd, *J* 9.8, 4.7, 8-H), 5.96 (1H, d, *J* 9.8, 9-H), 4.17 (1H, app. t, *J* 5.4, 7-H), 4.07 (2H, q, *J* 7.1, CO₂CH₂CH₃), 4.02 (1H, d, *J* 11.8, 2-H_A), 3.77 (1H, dd, *J* 10.2, 8.6, 4-H_B), 3.31 (1H, d, *J* 16.6, NCH_AH_BCO₂Et), 3.27 (1H, dd, *J* 10.2, 8.5, 4-H_A), 3.22 (1H, d, *J* 16.6, NCH_AH_BCO₂Et), 3.27 (1H, dd, *J* 12.3, 8.5, 6-H_B), 1.15 (3H, t, *J* 7.1, CO₂CH₂CH₃). ¹³C NMR (125 MHz, MeOD-d₄, 333 K): δ 195.9, 172.2, 152.2, 127.8, 83.2, 63.0, 62.1, 55.5, 49.8, 48.4, 46.9, 35.3, 34.1, 14.4. **IR** v_{max}(film)/cm⁻¹ 1737, 1677, 1329, 1150, 1022. **HRMS** (ESI): C1₄H₂₁N₂O₅S [M+H]⁺; calculated 329.1171, found 329.1166.

$(1R^*, 5R^*, 7R^*, 10S^*)$ -11-(2-Hydroxyethyl)-3-methanesulfonyl-3,11diazatricyclo[5.3.1.0^{1,5}]undec-8-en-10-ol F1 and $(1R^*, 5R^*, 7R^*, 10R^*)$ -11-(2-Hydroxyethyl)-3methanesulfonyl-3,11-diazatricyclo[5.3.1.0^{1,5}]undec-8-en-10-ol F2

To a solution of compound **S36** (150 mg, 0.46 mmol, 1.00 eq.) in THF (2.5 mL) at rt was added DIBAL (1.0 M in hexanes, 2.29 mL, 2.29 mmol, 5.00 eq.). The resulting solution was stirred for 2 h and then Rochelle's salt (sat. aq. solution, 10 mL) and CH_2Cl_2 (10 mL) were added. The resulting biphasic solution was stirred rapidly for 2 h before the layers were separated. The aqueous phase was extracted with CH_2Cl_2 (2 x 10 mL) and the combined organic phases were washed with brine (10 mL), dried over MgSO₄, filtered and evaporated *in vacuo* to give a crude colourless oil. Flash chromatohraphy eluting with 16:1:0.1 CH_2Cl_2 –EtOH–NH₄OH gave the *title compounds* **F1** and **F2** (41 mg,

0.14 mmol, 31%) as a 1:1 mixture of diastereomers. ¹H NMR (500 MHz, MeOD-d₄, 333 K, 2 × OH not observed): δ 5.96 (0.45H, ddd, *J* 9.8, 5.0, 1.3, 8-H_{min}), 5.85 (0.55H, ddd, *J* 9.8, 4.4, 1.6, 8-H_{mai}), 5.79 (0.45H, dd, *J* 9.8, 4.0, 9-H_{min}), 5.60 (0.55H, dd, 9.8, 2.2, 9-H_{mai}), 4.34 (0.55H, app. s, 10-H_{mai}), 3.82 (0.45H, app. t, *J* 5.5, 7-H_{min}), 3.71-3.47 (4.9H, m, 4-H_{B-mai}, 4-H_{B-min}, 7-H_{mai}, 10-H_{min}, NCH₂CH₂OH_{min}, NCH₂CH₂OH_{min} and NCH₂CH₂OH_{mai}), 3.39 (0.55H, d, *J* 11.0, NCH_AH_BCH₂OH_{mai}), 3.23 (0.55H, dd, *J* 10.0, 6.8, 4-H_{A-mai}), 3.20 (0.45H, dd, *J* 9.8, 7.3, 4-H_{A-min}), 3.18-3.11 (0.55, m, 5-H_{mai}), 2.95-2.84 (1.45H, m, 2-H_{A-mai}), 2.91 (1.35H, s, NSO₂CH_{3(min})), 2.90 (1.65H, s, NSO₂CH_{3(mai})), 2.79 (0.55H, ddd, *J* 13.3, 7.9, 6.0, 2-H_{B-mai}), 2.41-2.29 (0.45H, m, 5-H_{min}), 2.01 (0.55H, dd, *J* 11.6, 8.7, 6-H_{A-mai}), 1.91 (0.45H, dd, *J* 11.7, 8.6, 6-H_{A-min}), 1.78-1.68 (1H, m, 6-H_{B-mai} and 6-H_{B-min}). ¹³C NMR (125 MHz, MeOD-d4, 333 K, one C not observed): δ 133.5, 132.8, 129.5, 127.6, 77.1, 76.3, 70.2, 66.8, 62.1, 62.0, 60.7, 60.6, 56.3, 56.0, 54.4, 52.9, 48.0, 46.6, 41.9, 38.8, 38.2, 35.0, 34.8 [23 of 24 expected peaks observed]. IR v_{max}(film)/cm⁻¹ 3330, 1643, 1409, 1013. HRMS (ESI): C₁₂H₂₁N₂O₄S [M+H]⁺; calculated 289.1222, found 289.1229.

tert-Butyl (1*R**,5*R**,7*R**)-11-[(dimethylcarbamoyl)methyl]-10-oxo-3,11diazatricyclo[5.3.1.0^{1,5}]undec-8-ene-3-carboxylate S37

To a stirred solution of cycloadduct **2g** (124 mg, 0.35 mmol, 1.00 eq.) in 1:1 THF–H₂O (2.0 mL) at rt was added LiOH·H₂O (74 mg, 1.77 mmol, 5.00 eq.). The resulting suspension was stirred at rt for 3 days. CH_2Cl_2 (10 mL) and H₂O (10 mL) was added and the phases separated. The aqueous phase was acidified to pH 3 and then extracted with 9:1 CH_2Cl_2 – MeOH (3 x 10 mL). The combined organic layers were dried over MgSO₄, filtered, and cncentrated in vacuo to give the crude carboxylic acid as a clear, colourless oil. This crude material was carried forward to the next reaction without further purification {¹H NMR (500 MHz, MeOD-d₄, 333 K, CO₂H not observed): § 7.01 (1H, dd, J 9.8, 4.8, 8-H), 5.94 (1H, d, J 9.8, 9-H), 4.14 (1H, m, 7-H), 4.00 (1H, d, J12.5, 2-H_A), 3.82 (1H, dd, J10.9, 9.3, 4-H_B), 3.30 (1H, dd, J10.9, 8.1, 4-H_A), 3.28 (1H, d, J16.9, NCHAHBCO2H), 3.17 (1H, d, J12.5, 2-HB), 3.17 (1H, d, J16.9, NCHAHBCO2H), 2.52 (1H, app. qd, J 8.6, 4.7, 5-H), 2.01 (1H, ddd, J 12.3, 6.1, 4.8, 6-H_B), 1.95 (1H, dd, J 12.3, 8.6, 6-H_A), 1.36 (9H, s, $C_q(CH_3)_3$). LRMS (HP-LCMS): $C_{16}H_{23}N_2O_5$ [M+H]⁺; found 323.1}. To the crude residue in CH₂Cl₂ (2.0 mL) was added NHMe₂ (2.0 M in THF, 0.21 mL, 0.43 mmol, 1.20 eq.), TBTU (136 mg, 0.43 mmol, 1.20 eq.) and DIPEA (92 µL, 0.53 mmol, 1.50 eq.). The resulting solution was stirred at rt for 3 h. H₂O (5 mL) and CH₂Cl₂ (5 mL) were added and the phases separated. The aqueous phase was extracted with CH₂Cl₂ (2 x 5 mL) and the combined organic layers were dried over MgSO₄, filtered, and concentrated in vacuo to give a crude oil. Flash chromatography eluting with 80:10:1 CH₂Cl₂-EtOH–NH4OH gave the *title compound* **S37** (80 mg, 0.23 mmol, 65%) as a yellow oil. ¹H NMR (500 MHz, MeOD-d₄, 333 K): δ 7.11 (1H, dd, J 9.8, 4.8, 8-H), 6.06 (1H, d, J 9.8, 9-H), 4.14 (1H, app. td, J 4.9, 1.9, 7-H), 4.09 (1H, d, J 12.8, 2-H_A), 3.93 (1H, dd, J 10.7, 9.4, 4-H_B), 3.53 (1H, d, J 14.2, NCH_AH_BCO₂(NCH₃)₂), 3.41-3.36 (1H, m, 4-H_A), 3.40 (1H, d, J 12.8, 2-H_B), 3.36 (1H, d, J 14.2, NCH_A*H*_BCO₂(NCH₃)₂), 3.06 (3H, s, NCH₃), 2.94 (3H, s, NCH₃), 2.70-2.60 (1H, m, 5-H), 2.14-2.03 (2H, m, 6-H), 1.48 (9H, s, Cq(CH₃)₃). ¹³C NMR (125 MHz, MeOD-d₄, 333 K): δ 195.1, 170.5, 154.6, 150.8, 126.2, 88.0, 79.8, 60.8, 52.9, 45.7, 44.1, 36.1, 34.7, 34.0, 27.4. **IR** v_{max}(film)/cm⁻¹ 1635, 1633, 1409, 1166, 1129. **HRMS** (ESI): C₁₈H₂₇N₃NaO₄ [M+Na]⁺; calculated 372.1894, found 372.1898.

2-[(1*R**,5*R**,7*R**,10*R**)-10-Hydroxy-3,11-diazatricyclo[5.3.1.0^{1,5}]undec-8-en-11-yl]-N,Ndimethylacetamide F3

To a solution of compound **S37** (136 mg, 0.39 mmol, 1.00 eq) in MeOH (2.0 mL) at -78° C was added CeCl₃·7H₂O (174 mg, 0.47 mmol, 1.20 eq.) followed by NaBH₄ (18 mg, 0.47 mmol, 1.20 eq.). The resulting solution was stirred for 2 h, then H₂O (10 mL) and CH₂Cl₂ (10 mL) were added. The layers were separated

and the aqueous phase was extracted with CH_2Cl_2 (2 x 10 mL). The combined organic phases were dried over MgSO₄, filtered, and concentrated *in vacuo*. The crude residue was purified by SCX SPE eluting with MeOH, then sat. NH₃/MeOH to give the crude Boc-protected aminoalcohol. The resulting Boc-protected amine was then deprotected by following general procedure **I**. Purification by SCX SPE eluting with MeOH, then sat. NH₃/MeOH, gave the *title compound* **F3** (13 mg, 52 µmol, 13%) as a brown oil. ¹H NMR (500 MHz, MeOD-d₄, 333 K): δ 5.70 (1H, dd, J 9.7, 4.2, 8-H), 5.54 (1H, d, J 9.7, 9-H), 4.30 (1H, app. s, 10-H), 3.47-3.37 (3H, m, 7-H and CH₂CO₂(NCH₃)₂), 2.97 (3H, s, NCH₃), 2.90-2.79 (5H, m, 4-H_B, 5-H and NCH₃), 2.73-2.69 (1H, m, 4-H_A), 2.69 (1H, d, J 12.4, 2-H_A), 2.63 (1H, d, J 12.4, 2-H_B), 1.93 (1H, dd, J 11.4, 8.7, 6-H_A), 1.60 (1H, app. dt, J 11.4, 5.8, 6-H_B). ¹³**C** NMR (125 MHz, MeOD-d₄, 333 K): δ 173.2, 131.9, 130.1, 78.1, 66.3, 61.3, 55.0, 50.4, 47.9, 43.0, 39.6, 37.0, 36.0. IR v_{max}(film)/cm⁻¹ 13373, 1628, 1407, 1140. HRMS (ESI): C₁₃H₂₂N₃O₂ [M+Na]⁺; calculated 252.1712, found 252.1718.

5.4.3.2 Preparation of fragments derived from scaffold 3

(*3aR**,*4R**,*4*'S*,*6R**,*7aR**)-4-(hydroxymethyl)-2,2-dimethyl-tetrahydro-2Hspiro[[1,3]dioxolo[4,5-c]pyran-6,3'-pyrrolidine]-4'-ol F4

Hydrogenation was carried out following general procedure **B**, using compound **3** (87 mg, 0.22 mmol) and Pd/C (10 mg, 10% w/w) in MeOH (10 mL) over 15 h. Filtration followed by concentration gave a colourless oil, which was triturated with pentane, then EtOAc, to give the *title compound* **F4** (31 mg,

 $_{F4}^{I}$ 0.12 mmol, 54%) as a colourless amorphous solid. ¹H NMR (500 MHz, MeOD-d₄, 333 K, NH and one O*H* not observed): δ 4.50-4.47 (1H, m, 7a-H), 4.15 (1H, dd, *J* 6.8, 1.7, 3a-H), 3.92 (1H, dd, *J* 6.2, 5.3, 4'-H), 3.81-3.67 (3H, m, includes: 1H, 4-H; and 2H, C*H*₂OH), 3.08 (1H, d, *J* 12.0, 2'-H_A), 3.04 (1H, dd, *J* 11.5, 6.2, 5'-H_A), 2.84 (1H, dd, *J* 11.5, 5.3, 5'-H_B), 2.68 (1H, d, *J* 12.0, 2'-H_B), 1.95 (1H, dd, *J* 14.9, 5.9, 7-H_A), 1.89-1.82 (2H, m, 7-H_B and OH), 1.48 (3H, s, (CH₃)A), 1.32 (3H, s, (CH₃)_B). ¹³C NMR (125 MHz, MeOD-d₄, 333 K): δ 110.0 (2-C), 81.5 (4-C), 79.0 (3'-C/6-C), 73.8 (4'-C), 73.5 (3a-C), 72.4 (7a-C), 63.0 (CH₂OH), 54.4 (2'-C), 52.6 (5'-C), 32.7 (7-C), 27.0 ((CH₃)_A), 25.2 ((CH₃)_B). IR _{vmax}(film)/cm⁻¹ 3312 (br., OH), 2983, 2933, 2876, 1543, 1417, 1382, 1216. HRMS (ESI): C₁₂H₂₂NO₅ [M+H]⁺; calculated 260.1498, found 260.1491.

5.4.3.3 Preparation of fragments derived from scaffold 7

Benzyl (2R*,3aR*,6aR*)-6a-{2-[(*tert*-butyldimethylsilyl)oxy]ethyl}-2-{[(*tert*-butyldimethylsilyl)oxy]methyl}-hexahydro-2H-furo[2,3-c]pyrrole-5-carboxylate S44

TBSCI (1.03 g, 6.85 mmol, 2.2 eq.) and imidazole (548 mg, 8.10 mmol, 2.6 eq.) were added to a stirred solution of diol **7** (1.0 g, 3.1 mmol, 1.0 eq.) in CH₂Cl₂. The reaction mixture was stirred for 24 h, then partitioned with sat. aq. NH₄Cl (20 mL). The phases were separated and the aqeuous layer was washed with CH₂Cl₂ (2 × 10 mL). The combined organic phases were washed with brine (20 mL), then dried over Na₂SO₄ and concentrated *in*

vacuo. Flash chromatography eluting with 9:1 pentane–EtOAc gave the *title compound* **S44** (1.01 g, 1.84 mmol, 59%) as a colourless oil. **R**_f 0.40 (9:1 pentane–EtOAc). ¹**H NMR** (500 MHz, CDCl₃, mixture of rotamers): δ 7.39-7.27 (5H, m, Cbz Ar-H), 5.16-5.05 (2H, m, OC*H*₂Ph), 4.29-4.11 (1H, m, 2-H), 3.81-3.66 (4H, m, 4-H_A, 6-H_A and C_qCH₂C*H*₂OTBS), 3.66-3.57 (2H, m, CHC*H*₂OTBS),

3.51-3.41 (1H, m, 6-H_B), 3.36-3.19 (1H, m, 4-H_B), 2.76-2.59 (1H, m, 3a-H), 2.10-1.93 (1H, m, 3-H_A), 1.89-1.72 (3H, m, 3-H_B and C_qCH₂CH₂OTBS), 0.89 (12H, s, SiC_q(CH₃)₃), 0.85 (6H, s, SiC_q(CH₃)₃), 0.05 (3H, s, SiCH₃), 0.05 (4H, s, SiCH₃), 0.03 (5H, s, SiCH₃). ¹³C NMR (125 MHz, CDCl₃, mixture of two rotamers, one Ar-C not observed): δ 154.9 (N(CO)O), 154.7 (N(CO)O), 137.0 (Ar-C_q), 128.6 (Ar-C), 128.0 (Ar-C), 91.5 (6a-C), 90.6 (6a-C), 79.6 (2-C), 79.5 (2-C), 66.9 (OCH₂Ph), 65.6 (CHCH₂OTBS), 65.4 (CHCH₂OTBS), 59.5 (C_qCH₂CH₂OTBS), 59.4 (C_qCH₂CH₂OTBS), 57.1 (6-C), 56.9 (6-C), 51.2 (4-C), 51.0 (4-C), 47.2 (3a-C), 46.6 (3a-C), 40.9 (C_qCH₂CH₂OTBS), 40.7 (C_qCH₂CH₂OTBS), 33.5 (3-C), 33.2 (3-C), 26.1 (SiC_q(CH₃)₃), 26.0 (SiC_q(CH₃)₃), 18.5 (SiC_q), 18.3 (SiC_q), -5.2 (SiCH₃), -5.3 (SiCH₃) [30 of 42 expected peaks observed]. IR v_{max}(film)/cm⁻¹ 2953, 2928, 2857, 1708 (CO) 1418, 1254, 1097, 836. HRMS (ESI): C₂₉H₅₁NNaO₅Si₂ [M+H]⁺; calculated 572.3204, found 572.3205.

(2*R**,3*aR**,6*aR**)-6a-{2-[(*tert*-Butyldimethylsilyl)oxy]ethyl}-2-{[(*tert*-butyldimethylsilyl)oxy]methyl}-hexahydro-2H-furo[2,3-c]pyrrole S45

Hydrogenation was carried out following general procedure **B**, using carbamate **S44** (1.15 g, 2.09 mmol) and Pd/C (100 mg, 10% w/w) in EtOH (20 mL) over 15 h. Filtration followed by concentration gave the *title compound* **S45** (867 mg, 2.09 mmol, 99%) as a colourless amorphous solid, which was not purified further. ¹H NMR (500 MHz, CDCl₃, mixture of rotamers, NH not observed): δ 4.54-4.47 (1H, m, 2-H), 3.83-3.75 (1H, m,

C_qCH₂C*H*_AH_BOTBS), 3.75-3.67 (2H, m, CHC*H*_AH_BOTBS and C_qCH₂CH_A*H*_BOTBS), 3.58-3.47 (3H, m, 4-H_A, 6-H_A and CHCH_A*H*_BOTBS), 3.27-3.20 (2H, m, 4-H_B and 6-H_B), 2.82-2.75 (1H, m, 3a-H), 2.21 (1H, ddd, *J*12.8, 9.9, 7.3, 3-H_A), 1.93-1.82 (4H, m, 3-H_B and C_qC*H*₂CH₂OTBS), 0.90-0.86 (18H, m, SiC_q(CH₃)₃), 0.05-0.02 (12H, m, SiCH₃). ¹³C NMR (125 MHz, CDCI₃): δ 91.1 (6a-C), 80.3 (2-C), 64.2 (CH*C*H₂OTBS), 59.0 (C_qCH₂CH₂OTBS), 55.4 (6-C), 50.0 (4-C), 46.9 (3a-C), 39.7 (C_qCH₂CH₂OTBS), 32.4 (3-C), 26.1 (2 peaks, SiC_q(CH₃)₃), 18.5 (SiC_q), 18.4(SiC_q), -5.2 (SiCH₃), -5.3 (2 peaks, SiCH₃), -5.4 (SiCH₃). **IR** v_{max}(film)/cm⁻¹ 2953, 2928, 2857, 1471, 1463, 1254, 1094, 836. **HRMS** (ESI): C₂₁H₄₆NO₃Si₂ [M+H]⁺; calculated 416.3016, found 416.3011.

(2R*,3aR*,6aR*)-6a-{2-[(*tert*-Butyldimethylsilyl)oxy]ethyl}-2-{[(*tert*-butyldimethylsilyl)oxy]methyl}-5-(2-methylpropyl)-hexahydro-2H-furo[2,3-c]pyrrole S46

Reductive amination was carried out by following general procedure C, using compound **S45** (293 mg, 0.71 mmol) and isobutyraldehyde (2.5 eq.). The crude reaction mixture was partitioned between EtOAc (25 mL) and brine (25 mL). The phases were separated and the aqueous phase was extracted with EtOAc (2 × 25 mL). The combined organic phases were dried over MgSO₄, filtered and

concetrated in vacuo. Flash chromatography eluting with 100:2.5:1 pentane-EtOAc-NEt₃ gave the title compound S46 (162 mg, 0.34 mmol, 48%) as a colourless oil. Rf 0.30 (100:2.5:1 pentane-EtOAc-NEt₃). ¹H NMR (500 MHz, CDCl₃): δ 4.29-4.20 (1H, m, 2-H), 3.78-3.69 (2H, m, C_qCH₂CH₂OTBS), 3.67 (1H, dd, J 10.6, 4.6, CHCH_AH_BOTBS), 3.59 (1H, dd, J 10.6, 4.9, CHCH_AH_BOTBS), 2.73 (1H, d, J 9.9, 6-H_A), 2.53-2.47 (2H, m, 3a-H and 4-H_A), 2.46-2.40 (1H, m, 4-H_B), 2.27 (1H, d, J 9.9, 6-H_B), 2.10-2.01 (2H, m, NCH₂CH(CH₃)₂), 1.95-1.87 (1H, m, C_qCH_AH_BCH₂OTBS), 1.87-1.74 (2H, m, 3-H_A and C_qCH_AH_BCH₂OTBS), 1.71-1.60 (2H, m, 3-H_B and NCH₂CH(CH₃)₂), 0.91-0.86 (24H, m, includes: 18H, SiC_q(CH₃)₃; and 6H, NCH₂CH(CH₃)₂), 0.05 (6H, s, SiCH₃), 0.04 (6H, s, SiCH₃). ¹³C NMR (125 MHz, CDCl₃, mixture of 2 rotamers): δ 91.1 (6a-C), 80.3 (2-C), 66.8 (6-C), 65.7 (CHCH₂OTBS), 64.4 (NCH₂CH(CH₃)₂), 61.8 (4-C), 60.1 (C_qCH₂CH₂OTBS), 46.7 (3a-C), 41.8 (C_qCH₂CH₂OTBS), 36.4 (3-C), 27.2 (NCH₂CH(CH₃)₂), 26.1 (2 peaks, SiC_q(CH₃)₃), 21.1 (NCH₂CH(CH₃)₂), 21.0 (NCH₂CH(CH₃)₂), 18.6 (SiC_q), 18.4 (SiC_q), -5.1 (2 peaks, SiCH₃) [19 of 36 expected peaks observed]. IR v_{max}(film)/cm⁻¹ 2953, 2928, 2857, 2771, 1472, 1463, 1253, 1092. HRMS (ESI): C₂₅H₅₄NO₃Si₂ [M+H]⁺; calculated 472.3642, found 472.3647.

2-{[(2R*,3aR*,6aR*)-6a-{2-[(tert-Butyldimethylsilyl)oxy]ethyl}-2-{[(tert-

butyldimethylsilyl)oxy]methyl}-hexahydro-2H-furo[2,3-c]pyrrol-5-yl]methyl}-1,3-thiazole S47

Reductive amination was carried out by following general procedure **C**, using compound **S45** (270 mg, 0.65 mmol) and 1,3-thiazolecarbaldehyde (2.5 eq.). The crude reaction mixture was partitioned between EtOAc (25 mL) and brine (25 mL). The phases were separated and the aqueous phase was extracted with EtOAc (2 × 25 mL). The combined organic phases were dried over MgSO₄,

filtered and concetrated *in vacuo*. Flash chromatography eluting with 4:1 pentane–EtOAc gave the *title compound* **S47** (209 mg, 0.41 mmol, 63%) as a colourless oil. **R**_f 0.39 (4:1 pentane–EtOAc).

