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I.  SI Materials and Methods 

I.1 Cell culture and single cells preparation 
The primary PGP1 fibroblast cells were harvested at passage 12-13 and used for the SISSOR 

experiments. The cells were cultured under standard conditions (37 °C and 5% CO2) in Dulbecco’s 
Modified Eagle’s Medium (DMEM; Mediatech) supplemented with 10% fetal bovine serum (Mediatech) 
and 1% penicillin/streptomycin (MP Biomedicals). The cells were washed with PBS and then detached 
from the surface of the culture flask using TrypLE Express (Life Technologies). The cells were collected 
by centrifugation at 1000 rpm for 3 minutes and washed twice with PBS. Finally, the cells were re-
suspended in PBS and kept on ice until use.  

I.2 Quality control for whole genome amplification 
Common qPCR method with specific primers (Table S9) was used to detect and quantify the amount 

of on-chip DNA amplification. Human PGP1 fibroblast cell line and Alu sequences were used to quantify 
the amount of DNA amplicons in each sample. Efficiency of DNA denaturation was measured using the 
ratio of Alu DNA to mitochondrial DNA which does not have tightly wrapped nucleosome and higher-
order chromosomal structures. The ratio of Alu to mitochondrial DNA was normalized using human 
genomic DNA standards. A qPCR reaction with 0.5 µl of sample input in a total volume of 20 µL 
containing 0.25 µM of both forward and reverse primers, and 1x KAPA SYBR mastermix (Kapa) was 
carried out as follows: 98°C for 30s, 40 cycles of (98°C for 10s, 58°C for 30s, and 72°C for 45s), 72°C 
for 2 minutes. The final products were verified using PAGE gel. 

I.3 Sequencing library construction using CoRE fragmentation 
CoRE (Controlled Random Enzymatic) fragmentation is used to prepare 50% of PGP1 fibroblast cell 

1 and 100% of cell 3 sequencing libraries. The CoRE fragmentation process starts by generating a single 
nucleotide gaps at the locations of uracil incorporated in the MDA amplicons and then creating double 
stranded DNA from the nicked position (1). After amplicon fragmentation, NEBNext loop adapter and 
NEBNext sequencing index (New England Biolabs: NEB) were sequentially added by ligation and PCR. 
1 µl each of 3.3x exo- Klenow buffer (Epicentre), 39 U/ml uracil-DNA glycosylase (NEB), and 78 U/ml 
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endonuclease IV (NEB) were added to 1 µl of sample collected from each of the 24 chambers and held at 
37 °C for 2 hours, then 65°C for 15 minutes. Then, 1 µl each of 100 U/ml exo- Klenow and 1 mM 
dNTP’s (Epicentre) were added and the solution was incubated at 37°C for 1 hour and at 75°C for 15 
minutes. After amplicon fragmentation, 44 µl of ligation mix with 57 nM NEBNext adaptor, 1.2 U/ul T4 
DNA ligase (Kapa) and 1.2x rapid ligation buffer (Kapa) was added and the solution was incubated at 
25°C for 10 minutes. 2 µl USER enzyme (NEB) was added and the solution was incubated at 37°C for 15 
minutes to remove the uracil at the NEBNext loop adaptor. Un-ligated NEBNext adaptor was removed by 
standard 50 µl AMPure XP bead purification (Beckman Coulter), and the sample was eluted from the 
beads with 20 µl water. Finally, individual NEBNext Sequencing Index was added by PCR in a 30 µl 
reaction containing the eluted DNA, 0.33 µM each of the forward primer and NEBNext index primer 
(NEB), 1.67x KAPA SYBR mastermix (Kapa) as follows: 98°C for 30s, 12 cycles of (98°C for 10s, 65°C 
for 30s, 72°C for 45s), 72°C for 2 minutes. The PCR products were separated using PAGE gel and 
products in the 300-700 bp range were extracted. 

I.4 Sequencing library construction using transposon tagmentation 
Transposon tagmentation was used to prepare 50% of PGP1 fibroblast cell 1 and 100% of cell 2 

sequencing libraries. The process requires 2nd strand synthesis of MDA amplicons with Pol I treatment to 
make accessible double stranded DNA for transposases digestion. After the digestion, adapters and 
sequencing index sequence were sequentially added by PCR.  3 µl of alkaline lysis solution (ALS) (400 
mM KOH, 10 mM DTT and 1% Tween20) was added to each 2 µl sample at room temperature for 3 
minutes. The tube was then place on an ice block. 3 µl of neutralization solution (NS) (400 mM HCl and 
600 mM Tris-HCl) was mixed with the sample to neutralize the solution. A solution containing 10 U of 
DNA Polymerase I (Invitrogen), 1x Ampligase buffer (Epicentre), 1x NEB buffer 2, 250 ng unmodified 
random hexamer and 1 mM dNTP’s (Epicentre) was added and the solution was incubated at 37°C for 1 
hour then at 65°C for 10 minutes. To seal the nicks, 1 U Ampligase (Epicentre) was added and the 
ligation was carried out at 37°C for 10 minutes, then at 65°C for 10 minutes. The product was purified 
with standard ethanol precipitation and eluted in 7 µl of water. Each DNA sample was fragmented by 
adding 1 µl of Nextera transposase (1:50 dilution, Epicentre) and 2 µl of 5x High Molecular Weight 
buffer and incubating the solution at 55°C for 5 minutes. The transposase was then inactivated by adding 
0.05 U of protease (Qiagen) and incubating the solution at 50°C for 10 minute, then at 70°C for 20 
minutes.  Single-stranded end filling was carried out by adding 5U Exo minus Klenow (Epicentre) and 1 
mM dNTP’s and incubating the solution at 37°C for 15 minutes, followed enzyme inactivation at 75°C 
for 20 minutes. Adaptor sequences were added by 7 cycles of PCR using 1x Kapa SYBR fast mastermix, 
10 µM each of adapter 1 and barcode adapter, and 7 additional cycles of PCR using 1x Kapa SYBR fast 
mastermix