¹**H NMR** (500 MHz, CDCl₃, 50:50 mixture of rotamers): δ 7.68 (1H, d, *J* 3.3, thiazole 4-H), 7.27 (1H, d, *J* 3.3, thiazole 5-H), 4.41-4.26 (1H, m, 2-H), 3.91 (1H, d, *J* 15.0, 6-H_A), 3.86 (1H, d, *J* 15.0, 6-H_B), 3.79-3.71 (2H, m, C_qCH₂CH₂OTBS), 3.69 (1H, dd, *J* 10.7, 4.5, CHCH_AH_BOTBS), 3.62 (1H, dd, *J* 10.7, 4.8, CHCH_AH_BOTBS), 2.98 (1H, d, *J* 9.7, NCH_AH_BAr), 2.73 (1H, dd, *J* 9.1, 3.1, 4-H_B), 2.67 (1H, app. t, *J* 8.1, 4-H_A), 2.61 (1H, td, *J* 7.6, 2.6, 3a-H), 2.53 (1H, d, *J* 9.7, NCH_AH_BAr), 1.97-1.81 (3H, m, 3-H_A and C_qCH₂CH₂OTBS), 1.74 (1H, dd, *J* 12.4, 5.3, 3-H_B), 0.90 (9H, s, SiC_q(CH₃)₃), 0.88 (9H, s, SiC_q(CH₃)₃), 0.07 (6H, 2 × s, SiCH₃), 0.04 (6H, s, SiCH₃). ¹³C NMR (125 MHz, CDCl₃, mixture of 2 rotamers): δ 171.3 (thiazole 2-C), 142.2 (thiazole 4-C), 141.6 (thiazole 4-C), 119.5 (thiazole 5-C), 91.3 (6a-C), 80.7 (2-C), 66.6 (NCH₂Ar), 65.7 (CHCH₂OTBS), 61.3 (4-C), 59.9 (C_qCH₂CH₂OTBS), 56.8 (6-C), 47.1 (3a-C), 41.6 (C_qCH₂CH₂OTBS), 36.1 (3-C), 26.2 (SiC_q(CH₃)₃), 26.1 (SiC_q(CH₃)₃), 18.6 (SiC_q), 18.4 (SiC_q), -5.1 (SiCH₃), -5.2 (SiCH₃) [20 of 38 expected peaks observed]. IR v_{max}(film)/cm⁻¹ 2953, 2928, 2795, 1472, 1254, 1138, 1093, 836. HRMS (ESI): C₂₅H₄₉N₂O₃SSi₂ [M+H]⁺; calculated 513.3002, found 513.3002.

(2*R**,3*aR**,6*aR**)-6a-{2-[(*tert*-Butyldimethylsilyl)oxy]ethyl}-2-{[(*tert*butyldimethylsilyl)oxy]methyl}-5-cyclobutanecarbonyl-hexahydro-2H-furo[2,3c]pyrrole S48

Cyclobutanecarbonyl chloride (0.42 mL, 3.66 mmol, 5.00 eq.) was added to a stirred solution of compound **S45** (304 mg, 0.73 mmol, 1.00 eq.) in pyridine (10 mL) at 0 °C. The reaction mixture was warmed to rt then stirred for 15 h. The reaction mixture was concentrated *in vacuo*, then partitioned between EtOAc (25 mL) and sat. aq. NaHCO₃ solution (25 mL). The phases were separated and the aqueous phase

was extracted with EtOAc (2 × 25 mL). The combined organic phases were dried over MgSO₄, filtered and concetrated *in vacuo*. Flash chromatography eluting with 7:3 pentane–EtOAc gave the *title compound* **S48** (155 mg, 0.31 mmol, 43%) as a colourless oil. **R**_f 0.15 (4:1 pentane–EtOAc).¹**H NMR** (500 MHz, CDCl₃, 330 K, 25:75 mixture of rotamers): δ 4.21-4.08 (1H, m, 2-H), 3.86-3.54 (6H, m, includes: 1H, 4-H_A; 1H, 6-H_A; 2H, CHC*H*₂OTBS; and 2H, C_qCH₂C*H*₂OTBS), 3.52-3.39 (1.75H, m, includes: 0.75H, 4-H_B; and 1H, 6-H_B), 3.26-3.08 (1.25H, m, includes: 0.25H, 4-H_B; and 1H, cyclobutyl 1-H), 2.81-2.67 (0.25H, m, 3a-H), 2.67-2.56 (0.75H, m, 3a-H), 2.41-2.24 (2H, m, cyclobutyl 2-H), 2.21-2.07 (2H, m, cyclobutyl 2-H), 2.07-1.74 (6H, m, includes: 2H, 3-H; 2H, cyclobutyl 3-H; and 2H, C_qC*H*₂C*H*₂OTBS), 0.92 (6H, s, SiC_q(CH₃)₃), 0.90 (12H, s, SiC_q(CH₃)₃) 0.09-0.04 (12H, m, SiCH₃). ¹³C NMR (125 MHz, CDCl₃, 300 K, mixture of rotamers): δ 173.2 (N(CO)CH), 172.9 (N(CO)CH), 91.4 (6a-C), 89.8 (6a-C), 79.7 (2-C), 79.2 (2-C),

65.5 (CHCH₂OTBS), 65.2 (CHCH₂OTBS), 59.3 (C_qCH₂CH₂OTBS), 59.2 (C_qCH₂CH₂OTBS), 57.0 (6-C), 56.2 (6-C), 50.9 (4-C), 50.4 (4-C), 47.2 (3a-C), 45.9 (3a-C), 40.8 (C_qCH₂CH₂OTBS), 40.5 (C_qCH₂CH₂OTBS), 38.2 (cyclobutyl 1-C), 38.1 (cyclobutyl 1-C), 33.6 (3-C), 33.1 (3-C), 25.9 (3 peaks, SiC_q(CH₃)₃), 24.7 (2 peaks, cyclobutyl 2-C), 24.6 (cyclobutyl 2-C), 18.4 (SiC_q), 18.2 (SiC_q), 18.1 (cyclobutyl 3-C), 18.0 (cyclobutyl 3-C), -5.4 (3 peaks, SiCH₃), -5.5 (SiCH₃). **IR** vmax(film)/cm⁻¹ 2952, 2929, 2857, 1645 (CO), 1432, 1254, 1095, 836. **HRMS** (ESI): C₂₆H₅₂NO₄Si₂ [M+H]⁺; calculated 498.3435, found 498.3440.

2-[(2R*,3aR*,6aR*)-2-(Hydroxymethyl)-5-(2-methylpropyl)-hexahydro-2H-furo[2,3-c]pyrrol-6ayl]ethan-1-ol F26

O-Silyl deprotection was carried out by following general procedure **G**, using compound **S46** (270 mg, 0.65 mmol) and (±)-camphorsulfonic acid (6.0 eq.) Flash chromatography eluting with 50:8:1 CH₂Cl₂–EtOH–NH₃/MeOH gave the *title compound* **F26** (82 mg, 0.34 mmol, 99%) as a colourless oil. **R**_f 0.50 (50:8:1 CH₂Cl₂–EtOH–NH₃/MeOH). ¹H NMR (500 MHz, CDCl₃, 2 × OH not

observed): δ 4.36-4.24 (1H, m, 2-H), 3.87-3.75 (3H, m, CHC*H*_AH_BOH and C_qCH₂C*H*₂OH), 3.56 (1H, dd, *J* 11.7, 4.4, CHCH_A*H*_BOH), 2.80-2.75 (1H, m, 4-H_A), 2.66-2.54 (3H, m, includes: 1H, 3a-H; at δ 2.64: 1H, d, *J* 9.9, 6-H_A; and at δ 2.57: 1H, d, *J* 9.9, 6-H_B), 2.34 (1H, dd, *J* 9.4, 5.0, 4-H_B), 2.13 (2H, d, *J* 7.3, NC*H*₂CH(CH₃)₂)), 2.01-1.90 (3H, m, 3-H_A and C_qC*H*₂CH₂OH), 1.75-1.61 (2H, m, includes: 1H, NCH₂C*H*(CH₃)₂; and at δ 1.65: 1H, dd, *J* 12.4, 5.0, 3-H_B), 0.90 (6H, d, *J* 6.6, NCH₂CH(CH₃)₂). ¹³C NMR (125 MHz, CDCl₃): δ 93.1 (6a-C), 79.5 (2-C), 65.8 (6-C), 64.3 (NCH₂CH(CH₃)₂), 63.8 (CH*C*H₂OH), 61.6 (4-C), 60.2 (C_qCH₂CH₂OH), 46.5 (3a-C), 40.5 (C_qCH₂CH₂OH), 34.2 (3-C), 27.1 (NCH₂CH(CH₃)₂), 21.0 (2 peaks, NCH₂CH(CH₃)₂). IR _{vmax}(film)/cm⁻¹ 3383 (br. s, OH), 2952, 2869, 2787, 1466, 1081, 1043, 1002. HRMS (ESI): C₁₃H₂₆NO₃ [M+H]⁺; calculated 244.1913, found 244.1909.

2-[(2R*,3aR*,6aR*)-2-(Hydroxymethyl)-5-(1,3-thiazol-2-ylmethyl)-hexahydro-2H-furo[2,3c]pyrrol-6a-yl]ethan-1-ol F27

O-Silyl deprotection was carried out by following general procedure **G**, using compound **S47** (208 mg, 0.41 mmol) and (±)-camphorsulfonic acid (10.0 eq.) over 30 h. The residue was partitioned between CH_2Cl_2 (20 mL) and sat. aq. NaHCO₃ (20 mL) and the phases were separated. The aqueous phase was extracted with CH_2Cl_2 (2 × 20 mL). The combined organic phase

was dried over Na₂SO₄ and concentrated in vacuo. Flash chromatography eluting with 50:8:1

CH₂Cl₂–EtOH–NH₃/MeOH gave the *title compound* **F27** (107 mg, 0.38 mmol, 92%) as a yellow oil. **R**₇ 0.64 (50:8:1 CH₂Cl₂–EtOH–NH₃/MeOH). ¹**H NMR** (500 MHz, CDCl₃, 50:50 mixture of rotamers, 2 × OH not observed): δ 7.70 (1H, d, *J* 3.3, thiazole 4-H), 7.29 (1H, d, *J* 3.3, thiazole 5-H), 4.49-4.42 (1H, m, 2-H), 3.94 (1H, d, *J* 15.0, 6-Ha), 3.90 (1H, d, *J* 15.0, 6-Hb), 3.86 (0.5H, d, *J* 2.8, CHC*H*AH_BOH), 3.84 (0.5H, d, *J* 2.8, CHC*H*AH_BOH), 3.81 (2H, app. t, *J* 5.5, CqCH₂C*H*₂OH), 3.58 (0.5H, d, *J* 4.2, CHCHAH_BOH), 3.55 (0.5H, d, *J* 4.2, CHCHAH_BOH), 3.02 (1H, d, *J* 9.6, NC*H*AH_BAr), 2.85-2.77 (1H, m, 4-Ha), 2.73 (0.5H, d, *J* 3.3, 4-Hb), 2.72 (0.5H, d, *J* 3.3, 4-Hb), 2.63 (2H, s, 3a-H and NCH_AH_BAr), 2.11-1.98 (2H, m, 3-Ha and CqCHAH_BCH₂OH), 1.92 (0.5H, t, *J* 5.4, CqCHA*H*_BCH₂OH), 1.90 (0.5H, t, *J* 5.4, CqCHA*H*_BCH₂OH), 1.73 (0.5H, d, *J* 5.4, 3-Hb), 1.71 (0.5H, d, *J* 5.4, 3-Hb). ¹³C NMR (125 MHz, CDCl₃, one Ar-Cq not observed): 142.4 (thiazole 4-C), 119.7 (thiazole 5-C), 93.4 (6a-C), 80.7 (2-C), 66.1 (NCH₂Ar), 63.6 (CHCH₂OH), 61.2 (4-C), 60.1 (CqCH₂CH₂OH), 56.4 (6-C), 47.3 (3a-C), 40.1 (CqCH₂CH₂OH), 34.4 (3-C). IR v_{max}(film)/cm⁻¹ 3359 (br., OH), 2950, 2926, 2870, 2797, 1136, 1081, 1042. HRMS (ESI): C₁₃H₂₁N₂O₃S [M+H]⁺; calculated 285.1273, found 285.1271.

2-[(2R*,3aR*,6aR*)-5-Cyclobutanecarbonyl-2-(hydroxymethyl)-hexahydro-2H-furo[2,3c]pyrrol-6a-yl]ethan-1-ol F28

O-Silyl deprotection was carried out by following general procedure **G**, using compound **S48** (166 mg, 0.330 mmol) and (±)-camphorsulfonic acid (5.0 eq.) Flash chromatography eluting with 50:8:1 CH₂Cl₂–EtOH–NH₃/MeOH gave the *title compound* **F28** (83 mg, 0.310 mmol, 94%) as a yellow oil. **R**_f 0.36 (50:8:1 CH₂Cl₂–EtOH–NH₃/MeOH). ¹**H NMR** (500 MHz, CDCl₃, 330 K, 60:40

mixture of rotamers): δ 4.32-4.21 (1H, m, 2-H), 3.94-3.78 (3.4H, m, includes: 0.4H, 6-H_A; 2H, C_qCH₂CH₂OH; and 1H, CHC*H*_AH_BOH), 3.77-3.69 (1.2H, m, includes: 0.6H, 4-H_B; and 0.6H, 6-H_A), 3.66 (0.4H, dd, *J* 11.0, 8.8, 4-H_B), 3.54-3.41 (1.6H, m, includes: 0.6H, 4-H_A; and 1H, CHCH_AH_BOH), 3.45 (0.4H, d, *J* 12.4, 6-H_B), 3.34 (0.6H, d, *J* 12.4, 6-H_B), 3.25 (0.4H, dd, *J* 11.0, 6.1, 4-H_A), 3.21-3.11 (1H, m, cyclobutyl 1-H), 2.80 (2H, br. s, 2 × OH), 2.76-2.69 (0.4H, m, 3a-H), 2.68-2.61 (0.6H, m, 3a-H), 2.39-2.06 (5H, m, includes: 1H, 3-H_A; and 4H, cyclobutyl 2-H), 2.03-1.92 (2H, m, C_qCH₂CH₂OH), 1.92-1.76 (3H, m, includes: 1H, 3-H_B; and 2H, cyclobutyl 3-H). ¹³C NMR (125 MHz, CDCl₃, mixture of rotamers): δ 173.5 (N(*C*O)CH), 173.3 (N(*C*O)CH), 93.4 (6a-C), 92.0 (6a-C), 80.3 (2-C), 79.9 (2-C), 63.7 (2 peaks, CHCH₂OH), 60.2 (C_qCH₂CH₂OH), 60.0 (C_qCH₂CH₂OH), 57.0 (6-C), 56.3 (6-C), 51.1 (4-C), 50.9 (4-C), 47.9 (3a-C), 46.1 (3a-C), 39.4 (C_qCH₂CH₂OH), 39.3 (C_qCH₂CH₂OH), 38.3 (cyclobutyl 1-C), 38.2 (cyclobutyl 1-C), 33.0 (3-C), 32.4 (3-C), 24.9 (cyclobutyl 2-C), 24.8 (3 peaks, cyclobutyl 2-C), 18.2 (2 peaks, cyclobutyl 3-C) [28 of 28 expected peaks

observed]. IR $v_{max}(film)/cm^{-1}$ 3391, 2942, 2872, 1617, 1450, 1088, 1047. HRMS (ESI): $C_{14}H_{23}NNaO_4$ [M+Na]⁺; calculated 292.1525, found 292.1525.

5.4.3.4 Preparation of fragments derived from scaffold 8

(*1R**,*3R**,*7R**,*8R**,*10R**)-4,7-dimethyl-6,14-dioxa-4,12diazatetracyclo[6.5.1.0^{1,10}.0^{3,7}]tetradecan-5-one F5

NaH (60% dispersion in mineral oil, 4 mg, 100 μ mol, 1.2 eq.) was added to a stirred solution of **8** (30 mg, 84 μ mol, 1.0 eq.) in THF (10 mL) at 0 °C. Mel (50 μ L, 0.80 mmol, 10.0 eq.) was added and the reaction mixture was stirred for 15 h. The reaction mixture was guenched by the addition of sat. aq. NH₄Cl

solution (0.3 mL), then concentrated *in vacuo*. The resulting residue was flushed through a pad of SiO₂, eluting with 9:1 EtOAc–MeOH, and carried forward to the next step without further purification. The crude residue was subjected to hydrogenation following general procedure **B**, using Pd/C (10 mg, 33% w/w) and MeOH (10 mL) over 15 h. Flash chromatography eluting with 93:7:1 CH₂Cl₂–EtOH–NH₃/MeOH gave the *title compound* **F5** (9 mg, 38 µmol, 45%) as a colourless oil. **R**_f 0.13 (50:8:1 CH₂Cl₂–EtOH–NH₃/MeOH). ¹**H NMR** (400 MHz, MeOD-d₄, NH not observed): δ 4.25 (1H, d, *J*7.2, 8-H), 3.67 (1H, dd, *J* 5.0, 1.4, 3-H), 3.11-3.01 (2H, m, includes at δ 3.08: 1H, d, *J* 12.6, 13-Ha; and at δ 3.05: 1H, dd, *J* 12.0, 8.4, 11-H_B), 2.84 (3H, s, O(CO)NCH₃), 2.74 (1H, dd, *J* 12.0, 3.7, 11-Ha), 2.64 (1H, d, *J* 12.6, 13-H_B), 2.52-2.44 (1H, m, 10-H), 2.32 (1H, dd, *J* 13.8, 9.2, 9-Ha), 2.14-2.08 (2H, m, 2-H), 1.81-1.72 (1H, m, 9-H_B), 1.60 (3H, s, CqCH₃). ¹³**C NMR** (100 MHz, MeOD-d₄): δ 160.8 (5-C), 92.4 (1-C), 84.1 (8-C), 78.3 (7-C), 62.2 (3-C), 56.5 (11-C or 13-C), 56.2 (11-C or 13-C), 46.7 (10-C), 35.6 (9-C), 30.7 (2-C), 29.6 (O(CO)NCH₃), 24.8 (CqCH₃). **IR** v_{max}(film)/cm⁻¹ 2935, 2874, 1748 (CO), 1658, 1426, 1399, 1277, 1046. **HRMS** (ESI): C12H19N2O3 [M+H]⁺; calculated 239.1390, found 239.1392.

(1R*,3R*,7R*,8R*,10R*)-7-Methyl-6,14-dioxa-4,12-diazatetracyclo[6.5.1.0^{1,10}.0^{3,7}]tetradecan-5on F6

Hydrogenation was carried out following general procedure **B**, using compound **8** (335 mg, 0.93 mmol, 1.0 eq.) and Pd/C (30 mg, 10% w/w) in MeOH (10 mL) over 15 h. Filtration followed by concentration gave the *title compound* **F6** (207 mg, 0.92 mmol, 99%) as a colourless foam which was

carried on to the subsequent steps without further purification. ¹H NMR (400 MHz, MeOD-d₄, 2 × NH not observed): δ 4.33 (1H, d, *J* 7.5, 8-H), 3.94 (1H, d, *J* 5.9, 3-H), 3.58-3.50 (2H, m, includes: 1H, 11-H_B; and at δ 3.53: 1H, d, *J* 12.4, 13-H_A), 3.23 (1H, d, *J* 12.4, 13-H_B), 3.19 (1H, dd, *J* 12.3, 3.9, 11-H_A), 3.14-3.04 (1H, m, 10-H), 2.51 (1H, dd, *J* 14.1, 9.2, 9-H_A), 2.25 (1H, dd, *J* 14.9, 5.9, 2-H_A), 2.03 (1H, d, *J* 14.9, 2-H_B), 1.96 (1H, ddd, *J* 14.1, 7.5, 4.9, 9-H_B), 1.59 (3H, s, C_qCH₃). ¹³C NMR (100 MHz, MeOD-d₄): δ 161.1 (5-C), 89.9 (1-C), 83.4 (8-C), 79.8 (7-C), 56.4 (3-C), 54.5 (11-C or 13-C), 54.1 (11-C or 13-C), 44.8 (10-C), 35.6 (2-C), 32.4 (9-C), 24.7 (C_qCH₃). IR v_{max}(film)/cm⁻¹ 3230, 2936, 2774, 1749, 1385, 1279, 1048. HRMS (ESI): C₁₁H₁₇N₂O₃ [M+H]⁺; calculated 225.1234, found 225.1229.

(*1R**,*3R**,*7R**,*8R**,*10R**)-7,12-Dimethyl-6,14-dioxa-4,12diazatetracyclo[6.5.1.0^{1,10}.0^{3,7}]tetradecan-5-one F7

Reductive amination was carried out by following general procedure **C**, using compound **F6** (37 mg, 0.17 mmol) and p-formaldehyde (5.0 eq.) at reflux. Flash chromatography eluting with 98:2:0.1 CH₂Cl₂–EtOH–NH₃/MeOH gave

F7 the *title compound* **F7** (9 mg, 38 μmol, 22%) as a colourless oil. **R**_f 0.55 (98:2:0.1 CH₂Cl₂–EtOH–NH₃/MeOH). ¹**H NMR** (400 MHz, MeOD-d₄, NH not observed): δ 4.27 (1H, d, *J* 7.3, 8-H), 3.88 (1H, d, *J* 5.9, 3-H), 2.93-2.82 (2H, m, includes: 1H, 10-H; and at δ 2.89: 1H, d, *J* 10.7, 13-H_A), 2.72 (1H, dd, *J* 9.8, 8.6, 11-H_B), 2.58 (1H, dd, *J* 9.8, 4.8, 11-H_A), 2.47 (1H, d, *J* 10.7, 13-H_B), 2.39-2.31 (4H, m, includes: 1H, 9-H_A; and at δ 2.36: 3H, s, NCH₃), 2.14 (1H, dd, *J* 14.7, 5.9, 2-H_A), 1.92 (1H, d, *J* 14.7, 2-H_B), 1.87-1.79 (1H, m, 9-H_B), 1.58 (3H, s, C_qCH₃). ¹³C NMR (100 MHz, MeOD-d₄): δ 161.3 (5-C), 91.0 (1-C), 84.2 (8-C), 80.3 (7-C), 65.5 (13-C), 64.4 (11-C), 57.1 (3-C), 46.6 (10-C), 41.9 (NCH₃), 34.6 (2-C or 9-C), 34.4 (2-C or 9-C), 25.1 (C_qCH₃). IR ν_{max} (film)/cm⁻¹ 3245, 2938, 2791, 1750 (CO), 1453, 1382, 1330. HRMS (ESI): C₁₂H₁₉N₂O₃ [M+H]⁺; calculated 239.1390, found 239.1392.

(*1R**,*3R**,*7R**,*8R**,*10R**)-7-Methyl-5-oxo-6,14-dioxa-4,12diazatetracyclo[6.5.1.0^{1,10}.0^{3,7}]tetradecane-12-carbaldehyde F8

To pre-form acetic formic anhydride, Ac₂O (0.63 ml, 6.60 mmol) was added to HCO₂H (0.25 mL, 6.60 mmol) and the reaction mixture was heated at 60 °C for 1 h, then cooled to rt. A 0.1 mL aliquot was added to a stirred solution of **F6** (37 mg, 0.17 mmol, 1.00 eg.) and Et₃N (0.2 mL, 2.7 mmol,

16.0 eq.) in CH₂Cl₂ (10 mL) at 0 °C. The reaction mixture was warmed to rt, stirred for 1 h, then concentrated in vacuo. Flash chromatography eluting with 29:1:0.1 CH₂Cl₂-EtOH-NH₃/MeOH gave the title compound F8 (18 mg, 71 µmol, 42%) as a colourless oil. Rf 0.47 (29:1:0.1 CH₂Cl₂-EtOH-NH₃/MeOH). ¹H NMR (400 MHz, MeOD-d₄, NH not observed, two stable conformations observed at the pyrrolidine ring [50:50 mixture]): δ 8.14 (0.5H, s, NCHO), 8.13 (0.5H, s, NCHO), 4.33 (1H, app. t, J 7.6, 8-H), 4.02 (0.5H, dd, J 11.2, 9.2, 11-H_{B-conf1}), 3.94-3.88 (1.5H, m, includes: 1H, 3-H; and 0.5H, 13-HA-conf1), 3.80 (0.5H, d, J 13.7, 13-HA-conf2), 3.73 (0.5H, app. dd, J12.4, 9.7, 11-HB-conf2), 3.53 (0.5H, d, J 12.5, 13-HB-conf1), 3.49-3.37 (1.5H, m, includes: 0.5H, 11-HA-conf1; 0.5H, 11-HA-conf2; and 0.5H, 13-HB-conf2), 3.01-2.87 (1H, m, 10-H), 2.49 (0.5H, dd, J14.2, 8.9, 9-H_A), 2.40 (0.5H, dd, J 14.2, 8.9, 9-H_A), 2.22 (1H, app. td, J 15.1, 6.1, 2-H_A), 1.98 (1H, dd, J 15.1, 3.5, 2-H_B), 1.97-1.85 (1H, m, 9-H_B), 1.60 (3H, s, C_qCH_3). ¹³C NMR (100 MHz, MeOD-d₄, mixture of two rotamers): δ 163.1 (NCHO), 162.9 (NCHO), 161.3 (2 peaks, 5-C), 89.9 (1-C), 89.4 (1-C), 84.0 (8-C), 83.7 (8-C), 80.0 (7-C), 79.9 (7-C), 56.6 (3-C), 55.6 (2 peaks, 11-C or 13-C), 52.8 (2 peaks, 11-C or 13-C), 45.5 (10-C), 45.1 (10-C), 35.5 (2-C or 9-C), 34.2 (2-C or 9-C), 33.6 (2-C or 9-C), 33.5 (2-C or 9-C), 24.7 (2 peaks, CqCH₃) [23 of 24 expected peaks observed]. **IR** v_{max}(film)/cm⁻¹ 3270, 2936, 2886, 1751 (CO), 1652 (CO), 1429, 1387. HRMS (ESI): C₁₂H₁₇N₂O₄ [M+H]⁺; calculated 253.1183, found 253.1184.

(*1R**,*3R**,*7R**,*8R**,*10R**)-12-acetyl-7-methyl-6,14-dioxa-4,12diazatetracyclo[6.5.1.0^{1,10}.0^{3,7}]tetradecan-5-one F9

N-Acylation was carried out by following general procedure **E**, using compound **F6** (37 mg, 0.17 mmol). Flash chromatography eluting with 98:2:0.1 CH₂Cl₂–EtOH–NH₃/MeOH gave the *title compound* **F9** (31 mg, 0.12 mmol, 68%) as a colourless oil. **R**_f 0.10 (98:2:0.1 CH₂Cl₂–EtOH–

NH₃/MeOH). ¹**H NMR** (400 MHz, MeOD-d₄, NH not observed, 50:50 mixture of rotamers): δ 4.34 (1H, d, *J* 7.7, 8-H), 4.03 (0.5H, dd, *J* 10.7, 9.8, 11-H_A), 3.98-3.80 (2.5H, m, includes: 1H, 3-H; 0.5H, 11-H_A; and 1H, 13-H_A), 3.59 (0.5H, d, *J* 12.4, 13-H_B), 3.43-3.25 (1.5H, m, includes: 1H, 11-H_B; and 0.5H, 13-H_B), 3.04-2.84 (1H, m, 10-H), 2.43 (0.5H, app. t, *J* 7.3, 9-H_A), 2.40 (0.5H, app. t, *J* 7.3, 9-H_A), 2.23 (0.5H, dd, *J* 6.0, 5.2, 2-H_A), 2.20 (0.5H, dd, *J* 6.0, 5.2, 2-H_A), 2.10 (3H, s, Ac), 2.06 (3H, s, N(CO)C*H*₃), and 2.02-1.89 (2H, m, 2-H_B and 9-H_B). ¹³**C NMR** (100 MHz, MeOD-d₄, mixture of two rotamers): δ 171.7 (N(CO)CH₃), 171.6 (N(CO)CH₃), 161.4 (5-C), 161.3 (5-C), 90.7 (1-C), 89.5 (1-C), 83.8 (8-C), 83.8 (8-C), 80.0 (7-C), 79.9 (7-C), 57.4 (13-C), 57.0 (13-C), 56.5 (3-C), 55.6 (11-C), 55.3 (11-C), 46.2 (10-C), 44.7 (10-C), 34.6 (2-C or 9-C), 34.2 (2-C or 9-C), 34.0 (2-C or 9-C), 33.9 (2-C or 9-C), 24.6 (N(CO)CH₃), 22.0 (C_qCH₃), 21.8 (C_qCH₃) [24 of 26 expected peaks observed]. **IR** ν_{max} (film)/cm⁻¹ 3259, 2936, 2883, 1746, 1618, 1455, 972. **HRMS** (ESI): C₁₃H₁₉N₂O₄ [M+H]⁺; calculated 267.1339, found 267.1343.

5.4.3.5 Preparation of fragments derived from scaffold 9

Methyl (*1R**,*9R**,*11R**)-15-oxa-4,7,13-triazatetracyclo[7.5.1.0^{1,11}.0^{3,8}]pentadeca-3(8),4,6-triene-13-carboxylate F10

NaOH (250 mg, 6.25 mmol, 21.0 eq.) was added to a stirred solution of compound **9** (100 mg, 0.30 mmol, 1.00 eq.) in MeOH (3.0 mL). The reaction mixture was heated at reflux for 15 h. The reaction mixture was purified by SCX SPE eluting with MeOH, followed by flash chromatography eluting with

98:2:0.1 CH₂Cl₂–EtOH–NH₃/MeOH gave the *title compound* **F10** (48 mg, 0.18 mmol, 61%) as a pale yellow oil. **R**_f 0.04 (98:2:0.1 CH₂Cl₂–EtOH–NH₃/MeOH).¹**H NMR** (400 MHz, CDCl₃): δ 8.40 (1H, d, *J* 2.4, 5-H or 6-H), 8.29 (1H, d, *J* 2.4, 5-H or 6-H), 5.29 (1H, d, *J* 6.8. 9-H), 4.12-3.96 (1H, m, 12-Ha), 3.84 (1H, app. t, *J* 10.3, 14-Ha), 3.71 (3H, s, CO₂CH₃), 3.60-3.28 (3H, m, 2-Ha, 12-H_B and 14-H_B), 2.92 (1H, d, *J* 17.5, 2-H_B), 2.77-2.61 (1H, m, 11-H), 2.46-2.35 (1H, m, 10-H_A), 2.31-2.18 (1H, m, 10-H_B). ¹³**C NMR** (100 MHz, CDCl₃, mixture of two rotamers): δ 155.3 (8-C), 155.2 (N(CO)O), 149.2 (3-C), 143.5 (5-C or 6-C), 141.6 (5-C or 6-C), 91.0 (1-C), 90.1 (1-C), 80.4 (9-C), 54.9 (12-C), 54.6 (12-C), 54.1 (14-C), 54.0 (14-C), 52.6 (NCO₂CH₃), 46.6 (11-C), 45.6 (11-C), 43.2 (10-C), 39.4 (2-C) [17 of 26 expected peaks observed]. **IR** v_{max}(film)/cm⁻¹ 2953, 2876, 1696 (CO), 1450, 1390, 1117, 770, 730. **HRMS** (ESI): C₁₃H₁₆N₃O₃ [M+H]⁺; calculated 262.1191, found 262.1187.

(1R*,9R*,11R*)-15-Oxa-4,7,13-triazatetracyclo[7.5.1.0^{1,11}.0^{3,8}]pentadeca-3(8),4,6-triene F11

KOH (340 mg, 6.10 mmol, 55.0 eq.) was added to a stirred solution of compound **9** (30 mg, 0.11 mmol, 1.00 eq.) in 7:3 THF-H₂O (2.4 mL). The reaction mixture was heated at reflux for 2 days. The reaction mixture was concentrated *in vacuo*. The residue was purified by SCX SPE following general

procedure **A**, eluting with MeOH, then sat. NH₃/MeOH, followed by flash chromatography eluting with 50:8:1 CH₂Cl₂–EtOH–NH₃/MeOH to give the *title compound* **F11** (2.0 mg, 9.8 μ mol, 9%) as a colourless oil. ¹H **NMR** (400 MHz, MeOD-d₄, NH not observed): δ 8.46 (1H, d, *J* 2.7, 5-H or 6-H), 8.37 (1H, d, *J* 2.7, 5-H or 6-H), 5.19 (1H, d, *J* 6.4, 9-H), 3.43 (1H, d, *J* 17.4, 2-Ha), 3.29 (1H, d, *J* 12.7, 14-Ha), 3.10 (1H, dd, *J* 12.2, 7.7, 12-Ha), 2.98 (1H, d, *J* 17.4, 2-Hb), 2.87 (1H, app. d, *J* 12.2, 12-Hb), 2.79 (1H, d, *J* 12.7, 14-Hb), 2.62-2.46 (2H, m, 10-Ha and 11-H), 2.18-2.09 (1H, m, 10-Hb). ¹³C **NMR** (100 MHz, MeOD-d₄): δ 157.0 (8-C), 151.9 (3-C), 144.3 (5-C or 6-C), 142.6 (5-C or 6-C), 94.1 (1-C), 81.2 (9-C), 56.4 (12-C), 54.9 (14-C), 48.1 (11-C), 44.6 (10-C), 39.5 (2-C). **IR** v_{max}(film)/cm⁻¹ 3244, 3046, 2958, 2868, 1643, 1594, 1397, 1015. **HRMS** (ESI): C₁₁H₁₄N₃O [M+H]⁺; calculated 204.1131, found 204.1127.

5.4.3.6 Preparation of fragments derived from scaffold 13

Benzyl (*1R**,*5R**,*7R**,*9S**,*10S**)-9-(dimethylamino)-10-hydroxy-10-methyl-11-oxa-3azatricyclo[5.3.1.0^{1,5}]undecane-3-carboxylate S38

Reductive amination was carried out by following general procedure **C**, using compound **13** (70 mg, 0.16 mmol), p-formaldehyde (5.0 eq.), and NaBH(OAc)₃ (5.0 eq.). The reaction mixture was heated at reflux for 15 h, then cooled to rt. The reaction mixture was partitioned with sat. aq. NaHCO₃ (10 mL). The phases were separated and the aqueous layer was extracted with CH₂Cl₂ (2 × 10 mL). The combined organic phases

were washed with brine (10 mL), dried over MgSO₄, filtered, and concentrated *in vacuo*. The residue was diluted in THF (10 mL) and TBAF (1.0 M in THF, 0.32 mL, 0.32 mmol, 2.0 eq.) was added. The reaction mixture was stirred for 0.5 h, then concentrated *in vacuo*. Flash chromatography eluting with 29:1:0.1 CH₂Cl₂–EtOH–NH₃/MeOH gave the *title compound* **S38** (36 mg, 100 μ mol, 62%, 2 steps) as a colourless oil. **R**_f 0.19 (29:1:0.1 CH₂Cl₂–EtOH–NH₃/MeOH). ¹H NMR (400 MHz, CHCl₃, 50:50 mixture of rotamers, OH not observed) δ 7.41-7.23 (5H, m, Cbz Ar-H), 5.14 (1H, app. d, *J* 14.2, OC*H*AH_BPh), 5.08 (1H, app. d, *J* 14.2, OCHAH_BPh), 4.40 (1H, dd, *J* 11.5, 5.5, 7-H), 3.81-3.66 (1H, m, 4-H_A), 3.66-3.51 (2H, m, 2-H_A and 4-H_B), 3.51-3.35 (1H, m, 2-H_B), 3.14-2.95 (1H, m, 5-H), 2.48 (1H, dd, *J* 8.6, 3.2, 9-H), 2.36 (6H, s, N(CH₃)₂), 2.26-2.10 (2H, m, 6-H_A and 8-H_B),

1.80-1.62 (2H, m, 6-H_B and 8-H_A), 1.29 (3H, s, C_qC*H*₃). ¹³**C NMR** (100 MHz, CHCl₃, mixture of two rotamers): 155.2 (N(CO)O), 137.1 (Ar-C_q), 128.5 (Ar-C), 128.0 (2 peaks, Ar-C), 95.2 (1-C), 94.3 (1-C), 76.0 (7-C), 70.0 (10-C), 66.9 (O*C*H₂Ph), 65.9 (9-C), 54.2 (4-C), 54.0 (4-C), 52.0 (2-C), 51.5 (2-C), 45.9 (N(CH₃)₂), 40.7 (6-C), 39.7 (5-C), 38.8 (5-C), 27.1 (8-C), 26.1 (C_qCH₃) [21 of 36 expected peaks observed]. **IR** v_{max} (film)/cm⁻¹ 2948, 2875, 1699 (CO), 1419, 1357, 1228, 1114, 1085. **HRMS** (ESI): C₂₀H₂₉N₂O₄ [M+H]⁺; calculated 361.2122, found 361.2126.

Benzyl (*1R**,*5R**,*7R**,*9S**,*10S**)-9-formamido-10-hydroxy-10-methyl-11-oxa-3azatricyclo[5.3.1.0^{1,5}]undecane-3-carboxylate S39

N-Formylation was carried out by following general procedure **D**, using compound **13** (31 mg, 70 μ mol) and Ac₂O (20 eq.). O-Silyl deprotection was carried out by following general procedure **H**, using the crude residue. Flash chromatography eluting with 29:1:0.1 CH₂Cl₂–EtOH–NH₃/MeOH gave the *title compound* **S39** (24 mg,

67 μmol, 97%, 2 steps) as a colourless oil. **R**_f 0.38 (29:1:0.1 CH₂Cl₂–EtOH–NH₃/MeOH). ¹H **NMR** (400 MHz, CHCl₃, 50:50 mixture of rotamers, OH not observed): δ 8.19 (1H, d, *J* 3.4, NHC*H*O), 7.39-7.27 (5H, m, Cbz Ar-H), 6.42 (1H, d, *J* 8.8, CHN*H*CHO), 5.10 (2H, s, OC*H*₂Ph), 4.53 (1H, br. s, 7-H), 3.99-3.77 (3H, m, 2-H_A, 4-H_A and 9-H), 3.56 (1H, d, *J* 12.2, 2-H_B), 3.29-3.08 (2H, m, 4-H_B and 5-H), 2.28-2.11 (2H, m, 6-H_A, 8-H_B), 2.04 (0.5H, d, *J* 15.1, 8-H_A), 1.98-1.82 (1.5H, m, includes: 1H, 6-H_B; and at δ 1.90: 0.5H, d, *J*, 15.1, 8-H_A), 1.42 (1.5H, s, CH₃), 1.41 (1.5H, s, CH₃). ¹³C NMR (100 MHz, CHCl₃, mixture of two rotamers, 10-C not observed): δ 163.0 (NH(CO)H), 162.6 (NH(CO)H), 154.7 (N(CO)O), 136.9 (Ar-C_q), 128.6 (Ar-C), 128.2 (Ar-C), 128.1 (Ar-C), 128.0 (Ar-C), 94.6 (1-C), 93.7 (1-C), 70.5 (7-C), 69.9 (7-C), 67.1 (O*C*H₂Ph), 67.0 (O*C*H₂Ph), 55.3 (4-C), 54.9 (4-C), 53.1 (9-C), 52.9 (9-C), 51.2 (2-C), 50.5 (2-C), 40.7 (5-C), 39.5 (5-C), 37.1 (8-C), 36.6 (8-C), 33.9 (6-C), 33.6 (6-C), 25.7 (C_q*C*H₃), 25.5 (C_q*C*H₃) [28 of 34 expected peaks observed]. **IR** v_{max}(film)/cm⁻¹ 3317 (OH), 2952, 2886, 1668 (CO), 1423, 1121, 1085, 732. **HRMS** (ESI): C₁₉H₂₅N₂O₅ [M+H]⁺; calculated 361.1758, found 361.1760.

Benzyl (*1R**,*5R**,*7R**,*9S**,*10S**)-9-acetamido-10-hydroxy-10-methyl-11-oxa-3azatricyclo[5.3.1.0^{1,5}]undecane-3-carboxylate S40

N-Acylation was carried out by following general procedure **E**, using compound **13** (90 mg, 0.20 mmol). The reaction mixture was stirred at rt for 10 min, then sat. aq. NH₄Cl (10 mL) was added. The phases were separated and the aqueous layer was extracted with CH_2Cl_2 (2 × 10 mL). The combined organic phases were dried over MgSO₄,

filtered, and concentrated in vacuo. O-Silyl deprotection was carried out by following general procedure H, using the crude residue. Flash chromatography eluting with 29:1:0.1 CH₂Cl₂-EtOH-NH₃/MeOH gave the *title compound* S40 (59 mg, 0.16 mmol, 79%, 2 steps) as a colourless oil. Rf 0.10 (29:1:0.1 CH₂Cl₂-EtOH-NH₃/MeOH). ¹H NMR (400 MHz, CHCl₃, 50:50 mixture of rotamers): 6 7.41-7.28 (5H, m, Cbz Ar-H), 6.10 (0.5H, app. s, NH), 6.03 (0.5H, app. s, NH), 5.11 (2H, s, OCH₂Ph), 4.53 (1H, br. s, 7-H), 4.00-3.75 (3H, m, 2-H_A, 4-H_A and 9-H), 3.57-3.55 (1H, m, 2-H_B, includes at δ 3.56: 0.5H, J 12.1; and at δ 3.55: 0.5H, J 12.1), 3.33-3.01 (3H, m, 4-H_B, 5-H and OH), 2.34-2.17 (1H, m, 8-H_B), 2.13 (1H, dd, *J* 13.2, 8.3, 6-H_A), 2.07-1.92 (4H, m includes: 1H, 6-H_B; at δ 2.03: 1.5H, s, NH(CO)CH₃, and at δ 2.01: 1.5H, s, NH(CO)CH₃), 1.89 (0.5H, d, J 15.0, 8-H_A), 1.78 (0.5H, d, J 15.0, 8-H_A), 1.42 (1.5H, s, C_qCH₃), 1.40 (1.5H, s, C_qCH₃). ¹³C NMR (100 MHz, CHCl₃, mixture of two rotamers, 10-C not observed): δ 172.4 (NH(CO)CH₃), 172.0 (NH(CO)CH₃), 154.7 (N(CO)O), 154.6 (N(CO)O), 136.9 (Ar-Cq), 136.8 (Ar-Cq), 128.6 (Ar-C), 128.1 (2 peaks, Ar-C), 127.0 (Ar-C), 94.6 (1-C), 93.7 (1-C), 70.6 (7-C), 70.0 (7-C), 67.0 (OCH₂Ph), 55.3 (4-C), 54.8 (4-C), 54.1 (9-C), 54.0 (9-C), 51.0 (2-C), 50.5 (2-C), 40.6 (5-C), 39.4 (5-C), 37.3 (6-C), 36.7 (6-C), 34.0 (8-C), 33.6 (8-C), 25.7 (C_qCH₃), 25.5 (C_qCH₃), 23.7 (NH(CO)CH₃), 23.6 (NH(CO)CH₃) [31 of 36 expected peaks observed]. IR vmax(film)/cm⁻¹ 3342 (OH), 2952, 2887, 1683 (CO), 1499, 1422, 1346, 731. HRMS (ESI): C₂₀H₂₇N₂O₅ [M+H]⁺; calculated 375.1915, found 375.1916.

(*1R**,*5R**,*7R**,*9S**,*10S**)-9-(Dimethylamino)-10-methyl-11-oxa-3-azatricyclo[5.3.1.0^{1,5}]undecan-10-ol F13

Hydrogenation was carried out following general procedure **B**, using compound **S38** (36 mg, 100 μ mol) and Pd/C (5 mg, 15% w/w) in MeOH (10 mL) over 15 h. Filtration followed by concentration gave the *title compound* **F13** (21 mg, 92 μ mol, 92%) as a colourless oil. ¹H NMR (400 MHz, MeOD-d₄, OH and NH not

observed): 4.38 (1H, ddd, *J* 8.2, 5.4, 3.1, 7-H), 3.23-3.07 (1H, m, 5-H), 2.94 (1H, d, *J* 12.4, 2-H_A), 2.90-2.80 (2H, m, 4-H), 2.77 (1H, d, *J* 12.4, 2-H_B), 2.53 (1H, dd, *J* 9.0, 7.4, 9-H), 2.40 (6H, s, N(CH₃)₂), 2.19 (1H, dd, *J* 9.4, 6.2, 6-H_A), 2.16-2.11 (1H, m, 8-H_B), 1.63-1.51 (2H, m, 6-H_B and 8-H_A),

1.32 (3H, s, C_qCH₃). ¹³**C NMR** (100 MHz, MeOD-d₄): δ 97.7 (1-C), 76.3 (7-C), 73.6 (10-C), 66.3 (9-C), 54.6 (4-C), 53.1 (2-C), 45.2 (NCH₃)₂), 42.7 (6-C), 42.1 (5-C), 26.2 (8-C), 25.4 (C_qCH₃). **IR** v_{max}(film)/cm⁻¹ 3286 (br. OH, NH), 2954, 2871, 2820, 2778, 1647, 1460. **HRMS** (ESI): C₁₂H₂₂N₂NaO₂ [M+Na]⁺; calculated 249.1573, found 249.1573.

N-[(*1R**,*5R**,*7R**,*9S**,*10S**)-10-Hydroxy-10-methyl-11-oxa-3-azatricyclo[5.3.1.0^{1,5}]undecan-9yl]formamide F14

Hydrogenation was carried out following general procedure **B**, using compound **S39** (24 mg, 66 μ mol) and Pd/C (5 mg, 20 % w/w) in MeOH (10 mL) over 15 h. Filtration followed by concentration gave the *title compound* **F14** (14 mg, 62 μ mol, 94%) as a colourless oil. ¹H NMR (400 MHz, MeOD-d₄, OH and

F14 (14 Hig, 62 μHiol, 94 %) as a colourless off. **H NMR** (400 MH2, MeOD-44, OH and 2 × NH not observed): δ 8.11 (1H, d, J 0.9, NHC*H*O), 4.46 (1H, app. t, J 5.4, 7-H), 3.89 (1H, dd, J 6.4, 1.7, 9-H), 3.21-3.14 (1H, m, 5-H), 3.12 (1H, d, J 11.2, 4-H_A), 3.07 (1H, d, J 12.3, 2-H_A), 2.97 (1H, d, J 12.3, 2-H_B), 2.78 (1H, dd, J 11.2, 3.5, 4-H_B), 2.30 (1H, dd, J 12.7, 8.7, 6-H_A), 2.17 (1H, app. dt, J 14.7, 5.6, 8-H_B), 1.86 (1H, ddd, J 14.7, 2.4, 1.9, 8-H_A), 1.83-1.75 (1H, m, 6-H_B), 1.41 (3H, s, C_qCH₃). ¹³**C** NMR (100 MHz, MeOD-d₄): δ 164.5 (NH(CO)H), 97.2 (1-C), 77.9 (10-C), 70.5 (7-C), 56.0 (4-C), 53.5 (9-C), 52.1 (2-C), 42.6 (5-C), 38.9 (6-C), 34.8 (8-C), 25.3 (CH₃). IR v_{max} (film)/cm⁻¹ 3294 (br. OH, NH), 2930, 2873, 1661, 1511, 1383, 1167, 1146. HRMS (ESI): C₁₁H₁₉N₂O [M+H]⁺; calculated 227.1390, found 227.1287.

N-[(*1R**,*5R**,*7R**,*9S**,*10S**)-10-hydroxy-10-methyl-11-oxa-3-azatricyclo[5.3.1.0^{1,5}]undecan-9yl]acetamide F15

Hydrogenation was carried out following general procedure **B**, using compound **S40** (59 mg, 0.16 mmol) and Pd/C (5 mg, 10% w/w) in MeOH (10 mL) over 15 h. Filtration followed by concentration gave the *title compound* **F15** (38 mg, 0.16 mol, 99%) as a colourless oil. ¹H NMR (400 MHz, MeOD-d₄,

OH and 2 × NH not observed): δ 4.49 (1H, t, J 5.5, 7-H), 3.80 (1H, dd, J 6.5, 2.4, 9-H), 3.52-3.41 (3H, m, includes: 1H, 4-H_A; 1H, 5-H; and at δ : 3.44: 1H, d, J 12.3, 2-H_A), 3.37 (1H, d, J 12.3, 2-H_B), 3.19-3.10 (1H, m, 4-H_B), 2.42 (1H, dd, J 12.8, 8.2, 6-H_A), 2.14 (1H, dt, J 14.7, 5.7, 8-H_B), 2.02 (3H, s, NH(CO)C*H*₃), 1.92-1.87 (1H, m, 6-H_B), 1.87-1.80 (1H, m, 8-H_A), 1.38 (3H, s, C_qCH₃). ¹³C NMR (100 MHz, MeOD-d₄): δ 174.6 (NH(CO)CH₃), 95.0 (1-C), 77.9 (10-C), 70.4 (7-C), 54.5 (9-C), 54.3 (4-C), 50.7 (2-C), 40.5 (5-C), 38.9 (6-C), 34.1 (8-C), 25.5 (C_qCH₃), 22.8 (NH(CO)CH₃). IR v_{max}(film)/cm⁻¹ 3333 (br. OH, NH), 2967, 2773, 1642, 1526, 1436, 1376, 1098. HRMS (ESI): C₁₂H₂₁N₂O₃ [M+H]⁺; calculated 241.1547, found 241.1549.

5.4.3.7 Preparation of fragments derived from scaffold 14

(*1R**,*13R**,*15R**)-19-oxa-3,10,17-triazapentacyclo[11.5.1.0^{1,15}.0^{2,11}.0^{4,9}]nonadeca-2(11),3,5,7,9-pentaene F16

Hydrogenation was carried out following general procedure **B**, using compound **14** (281 mg, 0.73 mmol) and Pd(OH)₂/C (60 mg, 10% w/w) in MeOH (10 mL) over 15 h. Flash chromatography eluting with 93:7:1 CH₂Cl₂–EtOH–NH₃/MeOH, then 50:8:1 CH₂Cl₂–EtOH–NH₃/MeOH, gave the *title compound* **F16** (44 mg, 0.17 mmol, 24%) as a colourless oil.^{*} **R**_f 0.35 (50:8:1 CH₂Cl₂–EtOH–NH₃/MeOH). ¹**H NMR** (500 MHz, CDCl₃, NH not observed):

δ 8.04-7.93 (1H, m, 5-H and 8-H), 7.72-7.66 (1H, m, 6-H and 7-H), 5.05 (1H, app. t, *J* 7.1, 13-H), 4.13 (1H, d, *J* 12.9, 18-H_B), 3.69 (1H, ddd, *J* 18.4, 6.8, 1.4, 16-H_B), 3.38 (1H, d, *J* 12.9, 18-H_A), 3.32 (1H, dd, *J* 11.8, 8.1, 12-H_B), 2.97 (1H, d, *J* 18.4, 16-H_A), 2.85 (1H, dd, *J* 11.8, 5.1, 12-H_A), 2.80-2.73 (1H, m, 15-H), 2.27 (1H, dd, *J* 13.0, 9.0, 14-H_A), 2.17-2.10 (1H, m, 14-H_B). ¹³**C** NMR (125 MHz, CDCl₃): 154.9 (Ar-C_q), 151.4 (Ar-C_q), 142.0 (Ar-C_q), 140.4 (Ar-C_q), 129.6 (Ar-C), 129.4 (Ar-C), 129.3 (Ar-C), 128.5 (Ar-C), 95.0 (1-C), 76.9 (13-C), 55.9 (18-C), 54.5 (15-C), 52.0 (16-C), 39.6 (12-C), 39.5 (14-C). **IR** v_{max} (film)/cm⁻¹ 2953, 2869, 1489, 1318, 1184, 1136, 763. **HRMS** (ESI): C1₅H₁₆N₃O [M+H]⁺; calculated 254.1288, found 254.1276.

^{*} N.b. another product was observed through analysis of the crude residue by NMR spectroscopy at 300 MHz and by LRMS. This was postulated to be an alcohol resulting from hydrogenolytic cleavage of the ether (HPLC-MS: C₁₅H₁₈N₃O; found 255.9 [M+H]⁺). However, we were unable to cleanly isolate this material.

5.4.3.8 Preparation of fragments derived from scaffold 15

(1R*,5R*,7R*)-10-[(2,4-dimethoxyphenyl)methyl]-12-oxa-3,10-

diazatricyclo[5.4.1.0^{1,5}]dodecane S41

Hydrogenation was carried out following general procedure **B**, using compound **15** (396 mg, 0.88 mmol) and Pd/C (40 mg, 10% w/w) in MeOH (25 mL) over 15 h. Filtration followed by concentration gave the *title compound* **S41** (278 mg, 0.87 mmol, 99%) as a colourless amorphous solid. ¹H NMR (500 MHz, CDCl₃): δ 7.32 (1H, d, *J* 8.2, DMB 6-H), 6.48 (1H, dd, *J* 8.2, 2.4, DMB 5-H), 6.45 (1H, d, *J* 2.4, DMB 3-H), 4.50 (1H, app. t,

J7.8, 7-H), 3.81 (3H, s, OCH₃), 3.79 (3H, s, OCH₃), 3.64 (2H, s, NCH₂Ar), 3.05 (1H, d, J 12.3, 2-H_A), 2.94 (1H, dd, J 11.7, 7.3, 4-H_B), 2.79 (1H, d, J 11.7, 4-H_A), 2.76-2.67 (2H, m, includes: 1H, 5-H; and at δ 2.69: 1H, d, J12.2, 11-H_A), 2.67-2.56 (3H, m, 9-H and 11-H_B), 2.47 (1H, d, J 12.3, 2-H_A), 2.16-2.10 (1H, m, 6-H_A), 2.03-1.95 (1H, m, 8-H_B), 1.82 (1H, app. dt, J12.2, 7.2, 6-H_B), 1.52-1.43 (1H, m, 8-H_A). ¹³**C NMR** (125 MHz, CDCl₃, DMB 1-C not observed): δ 159.9 (DMB 2-C or 4-C), 158.8 (DMB 2-C or 4-C), 130.7 (DMB 6-C), 104.2 (DMB 5-C), 98.6 (DMB 3-C), 96.2 (1-C), 77.6 (7-C), 62.8 (11-C), 57.8 (2-C), 56.4 (NCH₂Ar), 55.5 (3 peaks, 2 × OCH₃ and 4-C), 51.4 (9-C), 47.7 (5-C), 43.0 (6-C), 37.1 (8-C). **IR** v_{max}(film)/cm⁻¹ 2933, 2833, 1612, 1588, 1505, 1456, 1290, 1207. **HRMS** (ESI): C₁₈H₂₆N₂O₃ [M+H]⁺; calculated 319.2016, found 319.2016.

(*1S**,*5R**,*7R**)-10-[(2,4-dimethoxyphenyl)methyl]-3-trifluoromethanesulfonyl-12-oxa-3,10diazatricyclo[5.4.1.0^{1,5}]dodecane formate S42

¹ Tf₂O (0.14 mL, 0.83 mmol, 2.00 eq.) was added to a stirred solution of compound **S41** (130 mg, 0.41 mmol, 1.00 eq.) in pyridine (5 mL) at 0 °C. The reaction mixture was warmed to rt then stirred for 2 h. The reaction mixture was concentrated *in vacuo*, then partitioned between EtOAc (25 mL) and sat. aq. NaHCO₃ solution (25 mL). The phases were separated and the aqueous phase was extracted with EtOAc (2 × 25 mL). The

combined organic phases were dried over MgSO₄, filtered and concetrated *in vacuo*. Purification by mass directed liquid chromatography (binary gradient of MeOH and H₂O containing 0.1% HCO₂H) gave the *title compound* **S42** (43 mg, 87 µmol, 21%) as a bright yellow oil. **R**_f 0.41 (29:1:0.1 CH₂Cl₂–EtOH–NH₃/MeOH). ¹**H NMR** (500 MHz, MeOD-d₄): δ 8.24 (2H, s, *H*CO₂H and HCO₂H), 7.36 (1H, d, *J* 6.9, DMB 6-H), 6.62 (1H, d, *J* 1.9, DMB 3-H), 6.58 (1H, d, *J* 6.9, DMB 5-H), 4.72-4.60 (1H, m, 7-H), 4.28 (2H, s, *CH*₂Ar), 3.87 (3H, s, OCH₃), 3.84-3.79 (4H, m, includes: 1H, 2-H_A; and at δ 3.81: 3H, s, OCH₃), 3.75-3.68 (1H, m, 4-H_A), 3.52 (1H, d, *J* 10.5, 4-H_B), 3.48-3.37 (3H, m, 9-H and 11-H_A), 3.34 (1H, d, *J* 10.5, 2-H_B), 3.31-3.21 (1H, m, 11-H_B), 3.13-3.02 (1H, m, 5-H), 2.31-2.17 (2H, m, includes: 1H, 8-H_B; and at δ 2.27: 1H, dd, *J* 12.4, 9.2, 6-H_A), 2.08-1.98 (1H, m, 6-H_B), 1.73 (1H, d, *J* 13.5, 8-H_A). ¹³**C NMR** (125 MHz, MeOD-d₄): δ 166.7 (HCO₂H), 164.3 (DMB 2-C or 4-C), 161.1 (DMB 2-C or 4-C), 135.0 (DMB 6-C), 121.5 (q, *J* 322.0, CF₃), 111.5 (DMB 1-C), 106.7 (DMB 5-C), 99.7 (DMB 3-C), 91.1 (1-C), 80.5 (7-C), 60.2 (11-C), 58.6 (2-C), 57.4, (4-C and NCH₂Ar), 56.3 (OCH₃), 56.0 (OCH₃), 51.5 (9-C), 50.5 (5-C), 39.3 (6-C), 33.7 (8-C). **IR** vmax(film)/cm⁻¹ 1711, 1612, 1586, 1510, 1458, 1384, 1294, 1188. **HRMS** (ESI): C₁₉H₂₆F₃N₂O₅S [M+H]⁺; calculated 451.1509, found 451.1520.

(1S*,5R*,7R*)-3-Trifluoromethanesulfonyl-12-oxa-3,10-diazatricyclo[5.4.1.0^{1,5}]dodecane F17

To a stirred solution of compound **S42** (31 mg, 69 μ mol, 1.0 eq.) in EtOH (2 mL) was added conc. HCl (12 M, 0.1 mL), 20 wt% Pd(OH)₂/C (15 mg, 50% w/w) and NH₄CO₂H (88 mg, 1.4 mmol, 10 eq.). The reaction mixture was heated for 24 h, then filtered through a pad of Celite eluting with EtOH and concentrated *in vacuo*. Purification by SCX SPE following general procedure **A**, eluting with MeOH, then

sat. NH₃/MeOH, gave the *title compound* **F17** (14 mg, 47 μ mol, 68%) as a colourless oil. ¹H NMR (400 MHz, CDCl₃): δ 4.72-4.66 (1H, m, 7-H), 3.83-3.70 (2H, m, includes: 1H, 4-H_A; and at δ 3.76: 1H, d, J 11.4, 2-H_A), 3.41 (1H, dd, J 10.5, 6.1, 4-H_B), 3.34 (1H, d, J 11.4, 2-H_B), 3.01-2.88 (4H, m, includes: 2H, 9-H; and at δ 2.94: 2H, 11-H, s), 2.88-2.78 (1H, m, 5-H), 2.25-2.15 (1H, m, 6-H_A), 2.13-1.96 (3H, m, 6-H_B and 8-H_A and NH), 1.64-1.55 (1H, m, 8-H_B). ¹³**C NMR** (100 MHz, CDCl₃): δ 120.4 (q, *J* 323.4, CF₃), 94.7 (1-C), 78.3 (7-C), 57.2 (2-C), 56.4 (11-C), 55.9 (4-C), 47.1 (5-C), 45.7 (9-C), 40.3 (6-C), 38.3 (8-C). **IR** v_{max}(film)/cm⁻¹ 2936, 1385, 1290, 1227, 1186, 1149, 629, 589. **HRMS** (ESI): C₁₀H₁₆F₃N₂O₃S [M+H]⁺; calculated 301.0828, found 301.0831.

Benzyl (*1S**,*5R**,*7R**)-10-cyclopropyl-12-oxa-3,10-diazatricyclo[5.4.1.0^{1,5}]dodecane-3carboxylate S43

NalO₄ (188 mg, 0.880 mmol, 2.00 eq.) was added to a stirred solution of diol **S25** (140 mg, 0.44 mmol, 1.00 eq.) in 2:1 MeOH–H₂O (7.5 mL) at 0 °C. The reaction mixture was warmed to rt and stirred for 15 h. The reaction mixture was concentrated *in vacuo*, then diluted in CH₂Cl₂ (10 mL) and washed with brine (10 mL). The phases were separated and the aqueous layer was extracted with CH₂Cl₂ (3 × 10 mL). The resulting crude

dialdehyde was dissolved in CH₂Cl₂ (5 mL), and cyclopropylamine (29 µL, 0.42 mmol, 1.30 eq.) and NaBH(OAc)₃ (176 mg, 0.83 mmol, 2.60 eq.) were added. The reaction mixture was stirred for 15 h then filtered through Celite and concentrated in vacuo. The resulting reside was diluted in EtOAc (10 mL) and washed with brine (10 mL). The aqueous phase was extracted with EtOAc (2 × 10 mL). The combined organic phase was dried over MgSO₄, filtered and concentrated *in vacuo*. Flash chromatography eluting with 2:3 pentane-EtOAc gave the *title compound* S43 (46 mg, 0.13 mmol, 42%, 2 steps) as a colourless oil. Rf 0.55 (1:1 petrol-EtOAc). ¹H NMR (500 MHz, CDCl₃, mixture of rotamers): δ 7.38-7.27 (5H, m, Cbz Ar-H), 5.11 (2H, s, OCH₂Ph), 4.58 (1H, app. td, J 8.0, 3.7, 7-H), 3.76 (1H, dd, J11.0, 9.1, 4-H_B), 3.68 (1H, d, J12.2, 2-H_A), 3.34 (0.5H, d, J12.2, 2-H_B), 3.28 (0.5H, d, J12.2, 2-H_B), 3.26-3.13 (1H, m, 4-H_A), 2.97 (1H, dd, J12.9, 6.5, 9-H_A), 2.86 (1H, d, J12.2, 11-H_A), 2.79-2.64 (2H, m, 9-H_B and 11-H_B), 2.55 (1H, app. qd, J 8.1, 3.3, 5-H), 2.09-2.00 (2H, m, 6-H), 2.00-1.92 (1H, m, 8-H_B), 1.92-1.85 (1H, m, cyclopropyl CH), 1.49 (1H, ddd, J 13.5, 11.2, 6.7, 8-H_A), 0.49-0.38 (3H, m, cyclopropyl (CH_AH_B)_A and (CH₂)_B), 0.30-0.24 (1H, m, cyclopropyl (CH_AH_B)_A). ¹³C NMR (125 MHz, CDCl₃, 329 K, mixture of two rotamers, 1 Ar-C not observed): δ 154.8 (N(CO)O), 137.3 (Ar-C_q), 128.6 (Ar-C), 128.0 (Ar-C), 93.4 (1-C), 77.8 (7-C), 66.9 (OCH₂Ph), 64.7 (11-C), 55.2 (2-C), 53.6 (4-C or 9-C), 53.2 (4-C or 9-C), 46.0 (5-C), 41.0 (6-C), 40.1 (cyclopropyl CH), 37.1 (8-C), 8.2 (cyclopropyl (CH₂)_A), 7.4 (cyclopropyl (CH₂)_B) [17 of 34 expected peaks observed]. **IR** v_{max}(film)/cm⁻¹ 2933, 1701 (CO), 1450, 1415, 1364, 1350, 1121, 1089. **HRMS** (ESI): C₂₀H₂₇N₂O₃ [M+H]⁺; calculated 343.2016, found 343.2021.
(1R*,5R*,7R*)-10-cyclopropyl-12-oxa-3,10-diazatricyclo[5.4.1.0^{1,5}]dodecane F18

Hydrogenation was carried out following general procedure **B**, using compound **S43** (34 mg, 100 μ mol) and Pd/C (5 mg, 10% w/w) in MeOH (10 mL) over 15 h. Flash chromatography eluting with 98:2:0.1 CH₂Cl₂–EtOH–NH₃/MeOH gave the *title compound* **F18** (12 mg, 58 μ mol, 58%) as a colourless oil. **R**_f 0.42 (98:2:0.1

^{Ch}_{F18} CH₂Cl₂–EtOH–NH₃/MeOH). ¹H NMR (400 MHz, MeOD-d₄, NH not observed): 4.50 (1H, app. t, *J* 7.6, 7-H), 2.99 (1H, d, *J* 13.2, 11-H_A), 3.96-2.86 (2H, m, 4-H_A and 9-H_A), 2.86-2.72 (4H, m, 2-H, 4-H_B, 9-H_B), 2.67 (1H, app. dd, *J* 14.3, 7.2, 5-H), 2.53 (1H, app. t, *J* 14.0, 11-H_B), 2.14-1.94 (3H, m, 6-H_A, 8-H_A and cyclopropyl C*H*), 1.94-1.84 (1H, m, 6-H_B), 1.53-1.42 (1H, m, 8-H_B), 0.56-0.43 (3H, m, cyclopropyl (C*H*_AH_B)_A and (CH₂)_B), 0.43-0.33 (1H, m, cyclopropyl (CH_AH_B)_A). ¹³C NMR (100 MHz, MeOD-d₄, 1-C not observed): δ 79.5 (7-C), 63.7 (11-C), 58.0 (2-C), 55.8 (4-C and 9-C), 52.7 (5-C), 42.6 (6-C), 40.4 (cyclopropyl CH), 37.6 (8-C), 8.0 (cyclopropyl CH₂), 7.5 (cyclopropyl CH₂). IR v_{max}(film)/cm⁻¹ 2925, 2853, 1650, 1450, 1365, 1035, 1015, 827. HRMS (ESI): C₁₂H₂₁N₂O [M+H]⁺; calculated 209.1648, found 209.1644.

5.4.3.9 Preparation of fragments derived from scaffold 16

(*1R**,2S*,8*R**,10*R**)-2-Methyl-3,14-dioxa-5,12-diazatetracyclo[6.5.1.0^{1,10}.0^{2,6}]tetradecan-4-one F19

Hydrogenation was carried out following general procedure **B**, using compound **16** (20 mg, 56 μ mol) and Pd/C (5 mg, 25% w/w) in MeOH (10 mL) over 15 h. Filtration followed by concentration gave the *title compound* **F19** (12 mg, 54 μ mol, 96%) as a colourless oil. ¹H NMR (400 MHz, MeOD-d₄, 2 × NH not observed):

F19 δ 4.60-4.52 (1H, app. t, J6.5, 8-H), 3.86 (1H, d, J6.6, 6-H), 3.16-3.08 (2H, m, 11-H_A and 13-H_A), 2.90 (1H, d, J12.5, 13-H_B), 2.88-2.79 (2H, m, 11-H_B and 10-H), 2.33 (1H, dd, J12.5, 8.7, 9-H_A), 2.17 (1H, dt, J 15.1, 6.2, 7-H_B), 1.96-1.88 (1H, m, 9-H_B), 1.79 (1H, d, J 15.1, 7-H_A), 1.58 (3H, s, CH₃). ¹³**C NMR** (100 MHz, MeOD-d₄): δ 161.4 (4-C), 95.7 (1-C), 81.5 (2-C), 77.2 (8-C), 57.4 (6-C), 56.1 (11-C), 52.5 (13-C), 43.2 (10-C), 39.7 (9-C), 33.2 (7-C), 21.9 (CH₃).

IR $v_{max}(film)/cm^{-1}$ 3260 (NH), 2927, 2874, 1752 (CO), 1384, 1290, 1111, 961. HRMS (ESI): $C_{11}H_{17}N_2O_3$ [M+H]⁺; calculated 225.1234, found 225.1232.

5.4.3.10 Preparation of fragments derived from scaffold 17

(1*R**,2*S**,8*R**,10*R**)-4,14-Dimethyl-6-oxa-5,12,14-triazatetracyclo[6.5.1.0^{1,10}.0^{3,7}]tetradeca-3(7),4-dien-2-ol F20

Deprotection of Boc-protected compound **17** (431 mg, 1.28 mmol) was carried out by following general procedure **I**. Purification by SCX SPE, following eluting with MeOH, then sat. NH₃/MeOH, gave the *title compound* **F20** (288 mg, 1.22 mmol, 95%) as a yellow oil. ¹H NMR (400 MHz, MeOD-d₄): δ 4.95 (1H, s, 2-H), 4.14 (1H,

d, *J* 5.4, 8-H), 2.97 (1H, dd, *J* 11.1, 8.2, 11-H_A), 2.95 (1H, d, *J* 12.4, 13-H_A), 2.93-2.79 (2H, m, 10-H and 11-H_B), 2.84 (1H, d, *J* 12.4, 13-H_B), 2.36 (3H, s, C_qCH₃ or NCH₃), 2.33 (3H, s, C_qCH₃ or NCH₃), 2.16 (1H, dd, *J* 11.9, 8.6, 9-H_A), 1.90 (1H, app. dt, *J* 11.9, 5.8, 9-H_B). ¹³**C** NMR (100 MHz, MeOD-d₄): δ 171.1, 158.3, 112.3, 77.3, 62.4, 61.2, 53.4, 48.3, 41.9, 38.2, 30.4, 9.0. **IR** vmax(film)/cm⁻¹ 3316, 1633, 1451. **HRMS** (ESI): C₁₂H₁₈N₃O₂ [M+H]⁺; calculated 236.1394, found 236.1392.

(1*R**,2*S**,8*R**,10*R**)-12-Ethyl-4,14-dimethyl-6-oxa-5,12,14triazatetracyclo[6.5.1.0^{1,10}.0^{3,7}]tetradeca-3(7),4-dien-12-ol F21

Reductive amination was carried out by following general procedure **C**, using compound **F20** (89 mg, 0.38 mmol) and acetaldehyde (5.0 M in THF, 2.0 eq.). The reaction was quenched with H₂O (5 mL) and the phases separated. The aqueous phase was extracted with CH_2Cl_2 (2 x 10 mL) and the combined

organic phases were dried, filtered and concentrated in vacuo to give a crude oil. The crude material

was purified by SCX SPE eluting with MeOH, then sat. NH₃/MeOH, to give the *title compound* **F21** (56 mg, 0.21 mmol, 56%) as a yellow oil. ¹H NMR (500 MHz, MeOD-d₄, 333 K): δ 4.90 (1H, s, 2-H), 4.09 (1H, d, *J* 5.4, 8-H), 3.53 (1H, d, *J* 11.9, 13-H_A), 3.35 (1H, dd, *J* 11.6, 3.7, 11-H_A), 3.25 (1H, dd, *J* 11.6, 9.6, 11-H_B), 3.22-3.09 (4H, m, 10-H, 13-H_B and NC*H*₂CH₃), 2.28 (3H, s, NCH₃), 2.22 (3H, s, C_qCH₃), 2.09 (1H, dd, *J* 12.1, 9.1, 9-H_A), 1.96 (1H, app. dt, 12.1, 6.0, 9-H_B), 1.26 (3H, t, *J* 7.3, NCH₂C*H*₃). ¹³C NMR (125 MHz, MeOD-d₄, 333 K): δ 171.4, 159.8, 112.7, 76.0, 62.9, 62.0, 60.7, 55.6, 51.0, 40.4, 39.0, 31.5, 10.8, 10.2. IR v_{max}(film)/cm⁻¹ 3373, 2932, 1681, 1453, 1404, 1365, 1166, 1124. HRMS (ESI): C₁₄H₂₂N₃O₂ [M+H]⁺; calculated 264.1712, found 264.1718.

(1*R**,2*S**,8*R**,10*R**)-2-Hydroxy-4,14-dimethyl-6-oxa-5,12,14triazatetracyclo[6.5.1.0^{1,10}.0^{3,7}]tetradeca-3(7),4-diene-12-carbaldehyde F22

To a solution of compound **F20** (95 mg, 0.40 mmol) in MeOH (1.0 mL) was added ethyl formate (1.0 mL) and the resulting solution was heated to 50 °C for 24 h. The solution was concentrated *in vacuo* to give the *title compound* **F22** (99 mg, 0.38 mmol, 93%) as a yellow oil. ¹H NMR (500 MHz, MeOD-d₄, 333 K, two stable conformations observed at the pyrrolidine ring

[50:50 mixture]): δ 8.01 (0.5H, s, NCHO), 7.99 (0.5H, s, NCHO), 4.85 (0.5H, s, 2-H), 4.83 (0.5H, s, 2-H), 4.06 (0.5H, d, *J* 5.8, 8-H), 4.04 (0.5H, d, *J* 5.7, 8-H), 3.77 (0.5H, dd, *J* 11.0, 9.4, 11-H_{B-conf1}), 3.63 (0.5H, d, *J* 11.9, 13-H_{A-conf1}), 3.62 (0.5H, d, *J* 12.8, 13-H_{A-conf2}), 3.55 (0.5H, d, *J* 11.9, 13-H_{B-conf1}), 3.49 (0.5H, dd, *J* 12.2, 9.6, 11-H_{B-conf2}), 3.42 (0.5H, dd, *J* 12.2, 5.2, 11-H_{A-conf2}), 3.40 (0.5H, d, *J* 12.8, 13-H_{B-conf2}), 3.35 (0.5H, dd, *J* 11.0, 6.3, 11-H_{A-conf1}), 3.03-2.91 (1H, m, 10-H), 2.27 (1.5H, s, NCH₃), 2.26 (1.5H, s, NCH₃), 2.21 (1.5H, s, CqCH₃), 2.21 (1.5H, s, CqCH₃), 2.06 (0.5H, dd, *J* 12.1, 8.9, 9-H_A), 2.01 (0.5H, dd, *J* 12.2, 8.8, 9-H_A), 1.88 (0.5H, dd, *J* 12.2, 5.7, 9-H_B), 1.84 (0.5H, dd, *J* 12.1, 8.9, 9-H_A). ¹³C NMR (125 MHz, MeOD-d₄, 333 K): δ 172.3, 163.2, 163.1, 159.8, 112.7, 76.4, 76.1, 64.3, 64.0, 62.7, 62.5, 54.7, 51.3, 49.6, 46.8, 40.9, 40.8, 39.8, 38.7, 31.8, 31.7, 10.2 [22 of 26 expected peaks observed]. IR vmax(film)/cm⁻¹ 3355, 1641, 1450. HRMS (ESI): C₁₃H₁₈N₃O₃ [M+H]⁺; calculated 264.1343, found 264.1343.

5.4.3.11 Preparation of fragment derived from scaffold 18

(1*R**,5*R**,7*R**,9E)-9-(1-Aminoethylidene)-3,11-diazatricyclo[5.3.1.0^{1,5}]undecane-8,10-dione F23

Deprotection of Boc-protected compound **18** (100 mg, 0.31 mmol) was carried out by following general procedure **I**. Purification by SCX SPE eluting with MeOH then sat. NH₃/MeOH gave the *title compound* **F23** (60 mg, 0.27 mmol, 87%) as a yellow oil. ¹H NMR (400 MHz, MeOD-d₄): δ 3.88 (1H, d, *J* 6.6, 7-H),

3.61 (1H, d, J 12.5, 2-H_A), 3.37 (1H, s, NH), 3.16 (1H, dd, J 11.9, 8.4, 4-H_B), 2.80 (1H, d, J 12.5, 2-H_B), 2.78 (1H, dd, J 11.9, 6.3, 4-H_A), 2.58 (1H, app. tt, J 8.5, 5.9, 5-H), 2.50 (3H, s, CH₃), 2.14 (1H, dd, J 12.8, 8.8, 6-H_A), 1.92 (1H, ddd, J 12.8, 6.6, 6.4, 6-H_B). ¹³**C NMR** (100 MHz, MeOD-d₄): δ 200.5, 197.3, 175.7, 103.2, 79.7, 68.7, 53.1, 50.1, 49.1, 48.5, 34.6. **HRMS** (ESI): C₁₁H₁₆N₃O₂ [M+H]⁺; calculated 222.1237, found 222.1235.

5.4.3.12 Preparation of a fragment derived from scaffold 19

(1*R**,10*R**,13*R**,17*R**)-2,15-diazapentacyclo[8.8.0.0^{2,13}.0^{4,9}.0^{13,17}]octadeca-4(9),5,7-triene-12one F24

Deprotection of Boc-protected compound **19** (12 mg, 34 μ mol) was carried out by following general procedure **I**. Purification by SCX SPE eluting with MeOH then sat. NH₃/MeOH gave the *title compound* **F24** (8 mg, 31 μ mol, 93%) as a yellow oil. ¹**H NMR** (500 MHz, CDCl₃): δ 7.18 (1H, app. td, *J* 7.4,

1.3, 6-H or 7-H), 7.14 (1H, app. t, J 7.5, 6-H or 7-H), 7.01-6.96 (2H, m, 5-H and 8-H), 4.34 (1H, d, J 18.4, 3-H_A), 3.98 (1H, d, J 18.4, 3-H_B), 3.75 (1H, d, J 6.3, 1-H), 3.38-3.25 (3H, m, 10-H, 14-H_A and

16-H_A), 2.98-2.90 (3H, m, 11-H_B, 14-H_B and 16-H_B), 2.72-2.59 (1H, m, 17-H), 2.34 (1H, dd, *J* 13.1, 9.2, 18-H_A), 2.26 (1H, d, *J* 15.0, 11-H_A), 2.17 (1H, ddd, *J* 13.1, 6.3, 4.3, 18-H_B). ¹³**C** NMR (125 MHz, CDCl₃): δ 209.1, 139.5, 132.0, 127.7, 127.2, 126.7, 125.8, 83.9, 60.0, 55.0, 48.7, 48.5, 46.6, 45.0, 44.5, 33.8. HRMS (ESI): C₁₆H₁₉N₂O [M+H]⁺; calculated 255.1492, found 255.1484.

5.4.3.13 Preparation of fragments derived from scaffold 20

(1R*,5R*,7R*,8R*,10S*)-8-Phenyl-3,11-diazatricyclo[5.3.1.0^{1,5}]undecan-10-ol F25

Deprotection of Boc-protected compound **20** (40 mg, 0.12 mmol) was carried out by following general procedure **I**. Purification by SCX SPE eluting with MeOH then sat. NH₃/MeOH gave the *title compound* **F25** (26 mg, 0.11 mmol, 89%) as a brown oil. ¹**H NMR** (500 MHz, MeOD-d₄, 333 K): δ 7.28-7.13 (4H,

m, Ar-H), 7.10-7.04 (1H, m, Ar-H), 3.97 (1H, dd, *J* 10.6, 5.7, 10-H), 3.57 (1H, app. d, *J* 6.6, 7-H), 3.05 (1H, d, *J* 12.1, 2-H_A), 3.04 (1H, d, *J* 11.1, 4-H_A), 2.91 (1H, app. d, *J* 7.3, 8-H), 2.69-2.61 (1H, m, 5-H), 2.58 (1H, d, *J* 12.1, 2-H_B), 2.58 (1H, dd, *J* 11.1, 6.3, 4-H_B), 2.21 (1H, ddt, *J* 14.3, 5.8, 1.2, 9-H_A), 2.02 (1H, dd, *J* 13.1, 8.8, 6-H_A), 1.79 (1H, ddd, *J* 13.1, 6.6, 4.7, 6-H_B), 1.74 (1H, ddd, *J* 14.3, 10.7, 7.4, 9-H_B). ¹³**C** NMR (125 MHz, MeOD-d₄, 333 K): δ 145.5, 129.5, 128.9, 127.0, 78.4, 68.6, 65.0, 55.5, 52.8, 47.7, 42.3, 38.9, 33.9. IR v_{max}(film)/cm⁻¹ 3386, 1480, 1447. HRMS (ESI): C₁₅H₂₀N₂O [M+H]⁺; calculated 245.1654, found 245.1650.

5.4.3.14 Preparation of fragments derived from scaffold S16

(1R*,8R*,10R*)-14-oxa-4,6,12-triazatetracyclo[6.5.1.0^{1,10}.0^{3,7}]tetradeca-3(7),4-diene F29

From compound S16: Hydrogenation was carried out following general procedure **B** using compound **S16** (323 mg, 1.00 mmol), Pd(OH)₂/C (60 mg, 20% w/w) and conc. HCI (0.1 mL) in MeOH (10 mL) over 15 h. Filtration gave the *title compound* **F29** as the dihydrochloride salt (207 mg, 0.78 mmol, 78%), a

colourless foam which was carried on to subsequent steps without further purification {¹H NMR (500 MHz, MeOD-d₄, 333 K, 2 × N⁺H₂ not observed): δ 9.06 (1H, s, 5-H), 5.78 (1H, br. s, 8-H), 4.18-4.07 (1H, m, 13-H_A), 4.07-3.94 (1H, m, 11-H_A), 3.89-3.76 (1H, m, 13-H_B), 3.74-3.64 (2H, m, 2-H_A and 11-H_B), 3.48-3.31 (2H, m, 2-H_B and 10-H), 3.14-2.98 (1H, m, 9-H_A), 2.71-2.58 (1H, m, 9-H_B). ¹³C NMR (125 MHz, MeOD-d₄, 333 K): δ 134.3 (5-C), 132.5 (7-C), 125.9 (3-C), 90.9 (1-C), 74.5 (8-C), 54.5 (13-C), 53.6 (11-C), 46.6 (10-C), 45.7 (9-C), 30.9 (2-C)}.

From compound 11: Hydrogenation was carried out following general procedure **B** using compound 11 (1.42 g, 4.36 mmol), Pd(OH)₂/C (300 mg, 20% w/w) and conc. HCl (0.5 mL) in

MeOH (25 mL) over 15 h. Filtration gave the *title compound* **F29** as the dihydrochloride salt (1.00 g, 3.78 mmol, 87%), a colourless foam.

Procedure to prepare the free amine: A sample of the amine hydrochloride salt **F29-2HCI** (625 mg, 2.37 mmol) was purified by SCX SPE following general procedure **A**, eluting with MeOH, then sat. NH₃/MeOH, followed by flash chromatography eluting with 50:8:1 CH₂Cl₂– EtOH–NH₃/MeOH to give the *title compound* **F29** (184 mg, 0.96 mmol, 41%) as a colourless foam. ¹H NMR (400 MHz, CDCl₃, imidazole NH not observed): δ 7.44 (1H, s, 5-H), 5.18 (1H, d, *J* 5.6. 8-H), 3.28 (1H, d, *J* 12.6, 13-H_A), 3.15 (1H, d, *J* 15.0, 2-H_A), 3.02 (1H, dd, *J* 12.3, 7.5, 11-H_B), 2.83 (1H, d, *J* 12.3, 11-H_A), 2.63 (1H, d, *J* 12.6, 13-H_B), 2.58-2.49 (2H, m, includes: 1H, 9-H_A; and at δ 2.52: d, *J* 15.0, 2-H_B), 2.49-2.40 (1H, m, 10-H), 1.94-1.83 (1H, m, 9-H_B). ¹³C NMR (100 MHz, CDCl₃, 2 × imidazole C_q not observed): δ 133.4 (5-C), 93.3 (1-C), 75.8 (8-C), 56.6 (13-C), 54.1 (11-C), 48.2 (10-C), 45.6 (9-C), 31.5 (2-C). IR ν_{max}(film)/cm⁻¹ 2959 2918, 2860 1443, 1225, 993, 909, 729. HRMS (ESI): C₁₀H₁₄N₃O [M+H]⁺; calculated 192.1131, found 192.1129.

(*1R**,*8R**,*10R**)-12-Ethyl-14-oxa-4,6,12-triazatetracyclo[6.5.1.0^{1,10}.0^{3,7}]tetradeca-3(7),4-diene F30

Reductive amination was carried out by following general procedure **C**, using amine hydrochloride **F29-2HCI** (120 mg, 0.45 mmol) and acetaldehyde (5.0 M in THF, 3.0 eq.). Flash chromatography eluting with 93:7:1 CH₂Cl₂–EtOH– NH₃/MeOH gave the *title compound* **F30** (42 mg, 0.19 mmol, 43%, {estimate

90% purity^{*}}) as a yellow oil. **R**_f 0.29 (93:7:1 CH₂Cl₂–EtOH–NH₃/MeOH). ¹**H NMR** (400 MHz, CDCl₃, imidazole NH not observed): δ 7.41 (1H, s, 5-H), 5.22 (1H, d, *J* 5.6, 8-H), 3.23 (1H, d, *J* 10.5, 13-H_A), 3.15 (1H, d, *J* 15.2, 2-H_A), 2.79 (1H, app. d, *J* 7.2, 11-H_B), 2.64-2.36 (6H, m, includes: 1H, 2-H_B; 1H, 9-H_A; 1H, 10-H; 1H, 11-H_A; 2H, NC*H*₂CH₃), 2.28 (1H, d, *J* 10.5, 13-H_B), 2.09-1.98 (1H, m, 9-H_B), 1.14 (3H, t, *J* 7.3, NCH₂C*H*₃). ¹³**C NMR** (100 MHz, CDCl₃): δ 136.6 (7-C), 133.4 (5-C), 124.7 (3-C), 90.4 (1-C), 75.7 (8-C), 62.8 (13-C), 59.5 (11-C), 49.9 (N*C*H₂CH₃), 46.2 (10-C), 44.6 (9-C), 32.9 (2-C), 13.3 (NCH₂CH₃). **IR** v_{max}(film)/cm⁻¹ 2971, 2805, 2688, 1590, 1449, 1375, 1343. **HRMS** (ESI): C₁₂H₁₈N₃O [M+H]⁺; calculated 220.1444, found 220.1440.

^{*} As judged by analysis of the product by NMR spectroscopy at 400 MHz.

(*1R**,*8R**,*10R**)-14-Oxa-4,6,12-triazatetracyclo[6.5.1.0^{1,10}.0^{3,7}]tetradeca-3(7),4-diene-12carbaldehyde F31

N-Formylation was carried out by following general procedure **D**, using amine **F29** (80 mg, 0.42 mmol) and Ac₂O (10 eq.). Flash chromatography eluting with 93:7:1 CH₂Cl₂–EtOH–NH₃/MeOH gave the *title compound* **F31** (45 mg, 0.21 mmol, 50%) a colourless oil. **R**_f 0.27 (93:7:1 CH₂Cl₂–EtOH–NH₃/MeOH).

¹**H NMR** (400 MHz, MeOD-d₄, two stable conformations observed at the pyrrolidine ring [50:50 mixture], imidazole NH not observed): δ 8.16 (0.5H, s, NCHO), 8.14 (0.5H, s, NHCO), 7.49 (1H, s, 5-H), 5.12 (1H, d, *J* 5.6, 8-H), 4.14 (0.5H, d, *J* 13.3, 13-H_{A-conf1}), 4.00 (0.5H, d, *J* 12.5, 13-H_{A-conf2}), 3.84 (0.5H, dd, *J* 11.6, 8.7, 11-H_{B-conf1}), 3.74 (0.5H, dd, *J* 12.7, 2.7, 11-H_{A-conf2}), 3.57-3.44 (1.5H, m, includes: 0.5H, 11-H_{A-conf1}; 0.5H, 11-H_{B-conf2}; and at δ 3.53: 0.5H, d, *J* 12.5, 13-H_{B-conf2}), 3.27 (0.5H, d, *J* 13.3, 13-H_{B-conf1}), 3.17-3.07 (1H, m, 2-H_A, includes at δ 3.13: 0.5H, *J* 15.3; and at δ 3.11: 0.5H, *J* 15.3), 2.73-2.64 (2H, m, includes: 1H, 10-H; and at δ 2.70: 0.5H, *J* 15.3, 2-H_B, and at δ 2.68: 0.5H, *J* 15.3, 2-H_B), 2.57-2.44 (1H, m, 9-H_A), 2.08-1.90 (1H, m, 9-H_B). ¹³**C NMR** (100 MHz, MeOD-d₄, 2 × Ar-C_q not observed): δ 163.3 (NCHO), 163.0 (NCHO), 134.9 (5-C), 91.6 (1-C), 91.0 (1-C), 77.0 (8-C), 76.9 (8-C), 55.9 (13-C_{conf2}), 53.8 (11-C_{conf1}), 52.3 (13-C_{conf1}), 50.3 (11-C_{conf2}), 47.2 (10-C), 47.0 (10-C), 46.9 (9-C), 45.9 (9-C), 32.9 (2-C), 32.5 (2-C) [17 of 22 expected peaks observed]. **IR** v_{max}(film)/cm⁻¹ 2963, 2865, 1645 (CO), 1437, 1389, 1231, 992. **HRMS** (ESI): C₁₁H₁₃N₃NaO₂ [M+H]⁺; calculated 242.0900, found 242.0897.

1-[(*1R**,*8R**,*10R**)-14-Oxa-4,6,12-triazatetracyclo[6.5.1.0^{1,10}.0^{3,7}]tetradeca-3(7),4-dien-12yl]ethan-1-one F32

Ac₂O (20 μ L, 0.22 mmol, 0.5 eq.) was added to a stirred solution of amine **F29** (83 mg, 0.43 mmol, 1.00 eq.) and NEt₃ (90 μ L, 0.65 mmol, 1.5 eq.) in CDCl₃ (10 mL) at 0 °C. The reaction mixture was stirred for 10 minutes, then concentrated *in vacuo*. Flash chromatography eluting with 93:7:1 CH₂Cl₂-

EtOH–NH₃/MeOH gave the *title compound* **F32** (64 mg, 0.27 mmol, 64%) as a colourless oil. **R**_f 0.12 (50:8:1 CH₂Cl₂–EtOH–NH₃/MeOH). ¹**H NMR** (400 MHz, CDCl₃, two stable conformations observed at the pyrrolidine ring [50:50 mixture], imidazole NH not observed): δ 7.43 (0.5H, s, 5-H), 7.42 (0.5H, s, 5-H), 5.25 (0.5H, d, *J* 5.8, 8-H), 5.22 (0.5H, d, *J* 5.8, 8-H), 4.15 (0.5H, d, *J* 13.6, 13-H_{A-conf1}), 3.98 (0.5H, d, *J* 12.2, 13-H_{A-conf2}), 3.89 (0.5H, dd, *J* 10.8, 9.5, 11-H_{B-conf1}), 3.71 (0.5H, dd, *J* 12.5, 9.0, 11-H_{B-conf2}), 3.63 (0.5H, dd, *J* 12.5, 4.5, 11-H_{A-conf2}), 3.49 (0.5H, d, *J* 12.2, 13-H_{B-conf2}), 3.44 (0.5H, d, *J* 13.6, 13-H_{B-conf1}), 3.40 (0.5H, dd, *J* 10.8, 5.4, 11-H_{A-conf1}), 3.23-3.15 (1H, m, 2-H_A, includes at δ 3.20: 0.5H, *J* 15.3; and at δ 3.18: 0.5H, *J* 15.3), 2.80-2.71 (0.5H, m, 10-H_{conf1}), 2.69-2.57 (1.5H, m,

includes: 0.5H, 10-H_{conf2}; at δ 2.62: 0.5H, d, *J* 15.3, 2-H_B, and at δ 2.60: 0.5H, d, *J* 15.3, 2-H_B), 2.51 (0.5H, d, *J* 11.9, 9-H_A), 2.49 (0.5H, d, *J* 11.9, 9-H_A), 2.14-2.02 (4H, m, includes: 1H, 9-H_B; and at δ 2.09: 1.5H, s, COCH₃ and at δ 2.05: 1.5H, s, COCH₃). ¹³**C** NMR (100 MHz, CDCl₃, mixture of two rotamers): δ 169.6 (*C*OCH₃), 169.5 (*C*OCH₃), 137.6 (7-C), 136.4 (7-C), 133.7 (5-C), 123.9 (3-C), 122.8 (3-C), 91.1 (1-C), 89.7 (1-C), 76.5 (8-C), 76.2 (8-C), 56.5 (13-C_{conf2}), 55.2 (13-C_{conf1}), 54.5 (11-C_{conf1}), 52.7 (11-C_{conf2}), 47.2 (10-C), 46.1 (9-C), 45.7 (9-C), 45.5 (10-C), 32.8 (2-C), 22.5 (COCH₃), 22.2 (COCH₃) [22 of 24 expected peaks observed]. **IR** v_{max}(film)/cm⁻¹ 2967, 2872, 1624 (CO), 1448, 1239, 1224, 730. **HRMS** (ESI): C₁₂H₁₆N₃O₂ [M+H]⁺; calculated 234.1237, found 234.1238.

Methyl (*1R**,*8R**,*10R**)-14-oxa-4,6,12-triazatetracyclo[6.5.1.0^{1,10}.0^{3,7}]tetradeca-3(7),4-diene-12carboxylate F33

N-Carbamoylation was carried out by following general procedure **F**, using amine **F29** (80 mg, 0.42 mmol). Purification by SCX SPE, eluting with MeOH, then sat. NH₃/MeOH, gave the *title compound* **F33** (49 mg, 0.20 mmol, 47%) as a colourless oil. ¹**H NMR** (400 MHz, CDCl₃): δ 9.74 (1H, br.

s, imidazole-NH), 7.43 (1H, s, 5-H), 5.24 (1H, d, J 5.9, 8-H), 4.02 (1H, d, J 11.9, 13-H_A), 3.77-3.67 (4H, m, includes: 1H, 11-H_A; and at δ 3.70: 3H, s, NCO₂CH₃), 3.54-3.31 (2H, m, 11-H_B and 13-H_B), 3.17 (1H, d, J 15.2, 2-H_A), 2.69-2.55 (2H, m, includes: 1H, 10-H; and at δ 2.58: 1H, d, J 15.2, 2-H_B), 2.48 (1H, dd, J 11.3, 9.0, 9-H_A), 2.12-2.03 (1H, m, 9-H_B). ¹³**C** NMR (100 MHz, CDCl₃, 2 × Ar-C_q not observed): δ 155.6 (NCO₂CH₃), 133.6 (5-C), 91.2 (1-C), 90.2 (1-C), 76.4 (8-C), 55.3 (13-C), 54.9 (13-C), 53.4 (11-C), 52.7 (NCO₂CH₃), 47.0 (10-C), 46.0 (10-C), 45.8 (9-C), 32.7 (2-C) [13 of 24 expected peaks observed]. IR v_{max}(film)/cm⁻¹ 2957, 2868, 1688 (CO), 1451, 1393, 1239, 1221, 729. HRMS (ESI): C₁₂H₁₆N₃O₃ [M+H]⁺; calculated 250.1186, found 250.1185.

(*1R**,*8R**,*10R**)-*N*-Ethyl-14-oxa-4,6,12-triazatetracyclo[6.5.1.0^{1,10}.0^{3,7}]tetradeca-3(7),4-diene-12-carboxamide F34

Ethyl isocyanate (32.5 μ L, 0.41 mmol, 0.90 eq.) was added to a stirred solution of amine **F29** (87 mg, 0.45 mmol, 1.00 eq.) in CHCl₃ (10 mL) at 0 °C. The reaction mixture was warmed to rt, stirred for 10 minutes, then concentrated *in vacuo*. Flash chromatography eluting with 93:7:1 CH₂Cl₂–

EtOH–NH₃/MeOH gave the *title compound* **F34** (62 mg, 0.24 mmol, 53%) as a colourless oil. **R**_f 0.18 (50:8:1 CH₂Cl₂–EtOH–NH₃/MeOH). ¹**H NMR** (400 MHz, CDCl₃, imidazole NH not observed): δ 7.44 (1H, s, 5-H), 5.26 (1H, d, *J* 5.9, 8-H), 4.25-4.16 (1H, m, NH), 3.90 (1H, d, *J* 11.6, 13-H_A),

3.72 (1H, app. t, J9.8, 11-H_A), 3.40 (1H, d, J11.6, 13-H_B), 3.36-3.23 (3H, m, 11-H_B and NHC*H*₂CH₃), 3.19 (1H, d, J15.3, 2-H_A), 2.73-2.64 (1H, m, 10-H), 2.61 (1H, d, J15.3, 2-H_B), 2.49 (1H, dd, J11.7, 8.6, 9-H_A), 2.14-2.06 (1H, m, 9-H_B), 1.15 (3H, t, J7.2, NHCH₂C*H*₃). ¹³C NMR (100 MHz, CDCl₃, 2 × Ar-C_q not observed): δ 157.3 (N(CO)NH), 133.7 (5-C), 90.7 (1-C), 76.5 (8-C), 55.2 (13-C), 53.5 (11-C), 46.6 (10-C), 45.9 (9-C), 35.7 (NH*C*H₂), 33.0 (2-C), 15.8 (NHCH₂*C*H₃). **IR** v_{max}(film)/cm⁻¹ 2969, 2929, 2866, 1619 (CO), 1537, 1396, 1374, 727. **HRMS** (ESI): C₁₃H₁₉N₄O₂ [M+H]⁺; calculated 263.1503, found 263.1504.

5.4.3.15 Preparation of a fragment derived from scaffold S19

(1R*,3S*,8S*,9R*,11R*)-15-Oxa-4,7,13-triazatetracyclo[7.5.1.0^{1,11}.0^{3,8}]pentadecane F35

TFA (5 mL) was added to a stirred solution of compound **S19** (36 mg, 71 μ mol, 1.00 eq.) in CH₂Cl₂ (10 mL) at 0 °C. The reaction mixture was stirred for 1 h, then concentrated *in vacuo*. The residue was purified by SCX SPE following general procedure **A**, eluting with MeOH, then sat. NH₃/MeOH to give the

title compound **F35** (10 mg, 48 µmol, 68%) as a colourless oil. ¹H NMR (500 MHz, MeOD-d₄, 3 × NH not observed): δ 4.33 (1H, d, *J* 7.6, 9-H), 3.35-3.28 (2H, m, 5-H_A and 6-H_A), 3.23-3.17 (1H, m, 3-H), 3.01 (1H, dd, *J* 12.9, 1.6, 12-H_A), 2.97-2.78 (4H, m, 5-H_B, 6-H_B, 12-H_B and 14-H_A), 2.74 (1H, dd, *J* 4.0, 1.9, 8-H), 2.71-2.63 (2H, m, 11-H and 14-H_B), 2.47 (1H, app. t, *J* 12.5, 2-H_B), 2.21 (1H, dd, *J* 13.2, 9.1, 10-H_A), 1.97 (1H, ddd, *J* 13.2, 7.6, 4.0, 10-H_B), 1.58 (1H, dd, *J* 13.0, 5.8, 2-H_A). ¹³C NMR (100 MHz, MeOD-d₄): δ 92.7 (1-C), 82.0 (9-C), 56.8 (8-C), 55.5 (6-C), 55.0 (5-C), 47.6 (3-C), 46.3 (12-C), 45.6 (11-C), 39.7 (14-C), 36.9 (10-C), 31.3 (2-C). IR v_{max}(film)/cm⁻¹ 3387 (br. NH), 3252, 2931, 2856, 1452, 1108, 884, 836. HRMS (ESI): C₁₁H₂₀N₃O [M+H]⁺; calculated 210.1600, found 210.1596.

5.4.3.16 Preparation of a fragment derived from scaffold S20

(1R*,3R*,8R*,9R*,11R*)-15-Oxa-4,7,13-triazatetracyclo[7.5.1.0^{1,11}.0^{3,8}]pentadecane F36

TFA (5 mL) was added to a stirred solution of **S20** (210 mg, 0.41 mmol, 1.00 eq.) in CH_2Cl_2 (5 mL) at 0 °C. The reaction mixture was stirred for 1 h, then concentrated *in vacuo*. The residue was purified by SCX SPE following general

procedure A, eluting with MeOH, then sat. NH₃/MeOH, followed by flash F36 chromatography eluting with 50:8:1 CH₂Cl₂-EtOH-NH₃/MeOH to give the title compound F36 (66 mg, 0.32 mmol, 77%) as a colourless oil. Rf 0.15 (50:8:1 CH₂Cl₂-EtOH-NH₃/MeOH). ¹H NMR (500 MHz, MeOD-d₄, 3 × NH not observed): δ 4.32 (1H, dd, *J* 7.1, 4.5, 9-H), 3.21 (1H, t, J 5.2, 3-H), 3.16-3.09 (1H, m, 6-H_A), 3.09-3.06 (2H, m, 11-H and 12-H_A), 3.03 (1H, d, J12.4, 14-H_B), 3.00-2.94 (3H, m, 5-H_A, 8-H and 10-H_A), 2.79-2.71 (2H, m, 5-H_B and 12-H_B), 2.68 (1H, ddd, J 12.6, 3.2, 2.5, 6-H_B), 2.61 (1H, d, J 12.4, 14-H_A), 2.23 (1H, dd, J 14.1, 5.8, 2-H_B), 1.88-1.81 (1H, m, 10-H_B), 1.62 (1H, dd, J 14.1, 1.1, 2-H_A). ¹³C NMR (100 MHz, MeOD-d₄): δ 92.5 (1-C), 82.4 (9-C), 56.6 (14-C), 56.1 (12-C), 54.8 (8-C), 53.4 (3-C), 47.8 (5-C), 47.5 (11-C), 42.3 (6-C), 39.3 (10-C), 38.5 (2-C). IR v_{max}(film)/cm⁻¹ 3297 (br. NH), 2928, 2861, 1638, 1546, 1451, 1400, 1141, 1013. HRMS (ESI): C₁₁H₂₀N₃O [M+H]⁺; calculated 210.1600, found 210.1600.

5.4.3.17 Preparation of a fragment derived from scaffold S21

(*1R**,*13R**,*15R**)-19-Oxa-4,11,17-triazapentacyclo[11.5.1.0^{1,15}.0^{3,12}.0^{5,10}]nonadeca-3,5(10),6,8,11-pentaene F37

To a stirred solution of quinoxaline **S21** (400 mg, 1.03 mmol, 1.00 eq.) in EtOH (10 mL) was added 20 wt% Pd(OH)₂/C (40 mg, 10% w/w) and NH₄CO₂H (325 mg, 5.15 mmol, 5.00 eq.). The reaction mixture was heated at reflux for 15 h, then additional 20 wt% Pd(OH)₂/C (40 mg, 10% w/w) and NH₄CO₂H (325 mg, 5.15 mmol, 5.00 eq.) were added. The reaction mixture

was heated for a further 6 h, then cooled to rt. The reaction mixture was filtered through a pad of Celite eluting with EtOH, then concentrated *in vacuo*. The residue was partitioned between CH₂Cl₂ (25 mL) and washed with sat. NaHCO₃ solution (25 mL). The phases were separated and the aqeuous layer was extracted with CH₂Cl₂ (3 × 10 mL). The combined organics were dried over MgSO₄, filtered, and concentrated *in vacuo*. Flash chromatography eluting with 50:8:1 CH₂Cl₂—EtOH–NH₃/MeOH gave the *title compound* **F37** (165 mg, 0.65 mmol, 63%) as a colourless oil. **R**_f 0.10 (50:8:1 CH₂Cl₂–EtOH–NH₃/MeOH). ¹H **NMR** (500 MHz, CDCl₃, NH not observed): δ 8.04-7.97 (2H, m, 6-H and 9-H), 7.75-7.70 (2H, m, 7-H and 8-H), 5.41 (1H, d, *J* 6.5, 13-H), 3.62 (1H, d, *J* 17.3, 2-H_A), 3.40 (1H, d, *J* 12.4, 16-H_A), 2.79 (1H, d, *J* 12.8, 18-H_B), 2.58 (1H, dd, *J* 12.6, 9.2, 14-H_A), 2.54-2.47 (1H, m, 15-H), 2.13 (1H, app. dt, *J* 13.6, 6.5, 14-H_B). ¹³C **NMR** (125 MHz, CDCl₃): δ 155.4 (Ar-Cq), 128.7 (Ar-Cq), 142.1 (Ar-Cq), 140.7 (Ar-Cq), 129.8 (Ar-C), 129.7 (Ar-C), 128.9 (Ar-C), 128.7 (Ar-C), 93.6 (1-C), 81.0 (13-C), 56.8 (18-C), 55.2 (16-C), 47.5 (15-C), 44.0 (14-C), 40.0 (2-C). **IR** v_{max}(film)/cm⁻¹ 2962, 2934, 1489, 1177, 1016, 958, 764. **HRMS** (ESI): C₁₅H₁₆N₃O [M+H]⁺; calculated 254.1288, found 254.1289.

5.4.3.18 Preparation of fragments derived from scaffold S24

(*1R**,*5R**,*7R**,*9S**,*10S**)-10-[(*tert*-butyldimethylsilyl)oxy]-10-methyl-11-oxa-3azatricyclo[5.3.1.0^{1,5}]undecan-9-ol S49

Hydrogenation was carried out following general procedure **B**, using compound **S24** (142 mg, 0.32 mmol) and Pd/C (14 mg, 10% w/w) in MeOH (10 mL) over 15 h. The reaction mixture was filtered through Celite then concentrated *in vacuo* to give the *title compound* **S49** (99 mg, 0.32 mmol, 99%) as a colourless oil which was carried on to the subsequent steps without further purification. ¹H NMR (400 MHz, CHCl₃, 50:50 mixture of rotamers, characteristic peaks): δ 4.41

(1H, dd, J 6.5, 5.0, 7-H), 3.67 (1H, d, J 3.8), 3.20-2.94 (4H, m), 2.75 (1H, dd, J 11.6, 4.3), 2.36 (1H, dd, J 12.2, 8.9), 2.18-2.10 (3H, m), 1.76-1.69 (1H, m, 6-H_B), 1.69-1.63 (1H, m, 8-H_A), 1.29 (3H, s, C_qCH₃), 0.94 (9H, s, SiC_q(CH₃)₃), 0.12 (3H, s, SiCH₃), 0.11 (3H, s, SiCH₃).

(*1R**,*5R**,*7R**,*9S**,*10S**)-9,10-dihydroxy-10-methyl-11-oxa-3-azatricyclo[5.3.1.0^{1,5}]undecane-3carbaldehyde F38

N-Formylation was carried out by following general procedure **D**, using compound **S49** (50 mg, 0.16 mmol) and Ac₂O (30 eq.). *O*-Silyl deprotection was carried out by following general procedure **H**, using the crude residue. Purification by SCX SPE following general procedure **A**, eluting with MeOH,

followed by flash chromatography eluting with 97:3:1 CH₂Cl₂–EtOH–NH₃/MeOH gave the *title compound* **F38** (9 mg, 40 μmol, 25%, 2 steps) as a colourless oil. **R**_f 0.09 (97:3:1 CH₂Cl₂–EtOH–NH₃/MeOH). ¹**H NMR** (400 MHz, CHCl₃, 50:50 mixture of rotamers, 2 × OH not observed): δ 8.11 (1H, 2 × s, NCHO), 4.55-4.45 (1H, m, 7-H), 4.00 (0.5H, dd, *J* 10.5, 9.3, 4-H_B), 3.90 (0.5H, d, *J* 13.2, 2-H_A), 3.85 (0.5H, d, *J* 13.2, 2-H_A), 3.79-3.64 (2H, m, includes: 0.5H, 2-H_B; 0.5H, 4-H_B; and 1H, 9-H), 3.53-3.37 (1.5H, m, includes: 1H, 5-H; and at δ 3.49: 0.5H, d, *J* 13.2, 2-H_B), 3.33-3.26 (1H, m, 4-H_A), 2.66-2.61-2.51 (1H, m, 6-H_A, includes at δ 2.61: 0.5H, dd, *J* 12.2, 8.6; and at δ 2.55: 0.5H, dd, *J* 12.2, 8.6), 2.14 (1H, dt, *J* 14.8, 4.5, 8-H_B), 1.84-1.74 (2H, m, 6-H_B and 8-H_A), 1.31 (1.5H, C_qCH₃), 1.30 (1.5H, s, C_qCH₃). ¹³**C NMR** (100 MHz, MeOD-d₄, mixture of two rotamers): δ 163.3 (NCHO), 162.9 (NCHO), 95.3 (1-C), 94.9 (1-C), 78.8 (7-C), 78.4 (7-C), 73.8 (9-C), 73.7 (9-C), 71.3 (10-C), 71.1 (10-C), 55.8 (4-C), 52.8 (2-C), 51.8 (2-C), 41.4 (5-C), 40.9 (5-C), 39.6 (6-C), 37.6 (6-C), 37.6 (8-C), 37.5 (8-C), 23.1 (C_qCH₃) [20 of 22 expected peaks observed]. **IR** v_{max}(film)/cm⁻¹ 3359 (br. OH), 2937, 2880, 1644 (CO), 1432, 1386, 1163, 1009. **HRMS** (ESI): C₁₁H₁₈NO4 [M+H]⁺; calculated 228.1230, found 228.1230.

1-[(*1R**,*5R**,*7R**,*9S**,*10S**)-9,10-Dihydroxy-10-methyl-11-oxa-3-azatricyclo[5.3.1.0^{1,5}]undecan-3-yl]ethan-1-one F39 (≡ 24)

N-Acylation was carried out by following general procedure **E**, using **S49** (49 mg, 0.16 mmol). The reaction mixture was stirred at rt for 10 min, then sat. aq. NH₄Cl (10 mL) was added. The phases were separated and the aqueous layer was extracted with CH₂Cl₂ (2 × 10 mL). The combined organic phases were dried over MgSO₄, filtered, and concentrated *in vacuo*. *O*-Silyl deprotection

was carried out by following general procedure **H**, using the crude residue. Flash chromatography eluting with 29:1:0.1 CH₂Cl₂–EtOH–NH₃/MeOH gave the *title compound* **F39** (\equiv 24: 4.5 mg, 18.5 µmol, 12%, 2 steps) as a colourless oil. **R**_f 0.10 (29:1:0.1 CH₂Cl₂–EtOH–NH₃/MeOH). ¹H NMR (400 MHz, CHCl₃, 40:60 mixture of rotamers, 2 × OH not observed): δ 4.54-4.48 (1H, m, 7-H), 4.04-3.91 (1.4H, m, includes: 1H, 4-H_B; and 0.4H, 2-H_A), 3.84 (0.6H, d, *J* 13.3, 2-H_A), 3.68 (1H, d, *J* 4.2, 9-H), 3.64 (0.4H, d, *J* 13.3, 2-H_B), 3.59 (0.6H, d, *J* 13.3, 2-H_B), 3.49 (0.6H, app. ddd, *J* 17.9,

8.4, 3.1, 5-H), 3.44-3.26 (1H, m, includes: 0.6H, 4-H_A; and 0.4H, 5-H), 3.17 (0.4H, dd, *J* 12.2, 7.8, 4-H_A), 2.61 (1H, dd, *J* 11.6, 8.9, 6-H_A), 2.17-2.09 (1H, m, 8-H_B), 2.07 (1.2H, s, NH(CO)CH₃), 2.05 (1.8H, s, NH(CO)CH₃), 1.89-1.74 (2H, m, 6-H_B and 8-H_A), 1.31 (1.2H, s, C_qCH₃), 1.30 (1.8H, s, C_qCH₃). ¹³C NMR (100 MHz, MeOD-d₄, mixture of two rotamers): δ 171.7 (N(*C*O)CH₃), 96.3 (1-C), 94.9 (1-C), 78.6 (2 peaks, 7-C), 73.8 (2 peaks, 9-C), 71.1 (2 peaks, 10-C), 57.6 (4-C), 55.7 (4-C), 53.5 (2-C), 51.6 (2-C), 42.1 (5-C), 40.7 (5-C), 38.9 (6-C), 38.4 (6-C), 37.6 (8-C), 37.5 (8-C), 23.1 (2 peaks, C_qCH₃), 22.0 (N(CO)CH₃), 21.8 (N(CO)CH₃) [23 of 24 expected peaks observed]. **IR** ν_{max} (film)/cm⁻¹ 3367 (br. OH), 2942, 2881, 1620 (CO), 1455, 1426, 1040, 1009. **HRMS** (ESI): C₁₂H₂₀NO₄ [M+H]⁺; calculated 242.1387, found 242.1387.

5.4.3.19 Preparation of fragments derived from scaffold S25

(1R*,5R*,7R*,9S*,10S*)-11-oxa-3-azatricyclo[5.3.1.0^{1,5}]undecane-9,10-diol F40

Hydrogenation was carried out following general procedure **B**, using compound **S25** (168 mg, 0.53 mmol) and Pd/C (20 mg, 10% w/w) in MeOH (10 mL) over 15 h. Flash chromatography eluting with 50:8:1 CH₂Cl₂–EtOH–NH₃/MeOH, gave the *title compound* **F40** (74 mg, 0.40 mmol, 75%) as a colourless oil. ¹H NMR (500 MHz, MeOD-d₄, NH and 2 × OH not observed): δ 4.41-4.37 (1H, m,

7-H), 4.04 (1H, td, *J* 4.7, 1.1, 9-H), 3.73 (1H, d, *J* 4.7, 10-H), 3.22-3.16 (1H, m, 5-H), 3.09-3.02 (2H, m, includes at δ 3.07: 1H, d, *J* 12.4, 2-H_B; and at δ 3.04: 1H, dd, *J* 11.8, 8.8, 4-H_B), 2.85 (1H, d, *J* 12.4, 2-H_A), 2.66 (1H, dd, *J* 11.8, 5.3, 4-H_A), 2.46 (1H, dd, *J* 12.2, 9.0, 6-H_A), 2.02 (1H, dtd, *J* 14.7, 4.7, 1.1, 8-H_B), 1.81 (1H, dt, *J* 14.7, 1.1, 8-H_A), 1.76-1.70 (1H, m, 6-H_B). ¹³**C** NMR (125 MHz, MeOD-d₄): δ 95.0 (1-C), 78.0 (7-C), 69.6 (10-C), 68.3 (9-C), 56.2 (4-C), 53.3 (2-C), 43.0 (5-C), 39.0 (8-C), 38.8 (6-C). IR v_{max}(film)/cm⁻¹ 3359 (br. OH), 2952, 2515, 1635, 1428, 1100, 1067, 1035. HRMS (ESI): C₉H₁₅NO₃ [M+H]⁺; calculated 186.1125, found 186.1124.

Benzyl (*1R**,*5R**,*7R**,*9S**,*10S**)-9-[(*tert*-butyldimethylsilyl)oxy]-10-hydroxy-11-oxa-3azatricyclo[5.3.1.0^{1,5}]undecane-3-carboxylate S50 and benzyl (*1R**,*5R**,*7R**,*9S**,*10S**)-10-[(*tert*-butyldimethylsilyl)oxy]-9-hydroxy-11-oxa-3-azatricyclo[5.3.1.0^{1,5}]undecane-3carboxylate S51

NaBH₄ (680 mg, 17.9 mmol, 2.20 eg.) was added to a stirred solution of cycloadduct 2c (3.50 g, 8.10 mmol, 1.00 eg.) in MeOH (45 mL) at 0 °C. The reaction mixture was stirred at 0 °C for 1 h, then concentrated in vacuo. The resulting residue was diluted in EtOAc (50 mL) and washed with brine (50 mL). The aqueous layer was extracted with EtOAc (2 × 25 mL). The combined organics were dried over MgSO4 and concentrated in vacuo. Flash chromatography eluting with 4:1 pentane-EtOAc gave the title compounds \$50 and \$51 (1.98 g, 4.57 mmol, 56%, 2:1 mixture of regioisomers) as a colourless oil. Rr 0.15 (4:1 pentane-EtOAc). ¹H NMR (500 MHz, CDCl₃, 2:1 mixture regiosomers, characteristic peaks): δ 7.40-7.27 (5H, m, major and minor Cbz Ar-H), 5.16-5.07 (2H, m, major and minor OCH₂Ph),

4.53-4.43 (1H, m, major and minor 7-H), 4.19-4.12 (0.66H, m, major 9-H), 4.03-3.98 (0.33H, m, minor 9-H), 3.97-3.78 (2H, m), 3.74-3.61 (1H, m), 3.60-3.47 (1H, m), 3.22-3.09 (1.33H, m, includes 0.33H, minor 5-H), 3.09-2.98 (0.66H, m, major 5-H), 2.73-2.63 (1H, m), 2.52 (0.33H, dd, *J* 12.0, 8.4), 2.43-2.33 (0.66H, m), 2.12-1.96 (1H, m), 1.92 (0.33H, d, *J* 14.4), 1.89-1.74 (1.66H, includes at δ 1.78: 0.66H, d, *J* 14.4), 0.98-0.86 (9H, m, SiC_q(CH₃)₃), 0.19-0.04 (6H, m, SiCH₃). **IR** v_{max}(film)/cm⁻¹ 2952, 2929, 2885, 2856, 1687 (CO), 1423, 1116, 1087. **HRMS** (ESI): C₂₃H₃₆NO₅Si [M+H]⁺; calculated 434.2363, found 434.2364.

(*1R**,*5R**,*7R**,*9S**,*10S**)-9-[(*tert*-Butyldimethylsilyl)oxy]-11-oxa-3azatricyclo[5.3.1.0^{1,5}]undecan-10-ol S52 and (*1R**,*5R**,*7R**,*9S**,*10S**)-10-[(*tert*butyldimethylsilyl)oxy]-11-oxa-3-azatricyclo[5.3.1.0^{1,5}]undecan-9-ol S53

Hydrogenation was carried out following general procedure **B**, using compounds **S50** and **S51** (1.98 g, 4.61 mmol) and Pd/C (200 mg, 10% w/w) in EtOH (40 mL) over 15 h Filtration followed by concentration gave the *title compounds* **S52** and **S53** (1.36 g, 4.54 mmol, 99%) as a colourless foam which was not purified further. ¹H NMR (500 MHz, CDCl₃, 2:1 mixture of regioisomers, NH not observed): δ 4.55-4.47 (1H, m, major and minor 7-H), 4.14 (0.66H, t, *J*4.0, major 9-H), 3.99 (0.33H, t, *J*4.1, minor 9-H), 3.90 (0.33H, d, *J*4.1, minor 10-H), 3.74 (0.66H, t, *J*4.0, major 10-H), 3.65 (0.66H, d, *J*12.4, major 2-H_A), 3.56 (0.66H, dd, *J*11.6, 9.4, major 4-H_B), 3.47-3.36 (1.33H, m, includes: 0.33H, minor 4-H_B and at δ 3.41: 1H, d, *J* 12.4, major 2-H_B), 3.34-3.25 (1H, m, major and minor 5-H), 3.25-3.18 (0.66H, m, includes: 0.33H, minor 4-H_A; and at δ 3.22: 0.33H, d, *J*12.4, minor 2-H_A), 3.14 (0.66H, dd,

J 11.6, 6.8, major 4-H_A), 2.87 (0.66H, s, major OH), 2.60-2.53 (0.66H, m, includes at δ 2.56: 0.33H, s, minor OH; and at δ 2.57: 0.33H, dd, *J* 12.4, 8.8, minor 6-H_A), 2.42 (0.66H, dd, *J* 12.4, 8.8, major 6-H_A), 2.07 (0.66H, app. dt, *J* 14.8, 4.4, major 8-H_B), 2.11-1.87 (1.66H, m, includes: 0.33H, minor 8-H_A; 0.33H, minor 8-H_B; and, 1H, minor and major 6-H_B), 1.76 (0.66H, d, *J* 14.8, major 8-H_A), 0.93 (3H, s, minor SiC_q(CH₃)₃), 0.93 (6H, s, major, SiC_q(CH₃)₃), 0.16 (1H, s, minor SiCH₃), 0.13 (1H, s, minor SiCH₃), 0.12 (2H, s, major SiCH₃), 0.11 (2H, s, major SiCH₃). ¹³C NMR (125 MHz, CDCl₃, 2:1 mixture of regioisomers): δ 91.9 (major, 1-C), 91.1 (minor, 1-C), 76.6 (7-C, major), 76.2 (minor, 7-C), 69.0 (minor, 10-C), 68.1 (major, 9-C), 67.6 (major, 10-C), 67.3 (minor, 9-C), 53.2 (minor, 4-C), 52.8 (major, 4-C), 50.1 (major, 2-C), 50.1 (minor, 2-C), 40.0 (major and minor, 5-C), 38.2 (minor, 8-C), 38.1 (major, 8-C), 37.0 (major, 6-C), 36.1 (minor, 6-C), 25.2 (major and minor, SiC_q(CH₃)₃), 18.0 (major and minor, 2 peaks, SiC_q), -4.5 (minor, SiCH₃), -4.6 (major, SiCH₃), -4.7 (minor, SiCH₃), -5.2 (major, SiCH₃). IR _{vmax}(film)/cm⁻¹ 3352 (br. s, OH), 2951, 2928, 2891, 2856, 1252, 1109, 1084. HRMS (ESI): C₁₅H₃₀NO₃Si [M+H]⁺; calculated 300.1995, found 300.1993.

(*1R**,*5R**,*7R**,*9S**,*10S**)-3-(2-Methylpropyl)-11-oxa-3-azatricyclo[5.3.1.0^{1,5}]undecane-9,10-diol F41

Reductive amination was carried out by following general procedure **C**, using amines **S52** and **S53** (300 mg, 1.00 mmol) and isobutyraldehyde (2.5 eq.). The reaction mixture was partitioned between EtOAc (25 mL) and brine (25 mL). The phases were separated and the aqueous phase was extracted with EtOAc (2 × 25 mL). The combined organic phases were dried over

MgSO₄, filtered and concetrated *in vacuo* to give a colourless oil (290 mg). *O*-Silyl deprotection was carried out by following general procedure **G**, using the crude residue and (±)-camphorsulfonic acid (4.0 eq.). Flash chromatography eluting with 93:7:1 CH₂Cl₂–EtOH–NH₃/MeOH gave the *title compound* **F41** (185 mg, 0.77 mmol, 77%) as a colourless oil. **R**_f 0.18 (50:8:1 CH₂Cl₂–EtOH–NH₃/MeOH). ¹**H NMR** (500 MHz, CDCl₃, one OH not observed): δ 4.50-4.45 (1H, m, 7-H), 4.13 (1H, app. t, *J* 4.4, 9-H), 3.80 (1H, d, *J* 4.8, 10-H), 3.25-3.17 (2H, m, includes: 1H, 5-H; and at δ 3.23: 1H, d, *J* 10.6, NCH_AH_BCH(CH₃)₂), 3.02 (1H, app. t, *J* 8.1, 4-H_A), 2.60 (1H, s, OH), 2.43 (1H, d, *J* 10.6, NCH_AH_BCH(CH₃)₂), 2.35-2.19 (4H, m, 2-H, 4-H_B, 6-H_A), 2.06 (1H, dt, *J* 14.8, 4.8, 8-H_B), 1.85 (1H, app. d, *J* 14.7, 8-H_A), 1.81-1.69 (2H, m, 6-H_B and C*H*(CH₃)₂), 0.93 (3H, d, *J* 6.6, CH(C*H*₃)_A), 0.91 (3H, d, *J* 6.6, CH(C*H*₃)_B). ¹³**C** NMR (125 MHz, CDCl₃): δ 91.7 (1-C), 77.4 (7-C), 70.1 (10-C), 67.5 (9-C), 64.8 (2-C), 62.3 (4-C), 60.9 (NCH₂CH(CH₃)₃), 41.4 (5-C), 37.8 (8-C), 34.8 (6-C), 27.3 (CH(CH₃)₂), 21.3 (CH(CH₃)_A), 21.2 (CH(CH₃)_B). **IR** v_{max}(film)/cm⁻¹ 3398 (br. OH), 2951, 2807, 1467, 1074, 1047, 1034. **HRMS** (ESI): C1₃H₂₄NO₃ [M+H]⁺; calculated 242.1756, found 242.1754.

(1*R**,5*R**,7*R**,9*S**,10*S**)-9-[(*tert*-Butyldimethylsilyl)oxy]-3-(1,3-thiazol-2-ylmethyl)-11-oxa-3azatricyclo[5.3.1.0^{1,5}]undecan-10-ol S54

Reductive amination was carried out by following general procedure **C**, using amines **S52** and **S53** (304 mg, 1.02 mmol) and 1,3-thiazolecarbaldehyde (2.5 eq.). The reaction mixture was partitioned between EtOAc (25 mL) and brine (25 mL). The phases were separated and the aqueous phase was extracted with EtOAc (2 × 25 mL). The

combined organic phases were dried over MgSO₄, filtered and concentrated *in vacuo*.^{*} Flash chromatography eluting with 1:1 pentane–EtOAc gave the *title compound* **S54** (177 mg, 0.45 mmol, 44%, single regioisomer) as a colourless oil. **R**_f 0.28 (1:1 pentane–EtOAc). ¹H NMR (500 MHz, CDCl₃): δ 7.70 (1H, d, J 3.4, thiazole 4-H), 7.26 (1H, d, J 3.4, thiazole 5-H), 4.47-4.43 (1H, m, 7-H),

^{*} The crude product was a 2:1 mixture of regioisomers (as judged by analysis of the crude residue by NMR spectroscopy at 300 Hz).

4.13 (1H, app. t, *J* 4.2, 9-H), 4.08 (1H, d, *J* 14.7, 2-H_A), 4.01 (1H, d, *J* 14.7, 2-H_B), 3.74-3.64 (1H, m, 10-H), 3.29 (1H, d, *J* 10.4, NC*H*_AH_BAr), 3.12-3.01 (2H, m, 5-H and 4-H_A), 2.72-2.60 (2H, m, includes: 1H, OH; and at δ 2.69: 1H, d, *J* 10.4, NCH_AH_BAr), 2.52 (1H, app. t, *J* 7.5, 4-H_B), 2.23 (1H, dd, *J* 12.2, 8.3, 6-H_A), 2.11-2.04 (1H, m, 8-H_B), 1.83-1.70 (2H, m, 6-H_B and at δ 1.75: 1H, d, *J* 14.7, 8-H_A), 0.94 (9H, s, SiC(CH₃)₃), 0.12 (3H, s, SiCH₃), 0.11 (3H, s, SiCH₃). ¹³C NMR (125 MHz, CDCI₃): δ 169.6 (thiazole 2-C), 142.3 (thiazole 4-C), 119.5 (thiazole 5-C), 92.7 (1-C), 76.6 (7-C), 69.1 (9-C or 10-C), 68.9 (9-C or 10-C), 61.5 (4-C), 59.8 (N*C*H₂Ar), 56.6 (2-C), 41.0 (5-C), 38.8 (8-C), 35.5 (6-C), 26.0 (SiC_q(*C*H₃)₃), 18.1 (Si*C*_q), -4.4 (Si*C*H₃), -5.1 (Si*C*H₃). **IR** v_{max}(film)/cm⁻¹ 2950, 2929, 2855, 1253, 1097, 1061, 934, 836. **HRMS** (ESI): C₁₉H₃₃N₂O₃SSi [M+H]⁺; calculated 397.1981, found 397.1986.

(*1R**,*5R**,*7R**,9S*,*10*S*)-3-(1,3-thiazol-2-ylmethyl)-11-oxa-3-azatricyclo[5.3.1.0^{1,5}]undecane-9,10-diol F42

O-Silyl deprotection was carried out by following general procedure **G**, using compound **S54** (177 mg, 0.44 mmol) and (±)-camphorsulfonic acid (10.0 eq.) over 2.5 days. Flash chromatography eluting with 93:7:1 CH₂Cl₂–EtOH– NH₃/MeOH gave the *title compound* **F42** (126 mg, 0.44 mmol, 99%) as a pale yellow foam. **R**_f 0.13 (93:7:1 CH₂Cl₂–EtOH–NH₃/MeOH). ¹**H NMR** (500 MHz,

CDCl₃, one OH not observed): δ 7.72 (1H, d, *J* 3.2, thiazole 4-H), 7.28 (1H, d, *J* 3.2, thiazole 5-H), 4.52-4.45 (1H, m, 7-H), 4.14 (1H, app. t, *J* 4.3, 9-H), 4.09 (1H, d, *J* 14.7, 2-H_A), 3.98 (1H, d, *J* 14.7, 2-H_B), 3.80 (1H, d, *J* 4.5, 10-H), 3.28 (1H, d, *J* 10.6, NC*H*_AH_BAr), 3.26-3.20 (1H, m, 5-H), 3.10 (1H, app. t, *J* 8.3, 4-H_A), 2.88 (1H, s, OH), 2.65 (1H, d, *J* 10.6, NCH_AH_BAr), 2.46 (1H, app. t, *J* 8.3, 4-H_B), 2.29 (1H, dd, *J* 12.2, 8.8, 6-H_A), 2.07 (1H, dt, *J* 14.7, 4.5, 8-H_B), 1.85 (1H, d, *J* 14.7, 8-H_A), 1.82-1.76 (1H, m, 6-H_B). ¹³**C** NMR (125 MHz, CDCl₃): δ 169.4 (thiazole 2-C), 142.5 (thiazole 4-C), 119.5 (thiazole 5-C), 92.1 (1-C), 77.3 (7-C), 69.9 (10-C), 67.6 (9-C), 61.6 (4-C), 60.2 (NCH₂Ar), 56.5 (2-C), 41.6 (5-C), 37.8 (8-C), 35.1 (6-C). IR v_{max}(film)/cm⁻¹ 3375 (br. OH), 2942, 2821, 1505, 1075, 1051, 1034. HRMS (ESI): C₁₃H₁₉N₂O₃S [M+H]⁺; calculated 283.1116, found 283.1111.

(*1R**,*5R**,*7R**,*9S**,*10S**)-3-Cyclobutanecarbonyl-11-oxa-3-azatricyclo[5.3.1.0^{1,5}]undecane-9,10-diol F43

Cyclobutanecarbonyl chloride (0.57 mL, 5.00 mmol, 5.00 eq.) was added to a stirred solution of amines **S52** and **S53** (300 mg, 1.00 mmol, 1.00 eq., 2:1 mixture of regioisomers) in pyridine (10 mL) at 0 °C. The reaction mixture was warmed to rt then stirred for 15 h. Further cyclobutanecarbonyl chloride

(0.21 mL, 1.83 mmol, 2.50 eq.) was added and the reaction mixture was stirred for 1 h. The reaction mixture was concentrated in vacuo, then partitioned between EtOAc (25 mL) and sat. aq. NaHCO3 solution (25 mL). The phases were separated and the aqueous phase was extracted with EtOAc (2 × 25 mL). The combined organic phases were dried over MgSO₄, filtered and concetrated in vacuo. Flash chromatography eluting with 1:9 pentane-EtOAc was used to isolate fractions with R_F= 0.48, giving a colourless oil (240 mg) {LRMS (HPLC-MS): C₂₅H₄₁NO₅Si; found 463.9 [M⁺], consistent with the diacetylated product}. The residue (240 mg, [estimate 0.52 mmol], 1.00 eg) was diluted in MeOH (10 mL) and NaOMe (25 wt% in MeOH, 0.60 mL, 2.50 mmol, 5.00 eq.) was added. The reaction mixture was stirred for 1 h at rt, then concentrated in vacuo. The residue was diluted in CH₂Cl₂ (25 mL) and washed with H₂O (25 mL). The phases were separated and the aqueous phase was extracted with CH_2Cl_2 (2 × 10 mL). The combined organic phases were dried over MgSO₄, filtered and concetrated *in vacuo* to give a colourless oil (190 mg). The residue was diluted in MeOH (10 mL) and (±)-camphorsulfonic acid (465 mg, 2.00 mmol, 4.00 eg.) was added. The reaction mixture heated at 45 °C for 15 h, then concentrated in vacuo. Flash chromatography eluting with 93:7:1 CH₂Cl₂-EtOH-NH₃/MeOH gave the *title compound* F43 (102 mg, 0.38 mmol, 38% [three steps]) as a colourless oil. Rf 0.38 (50:8:1 CH₂Cl₂-EtOH-NH₃/MeOH). ¹H NMR (500 MHz, CDCl₃, 60:40 mixture of rotamers): δ 4.52-4.47 (1H, m, 7-H), 4.34-4.24 (0.6H, s, OH), 4.22-4.18 (0.4H, m, 9-H), 4.16 (0.6H, app. t, J 4.3, 9-H), 4.04 (0.4H, dd, J 11.9, 9.6, 4-H_B), 3.99 (0.6H, d, J 13.5, 2-H_A), 3.88-3.74 (2H, m, includes: 0.4H, 2-H_A; 0.6H, 4-H_B; and 1H, 10-H), 3.56 (0.6H, d, *J* 12.6, 2-H_B), 3.46 (0.4H, d, J 12.6, 2-H_B), 3.27-3.01 (3.4H, m, includes: 1H, 4-H_A; 1H, 5-H; 1H, cyclobutyl 1-H; and 0.4H, OH), 2.76 (0.6H, s, OH), 2.51 (1H, td, J 12.1, 8.4, 6-H_A), 2.39 (0.4H, s, OH), 2.37-2.25 (2H, m, cylobutyl 2-H), 2.19-2.02 (3H, m, includes: 1H, 8-H_A; and 2H, cyclobutyl 2-H), 2.00-1.76 (4H, m, includes: 1H, 6-H_B; 1H, 8-H_B; and 2H, cyclobutyl 3-H). ¹³C NMR (125 MHz, CDCl₃): δ 173.3 (major and minor, N(CO)CH), 92.6 (minor, 1-C), 90.7 (major, 1-C), 76.6 (major, 7-C), 76.4 (minor, 7-C), 68.3 (minor, 10-C), 67.5 (major, 10-C), 67.4 (major, 9-C), 67.2 (minor, 9-C), 54.7 (major, 4-C), 54.4 (minor, 4-C), 51.7 (major, 2-C), 51.4 (minor, 2-C), 41.1 (major and minor, 5-C), 39.0 (minor, cyclobutyl 1-C), 38.2 (minor, 8-C), 38.1 (major, cyclobutyl 1-C), 37.2 (2 peaks: minor, 6-C and major, 8-C), 36.4 (major, 6-C), 24.9 (minor, cyclobutyl 2-C), 24.7 (major, cyclobutyl 2-C), 24.6 (major, cyclobutyl 2-C'), 24.5 (minor, cyclobutyl 2-C'), 18.0 (major and minor, cyclobutyl 3-C). IR v_{max}(film)/cm⁻¹ 3359 (br. OH), 2945, 2878, 1615 (CO), 1451, 1220, 1078, 1052. HRMS (ESI): C₁₄H₂₂NO₄ [M+H]⁺; calculated 268.1549, found 268.1543.

(1R*,5R*,7R*,9S*,10S*)-3-(pyridin-2-yl)-11-oxa-3-azatricyclo[5.3.1.0^{1,5}]undecane-9,10-diol F44

2-Fluoropyridine (74 μ L, 0.84 mmol, 1.0 eq.) was added to a stirred solution of amines **S52** and **S53** (256 mg, 0.84 mmol, 1.00 eq., 2:1 mixture of regioisomers) and DIPEA (18 μ L, 1.20 mmol, 1.20 eq.) in DMA (5.0 mL). The reaction mixture was heated at 120 °C for 15 h. The reaction mixture was

concentrated in vacuo, then partitioned between EtOAc (25 mL) and sat. ag. NaHCO₃ solution (25 mL). The phases were separated and the aqueous phase was extracted with EtOAc (2 × 25 mL). The combined organic phases were dried over MgSO₄, filtered and concetrated in vacuo. O-Silyl deprotection was carried out by following general procedure G, using the the crude residue (130 mg) and (±)-camphorsulfonic acid (2.7 eq.). Flash chromatography eluting with 90:9:1 CH₂Cl₂-EtOH-NH₃/MeOH gave the *title compound* F44 (43 mg, 0.16 mmol, 20% [two steps]) as a colourless amorphous solid. Rf 0.17 (2:1 CH₂Cl₂-"Mixture-A"). ¹H NMR (500 MHz, CDCl₃, 2 × OH not observed): δ 8.02 (1H, dd, J 5.3, 1.5, pyridine 6-H), 7.44 (1H, ddd, J 8.8, 6.9, 1.5, pyridine 4-H), 6.53 (1H, dd, J 6.9, 5.3, pyridine 5-H), 6.36 (1H, d, J 8.8, pyridine 3-H), 4.52 (1H, dd, J 7.4, 4.4, 7-H), 4.14 (1H, app. t, J 4.4, 9-H), 4.08 (1H, d, J 11.8, 2-H_A), 3.96 (1H, d, J 4.7, 10-H), 3.88 (1H, t, J 9.5, 4-H_A), 3.69 (1H, d, J 11.8, 2-H_B), 3.40-3.32 (1H, m, 5-H), 3.20 (1H, dd, J 9.5, 8.4, 4-H_B), 2.62 (1H, dd, J 12.2, 8.5, 8-H_B), 2.06 (1H, dt, J 14.5, 4.4, 6-H_A), 1.99-1.92 (2H, m, 6-H_B and 8-H_A). ¹³C NMR (125 MHz, CDCl₃): δ 156.9 (pyridine 2-C), 147.2 (pyridine 6-C), 137.7 (pyridine 4-C), 111.7 (pyridine 5-C), 107.6 (pyridine 3-C), 91.8 (1-C), 76.6 (7-C), 67.7 (9-C or 10-C), 67.5 (9-C or 10-C), 56.4 (4-C), 53.1 (2-C), 40.7 (5-C), 37.5 (8-C), 37.2 (6-C). IR v_{max}(film)/cm⁻¹ 3391 (br. OH), 2944, 2870, 1601, 1556, 1499, 1474, 1445. HRMS (ESI): C13H19N2O3S [M+H]+; calculated 263.1396, found 263.1395.

5.4.3.20 Preparation of fragments derived from scaffold S27

(1*R**,8*R**,10*R**)-14-methyl-5,12,14-triazatetracyclo[6.5.1.0^{1,10}.0^{3,7}]tetradeca-3,6-dien-2-one F45

HN 13 0 F45 Deprotection of Boc-protected compound **S27** (1.71 g, 5.39 mmol) was carried out by following general procedure **I**. Purification by SCX SPE eluting with MeOH, then sat. NH₃/MeOH, gave the *title compound* **F45** (1.10 g, 5.06 mmol, 94%) as a yellow solid. **Mp:** Decomposition observed above 180 °C. ¹H NMR (500 MHz,

MeOD-d₄, 333 K): δ 7.34 (1H, s, 4-H), 6.62 (1H, s, 6-H), 4.32 (1H, d, J 4.5, 8-H), 3.43 (1H, d, J 12.4, 13-H_A), 3.31 (1H, br. s, NH), 3.08 (1H, dd, J 11.1, 8.7, 11-H_B), 2.84 (1H, dd, J 11.1, 4.6, 11-H_A), 2.75 (1H, d, J 12.4, 13-H_B), 2.64-2.49 (1H, m, 10-H), 2.22 (3H, s, NCH₃), 2.08-2.00 (1H, m, 9-H_A), 1.97 (1H, app. t, J 10.0, 9-H_B). ¹³**C** NMR (125 MHz, MeOD-d₄, 333 K): δ 196.0, 128.4, 121.0, 119.5, 115.4, 83.4, 63.4, 54.2, 50.2, 48.3, 39.2, 33.0. IR ν_{max} (film)/cm⁻¹ 2860, 1654, 1520, 1480, 1446, 1350, 1179, 902. HRMS (ESI): C₁₂H₁₆N₃O [M+H]⁺; calculated 218.1288, found 218.1291.

(1*R**,8*R**,10*R**)-12-Ethyl-14-methyl-5,12,14-triazatetracyclo[6.5.1.0^{1,10}.0^{3,7}]tetradeca-3,6-dien-2-one F46

Reductive amination was carried out by following general procedure **C**, using compound **F45** (151 mg, 0.70 mmol) and acetaldehyde (5.0 M in THF, 2.0 eq.). The reaction was quenched with H₂O (5 mL) and the layers separated. The aqueous layer was extracted with CH₂Cl₂ (2 x 10 mL) and the combined

organic layers were dried, filtered and concentrated *in vacuo* to give a crude oil. The crude material was purified by SCX SPE eluting with MeOH, then sat. NH₃/MeOH, to give the *title compound* **F46** (83 mg, 0.34 mmol, 49%) as a yellow oil. ¹**H NMR** (500 MHz, MeOD-d₄, 333 K, NH not observed):

δ 7.36 (1H, app. t, *J* 1.6, 4-H), 6.63 (1H, d, *J* 1.5, 6-H), 4.33 (1H, dd, *J* 5.5, 8-H), 3.60 (1H, d, *J* 10.0, 13-H_A), 3.01 (1H, dd, *J* 8.6, 7.8, 11-H_B), 2.67-2.47 (4H, m, 10-H, 11-H_A and NC*H*₂CH₃,), 2.30 (1H, d, *J* 10.0, 13-H_B), 2.21 (3H, s, NCH₃), 2.10 (1H, app. td, *J* 11.3, 5.5, 9-H_A), 1.89 (1H, dd, *J* 11.5, 8.7, 9-H_B), 1.15 (3H, t, *J* 7.3, NCH₂C*H*₃). ¹³C NMR (125 MHz, MeOD-d₄, 333 K): δ 194.9, 126.9, 119.9, 117.7, 113.8, 80.2, 62.5, 60.0, 54.5, 49.9, 47.6, 36.2, 31.7, 12.0. IR _{Vmax}(film)/cm⁻¹ 3197, 2967, 2937, 1667, 1516, 1451. HRMS (ESI): C₁₄H₂₀N₃O [M+H]⁺; calculated 246.1601, found 246.1602.

(1*R**,8*R**,10*R**)-14-Methyl-2-oxo-5,12,14-triazatetracyclo[6.5.1.0^{1,10}.0^{3,7}]tetradeca-3,6-diene-12-carbaldehyde F47

To a solution of compound **F45** (100 mg, 0.46 mmol) in MeOH (0.5 mL) was added ethyl formate (3.0 mL) and the resulting solution was heated to 50 °C for 24 h, then concentrated *in vacuo* to give formamide **F47** (96 mg, 0.39 mmol, 85%) as a yellow oil. ¹H NMR (500 MHz, MeOD-d₄, 333 K, two

stable conformations observed at the pyrrolidine ring [50:50 mixture], NH not observed): δ 8.04-8.00 (1H, m, CHO), 7.31-7.26 (1H, m, 4-H), 6.57-6.53 (1H, m, 6-H), 4.28 (0.5H, d, J9.1, 8-H), 4.27 (0.5H, d, J9.1, 8-H), 4.23 (0.5H, d, J12.1, 13-H_{A-conf1}), 4.21 (0.5H, d, J13.1, 13-H_{A-conf2}), 3.93 (0.5H, dd, J 10.9, 9.0, 11-H_{B-conf1}), 3.74 (0.5H, J12.1, 9.4, 11-H_{B-conf2}), 3.47 (0.5H, J12.1, 13-H_{B-conf1}), 3.42 (0.5H, dd, J 10.9, 7.7, 11-H_{A-conf1}), 3.37 (1H, dd, J 12.1, 6.5, 11-H_{A-conf2}), 3.31 (0.5H, d, J 13.2, 13-H_{B-conf2}), 2.66-2.57 (1H, m, 10-H), 2.15 (1.5H, s, NCH₃), 2.14 (1.5H, s, NCH₃), 2.08-1.99 (1H, m, 9-H_A), 1.93 (0.5H, dd, J 11.9, 9.0, 9-H_{B-conf1}(1 or 2)), 1.88 (0.5H, dd, J 12.1, 8.7, 9-H_{B-conf1}(1 or 2)). ¹³C NMR (125 MHz, MeOD-d₄, 333 K,): δ 194.4, 194.2, 163.3, 163.0, 128.7, 128.6, 121.8, 121.7, 118.7, 118.6, 115.3, 115.2, 81.6, 81.3, 63.3, 63.1, 54.6, 51.1, 47.8, 47.6, 47.4, 44.8, 39.9, 38.7, 33.1, 33.0 [26 of 26 expected peaks observed]. HRMS (ESI): C₁₃H₁₅N₃NaO₂ [M+H]⁺; calculated 268.1056, found 268.1054.

(1*R**,8*R**,10*R**)-12-Acetyl-14-methyl-5,12,14-triazatetracyclo[6.5.1.0^{1,10}.0^{3,7}]tetradeca-3,6-dien-2-one F48

N-Acylation was carried out by following general procedure **E**, using compound **F45** (155 mg, 0.71 mmol). CH_2Cl_2 (10 mL) and H_2O (10 mL) were added and the phases separated. The aqueous layer was extracted with CH_2Cl_2 (2 x 10 mL) and the combined organic layers were dried over MgSO₄,

filtered and concentrated *in vacuo* to give a crude brown oil. Flash chromatography eluting with 80:10:1 CH₂Cl₂–EtOH–NH₄OH gave the *title compound* **F48** (172 mg, 0.66 mmol, 93%) as a brown oil. ¹H NMR (400 MHz, MeOD-d₄, 333 K, two stable conformations observed at the pyrrolidine ring

[50:50 mixture], NH not observed): δ 7.44-7.37 (1H, m, 4-H), 6.70-6.60 (1H, m, 6-H), 4.45 (0.5H, d, *J* 12.0, 13-H_{A-conf1}), 4.41 (0.5H, app. s, 8-H), 4.39 (0.5H, app. s, 8-H), 4.32 (0.5H, d, *J* 13.4, 13-H_{A-conf2}), 4.11-4.00 (1H, m, 11-H_B), 3.57-3.47 (1.5H, m, 11-H_A and 13-H_B), 3.41 (0.5H, dd, *J* 12.0, 7.7, 11-H_A), 2.83 (0.5H, ddd, *J* 17.0, 9.0, 4.6, 10-H), 2.72 (0.5H, ddd, *J* 16.9, 8.9, 4.7, 10-H), 2.28 (1.5H, s, NCH₃), 2.26 (1.5H, s, NCH₃), 2.26-2.13 (1H, m, 9-H_A), 2.12 (1.5H, s, N(CO)CH₃), 2.07 (1.5H, s, N(CO)CH₃), 2.07 (1.5H, s, N(CO)CH₃), 2.01 (1H, dd, *J* 12.1, 8.8, 9-H_B). ¹³**C** NMR (100 MHz, MeOD-d₄, 333 K,): δ 192.6, 192.5, 175.0, 170.5, 127.4, 120.6 (2 peaks), 116.9, 113.8 (2 peaks), 81.3, 79.8, 61.7, 61.6, 55.0, 54.5, 47.5, 46.4, 45.7, 45.1, 38.3, 38.2, 31.7 (2 peaks), 20.7, 20.6 [26 of 28 expected peaks observed]. HRMS (ESI): C₁₄H₁₈N₃O₂ [M+H]⁺; calculated 260.1394, found 260.1394.

(1*R**,8*R**,10*R**)-14-Methyl-2-oxo-5,12,14-triazatetracyclo[6.5.1.0^{1,10}.0^{3,7}]tetradeca-3,6-diene-12-carboxamide F49

To a solution of compound **F45** (128 mg, 0.59 mmol, 1.00 eq.) in 1:1 dioxane–H₂O (5.0 mL) was added AcOH (0.10 mL, 1.77 mmol, 3.00 eq.) followed by KNCO (72 mg, 0.88 mmol, 1.50 eq.) and the resulting solution was stirred at 80 °C for 24 h. H₂O (5 mL) and EtOAc (5 mL) were added

and the phases separated. The aqueous phase was extracted with EtOAc (2 x 5 mL) and the combined organic layers were dried over MgSO₄, filtered and concentrated *in vacuo* to give the *title compound* **F49** (106 mg, 0.41 mmol, 69%) as a yellow oil. ¹H NMR (500 MHz, MeOD-d₄, 333 K, pyrrole NH and NH₂ not observed): δ 7.42 (1H, d, *J* 1.3, 4-H), 6.68 (1H, d, *J* 1.3, 6-H), 4.41 (1H, d, *J* 5.9, 8-H), 4.30 (1H, d, *J* 11.7, 13-H_A), 3.94 (1H, app. t, *J* 9.8, 11-H_A), 3.43-3.31 (2H, m, 11-H_B and 13-H_B), 2.83-2.71 (1H, m, 10-H), 2.27 (3H, s, NCH₃), 2.25-2.15 (1H, m, 9-H_A), 2.01 (1H, dd, *J* 12.0, 8.8, 9-H_B). ¹³C NMR (125 MHz, MeOD-d₄, 333 K): δ 192.9, 159.1, 127.4, 121.5, 117.0, 113.8, 81.0, 61.7, 53.5, 46.1, 38.1, 31.7, 21.4. **IR** vmax(film)/cm⁻¹ 3357, 2922, 2852, 1631, 1588, 1458.

5.4.3.21 Preparation of fragments derived from scaffold S32

(1*R**,5*R**,7*R**,8*R**,10*R**)-8-Phenyl-3,11-diazatricyclo[5.3.1.0^{1,5}]undecan-10-ol F50

Deprotection of Boc-protected compound **S32** (40 mg, 0.12 mmol) was carried out by following general procedure **I**. Purification by SCX SPE eluting with MeOH then sat. NH₃/MeOH gave the *title compound* **F50** (27 mg, 0.11 mmol, 96%) as a brown oil. ¹H NMR (500 MHz, MeOD-d₄, 333 K, OH and

2 × NH not observed): δ 7.62 (2H, d, J7.6, Ar-H), 7.29 (2H, t, 7.6, Ar-H), 7.16 (1H, t, J7.6, Ar-H), 3.78 (1H, d, J 4.9, 10-H), 3.70 (1H, d, J 6.4, 7-H), 3.13 (1H, dd, J 11.5, 8.8, 4-H_B), 2.93 (1H, d, J 12.2, 2-H_A), 2.82 (1H, d, J8.1, 8-H), 2.77 (1H, d, J12.2, 2-H_B), 2.75 (1H, dd, J 11.5, 5.9, 4-H_A), 2.50-2.39 (1H, m, 5-H), 2.35 (1H, ddd, J 15.6, 8.3, 4.8, 9-H_A), 2.17 (1H, dd, J 12.9, 9.0, 6-H_A), 2.07 (1H, dd, J 15.6, 1.2, 9-H_B), 1.94-1.85 (1H, m, 6-H_B). ¹³**C NMR** (125 MHz, MeOD-d4, 333 K): δ 146.8, 129.3, 129.3, 126.8, 77.4, 71.0, 65.1, 56.3, 55.7, 46.5, 44.7, 38.6, 32.3. **IR** v_{max}(film)/cm⁻¹ 3389, 1460, 1416. **HRMS** (ESI): C₁₅H₂₀N₂O [M+H]⁺; calculated 245.1654, found 245.1650.

5.4.3.22 Preparation of fragments derived from scaffold S33 and S34

(1*R**,5*R**,7*R**,8*R**,10*S**)-8-(4-Fluorophenyl)-3,11-diazatricyclo[5.3.1.0^{1,5}]undecan-10-ol F51 and (1*R**,5*R**,7*R**,8*R**,10*R**)-8-(4-fluorophenyl)-3,11-diazatricyclo[5.3.1.0^{1,5}]undecan-10-ol F52

Deprotection of Boc-protected compounds **S33** and **S34** (119 mg, 0.46 mmol) was carried out by following general procedure **I**. Purification by SCX eluting with MeOH then sat. NH₃/MeOH gave the *title compounds* **F51** and **F52** (10 mg, 38 μ mol, 8%, 40:60 mixture of diastereomers) as a brown oil. ¹H NMR (400 MHz, MeOD-d₄, major and minor assigned by analogy to compounds **F51** and **F52**): δ 7.61-7.55 (1.2H, m, major Ar 3-H), 7.31-7.23 (0.8H, m, minor Ar 3-H), 7.02-6.90 (2H, m, major and minor, Ar 2-H), 4.01 (0.4H, dd, *J* 10.8, 5.8, minor, 10-H), 3.86 (0.6H, d, *J* 3.7,

major, 10-H), 3.73 (0.6H, d, *J* 6.9, major, 7-H), 3.65 (0.4H, d, *J* 6.7, minor 7-H), 3.52 (0.6H, dd, *J* 11.9, 9.5, major 4-H_B), 3.45 (0.4H, dd, *J* 11.8, 9.5, minor, 4-H_B), 3.41 (0.4H, d, *J* 11.9, minor 2-H_A), 3.29 (0.6H, d, *J* 12.4, major, 2-H_A), 3.13 (0.6H, dd, *J* 11.9, 6.6, major, 4-H_A), 3.10 (0.6H, d, *J* 12.4, major, 2-H_B), 3.08 (0.4H, d, *J* 11.9, minor, 2-H_B), 3.05 (0.4H, dd, *J* 11.8, 7.2, minor, 4-H_A), 2.98 (0.4H, d, *J* 7.0, minor, 8-H), 2.94-2.82 (0.4H, m, minor, 5-H), 2.86 (0.6H, d, *J* 8.0, major, 8-H), 2.79-2.65 (0.6H, m, major, 5-H), 2.29 (0.6H, ddd, *J* 13.4, 8.3, 4.7, major, 9-H_B), 2.27-2.21 (0.4H, m, minor, 9-H_B), 2.20 (0.6H, dd, *J* 13.6, 9.1, major, 6-H_B), 2.10 (0.4H, dd, *J* 13.4, 8.9, minor, 6-H_B), 2.04-1.97 (0.6H, m, major, 6-H_A), 2.03 (0.6H, ddd, *J* 13.4, 6.9, 4.7, major, 9-H_A), 1.96 (0.4H, ddd, *J* 13.3, 6.8, 4.4, minor, 6-H_A), 1.78 (0.4H, ddd, *J* 14.5, 10.9, 7.2, minor, 9-H_A). ¹³**C NMR** (100 MHz, MeOD-d4): δ 161.5 (d, *J* 243), 161.4 (d, *J* 244), 139.7, 138.8, 130.0 (d, *J* 7.9), 129.3 (d, *J* 7.7), 114.8 (d, *J* 21), 114.4 (d, *J* 21), 74.8, 74.6, 72.2, 67.5, 65.2, 63.6, 62.9, 52.4, 52.3, 49.4, 45.2, 42.1, 41.7, 38.3, 36.4, 35.7, 31.5, 29.2 [26 of 26 expected peaks observed]. **IR** ν_{max} (film)/cm⁻¹ 3389, 1482, 1447. **HRMS** (ESI): C₁₅H₁₉FN₂NaO [M+Na]⁺; calculated 285.1374, found 285.1370.

6.0 High-throughput protein crystallography

Proteins were expressed, purified, and crystallised as previously described for JMJD2D,^{S11} and the ATAD2 and BRD1 bromodomains.^{S12} Crystal soaking was performed using the XChem platform.^{S13} X-ray diffraction data were collected at Diamond Light Source beamline I04-1 and processed through the Diamond autoprocessing pipeline. Electron density maps were generated in batch by *DIMPLE*^{S14} using *XChemExplorer*.^{S15} Ligand restraints were generated with *ACEDRG or Grade*^{S16} and ligand binding was detected with *PanDDA*,^{S17} with ligands built into *PanDDA* event maps. Fragments based on natural product paralogues were screened as racemates. Both enantiomers were fitted to the electron density in the *PanDDA* event maps using *COOT*^{S18}, then the enantiomer with the best fit was chosen. Iterative refinement and manual model correction was performed using *REFMAC*^{S19} and *COOT*, respectively.

7.0 Processed NMR spectra

Compounds are listed in order of appearance within in the Supplementary Information. NOESY spectra are also included in this Section.

carried forward crude

CI

ΗŃ

HN 13 2 3		— 160.77										92.37			$\leftarrow 62.22$ 56.45 56.24		46.71	→ 35.64	 > 35.64 > 30.67 > 29.56 > 24.84 						
² H [°] N [×] ⁵ [×] O ↓ F5																									
																	1								
															1										
	ja ki	i dhiddindhidhai lur	n lit militik	uris de la constantia de l	la filició de area de la	niinii i.m.uuuii	hi an tribula an an	i di konzili di fan stalla	ddigili fan úklikilier	udul dan du du du	Mumandul	hinden hit den hunde	ilitere interior		i a chivita ilice alere e aler	ninut tinut	ulp with all ball		ladminated	washingthese	Anidestateni	leiniikii tukny/Likn	ni iliki (p. 1		
			alilardini ofisish			h atta kilan ki			andad a dhuh da dhuh dh	- · · · · · · · · · · · · · · · · · · ·		Dobant Arbant (1), a	a. this where differin			- ' ' - i a î li î	Andre in the second	, atribution		Land II of the second	,	Maadalahaa daahamada		indiand in the second	
	210	200	190	180	170	160	150	140	130	120	110	100	90	80) 70	60) 5	50	40	30	20	10	0	-10	

ΗN

HN

8.0 References (including full references from the paper with >10 authors)

[S1] A. Chaikuad, A. M. Petros, O. Fedorov, J. Xu, S. Knapp, *Medhemcomm* **2014**, *5*, 1843–1848.

[S2] M. J. Harner, B. A. Chauder, J. Phan, S. W. Fesik, *J. Med. Chem.* **2014**, *57*, 9687–9692.

[S3] E. H. Demont, C. Chung, R. C. Furze, P. Grandi, A.-M. Michon, C. Wellaway, N. Barrett, A. M. Bridges, P. D. Craggs, H. Diallo, D. P. Dixon, C. Douault, A. J. Emmons, E. J. Jones, B. V. Karamshi, K. Locke, D. J. Mitchell, B. H. Mouzon, R. K. Prinjha, A. D. Roberts, R. J. Sheppard, R. J. Watson, P. Bamborough, *J. Med. Chem.* **2015**, *58*, 5649–5673.

[S4] G. Poncet-Montange, Y. Zhan, J. P. Bardenhagen, A. Petrocchi, E. Leo, X. Shi, G. R. Lee,
P. G. Leonard, M. K. Geck Do, M. G. Cardozo, J. N. Andersen, W. S. Palmer, P. Jones, J. E. Ladbury, *Biochem. J.* 2015, 466.

[S5] P. Bamborough, C. Chung, E. H. Demont, R. C. Furze, A. J. Bannister, K. H. Che, H. Diallo,
C. Douault, P. Grandi, T. Kouzarides, A.-M. Michon, D. J. Mitchell, R. K. Prinjha, C. Rau, S. Robson,
R. J. Sheppard, R. Upton, R. J. Watson, *Angew. Chemie Int. Ed.* **2016**, *55*, 11382–11386.

[S6] P. Ertl, S. Roggo, A. Schuffenhauer, J. Chem. Inf. Model. 2008, 48, 68–74.

[S7] S. Miyazaki, S. Katoh, K. Adachi, H. Isoshima, S. Kobayashi, Y. Matsuzaki, W. Watanabe, K. Yamataka, S. Kiyonari, S. Wamaki, **2005**, US 2005/54645 A1.

[S8] A. H. Jadhav, H. Kim, *Tetrahedron Lett.* **2012**, *53*, 5338–5342.

[S9] C. S. Yeung, R. E. Ziegler, J. A. Porco, E. N. Jacobsen, J. Am. Chem. Soc. 2014, 136, 13614– 13617.

[S10] G. Bianchi, C. De Micheli, R. Gandolfi, P. Grünanger, P. V. Finzi, O. V. de Pava, *J. Chem. Soc., Perkin Trans.* 1 1973, 1148–1155.

[S11] V. Bavetsias, R. M. Lanigan, G. F. Ruda, B. Atrash, M. G. McLaughlin, A. Tumber, N. Y. Mok, Y.-V. Le Bihan, S. Dempster, K. J. Boxall, F. Jeganathan, S. B. Hatch, P. Savitsky, S. Velupillai, T. Krojer, K. S. England, J. Sejberg, C. Thai, A. Donovan, A. Pal, G. Scozzafava, J. M. Bennett, A. Kawamura, C. Johansson, A. Szykowska, C. Gileadi, N. A. Burgess-Brown, F. von Delft, U. Oppermann, Z. Walters, J. Shipley, F. I. Raynaud, S. M. Westaway, R. K. Prinjha, O. Fedorov, R. Burke, C. J. Schofield, I. M. Westwood, C. Bountra, S. Müller, R. L. M. van Montfort, P. E. Brennan, J. Blagg, *J. Med. Chem.* 2016, *59*, 1388–1409.

[S12] P. Filippakopoulos, S. Picaud, M. Mangos, T. Keates, J.-P. Lambert, D. Barsyte-Lovejoy, I. Felletar, R. Volkmer, S. Müller, T. Pawson, A.-C. Gingras, C. H. Arrowsmith, S. Knapp, *Cell* **2012**, *149*, 214–31.

[S13] P. M. Collins, J. T. Ng, R. Talon, K. Nekrosiute, T. Krojer, A. Douangamath, J. Brandao-Neto, N. Wright, N. M. Pearce, F. von Delft, *Acta Crystallogr. Sect. D Struct. Biol.* **2017**, *73*, 246–255.

[S14] M. Wojdyr, R. Keegan, G. Winter, A. Ashton, *Acta Crystallogr. Sect. A Found. Crystallogr.* **2013**, *69*, s299–s299.

[S15] T. Krojer, R. Talon, N. Pearce, P. Collins, A. Douangamath, J. Brandao-Neto, A. Dias, B. Marsden, F. von Delft, *Acta Crystallogr. Sect. D Struct. Biol.* **2017**, *73*, 267–278.

[S16] Smart, O.S. *et al.* Grade, version 1.102 Mar 29 2015. Cambridge, United Kingdom, Global Phasing Ltd (2011).

[S17] N. Pearce, A. R. Bradley, P. Collins, T. Krojer, R. Nowak, R. Talon, B. D. Marsden, S. Kelm, J. Shi, C. Deane, F. von Delft, *bioRxiv* 2016, DOI: 10.1101/073411.

[S18] P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Acta Crystallogr. Sect. D Biol. Crystallogr. 2010, 66, 486–501.

[S19] G. N. Murshudov, P. Skubák, A. A. Lebedev, N. S. Pannu, R. A. Steiner, R. A. Nicholls, M. D. Winn, F. Long, A. A. Vagin, *Acta Crystallogr. Sect. D Biol. Crystallogr.* 2011, 67, 355–367.

[17b] Y. Wang, J.-Y. Wach, P. Sheehan, C. Zhong, C. Zhan, R. Harris, S. C. Almo, J. Bishop, S. J. Haggarty, A. Ramek, K. N. Berry, C. O'Herin, A. N. Koehler, A. W. Hung, D. W. Young, *ACS Med. Chem. Lett.* **2016**, *7*, 852–856.

[21b] S. Renner, W. A. L. van Otterlo, M. Dominguez Seoane, S. Möcklinghoff, B. Hofmann, S. Wetzel, A. Schuffenhauer, P. Ertl, T. I. Oprea, D. Steinhilber, L. Brunsveld, D. Rauh, H. Waldmann, *Nat. Chem. Biol.* **2009**, *5*, 585–592.

[25] P. Bamborough, C. Chung, E. H. Demont, R. C. Furze, A. J. Bannister, K. H. Che, H. Diallo,
C. Douault, P. Grandi, T. Kouzarides, A.-M. Michon, D. J. Mitchell, R. K. Prinjha, C. Rau, S. Robson,
R. J. Sheppard, R. Upton, R. J. Watson, *Angew. Chemie Int. Ed.* **2016**, *55*, 11382–11386.

[26] M. Korczynska, D. D. Le, N. Younger, E. Gregori-Puigjané, A. Tumber, T. Krojer, S. Velupillai,
C. Gileadi, R. P. Nowak, E. Iwasa, S. B. Pollock, I. Ortiz Torres, U. Oppermann, B. K. Shoichet. D.
G. Fujimori, *J. Med. Chem.* 2016, *59*, 1580–1598.

[27] N. Igoe, E. D. Bayle, O. Fedorov, C. Tallant, P. Savitsky, C. Rogers, D. R. Owen, G. Deb, T.
C. P. Somervaille, D. M. Andrews, N. Jones, A. Cheasty, H. Ryder, P. E. Brennan, S. Müller, S.
Knapp, P. V. Fish, *J. Med. Chem.* 2017, *60*, 668–680.

[31a] V. Bavetsias, R. M. Lanigan, G. F. Ruda, B. Atrash, M. G. McLaughlin, A. Tumber, N. Y. Mok, Y.-V. Le Bihan, S. Dempster, K. J. Boxall, F. Jeganathan, S. B. Hatch, P. Savitsky, S. Velupillai, T. Krojer, K. S. England, J. Sejberg, C. Thai, A. Donovan, A. Pal, G. Scozzafava, J. M. Bennett, A. Kawamura, C. Johansson, A. Szykowska, C. Gileadi, N. A. Burgess-Brown, F. von Delft, U. Oppermann, Z. Walters, J. Shipley, F. I. Raynaud, S. M. Westaway, R. K. Prinjha, O. Fedorov, R. Burke, C. J. Schofield, I. M. Westwood, C. Bountra, S. Müller, R. L. M. van Montfort, P. E. Brennan, J. Blagg, *J. Med. Chem.* **2016**, *59*, 1388–1409.

[31b] S. M. Westaway, A. G. S. Preston, M. D. Barker, F. Brown, J. A. Brown, M. Campbell, C. Chung, H. Diallo, C. Douault, G. Drewes, R. Eagle, L. Gordon, C. Haslam, T. G. Hayhow, P. G. Humphreys, G. Joberty, R. Katso, L. Kruidenier, M. Leveridge, J. Liddle, J. Mosley, M. Muelbaier, R. Randle, I. Rioja, A. Rueger, G. A. Seal, R. J. Sheppard, O. Singh, J. Taylor, P. Thomas, D. Thomson, D. M. Wilson, K. Lee, R. K. Prinjha, *J. Med. Chem.* **2016**, *59*, 1357–1369.

[32a] E. H. Demont, C. Chung, R. C. Furze, P. Grandi, A.-M. Michon, C. Wellaway, N. Barrett, A. M. Bridges, P. D. Craggs, H. Diallo, D. P. Dixon, C. Douault, A. J. Emmons, E. J. Jones, B. V. Karamshi, K. Locke, D. J. Mitchell, B. H. Mouzon, R. K. Prinjha, A. D. Roberts, R. J. Sheppard, R. J. Watson, P. Bamborough, *J. Med. Chem.* **2015**, *58*, 5649–5673.

[32b] G. Poncet-Montange, Y. Zhan, J. P. Bardenhagen, A. Petrocchi, E. Leo, X. Shi, G. R. Lee,
P. G. Leonard, M. K. Geck Do, M. G. Cardozo, J. N. Andersen, W. S. Palmer, P. Jones, J. E. Ladbury, *Biochem. J.* 2015, 466.

[32c] P. Bamborough, C. Chung, E. H. Demont, R. C. Furze, A. J. Bannister, K. H. Che, H. Diallo,
C. Douault, P. Grandi, T. Kouzarides, A.-M. Michon, D. J. Mitchell, R. K. Prinjha, C. Rau, S. Robson,
R. J. Sheppard, R. Upton, R. J. Watson, *Angew. Chemie Int. Ed.* 2016, *55*, 11382–11386.

[34] A. D. Morley, A. Pugliese, K. Birchall, J. Bower, P. Brennan, N. Brown, T. Chapman, M. Drysdale, I. H. Gilbert, S. Hoelder, A. Jordan, S. V. Ley, A. Merritt, D. Miller, M. E. Swarbrick, P. G. Wyatt, *Drug Discov. Today* **2013**, *18*, 1221–1227.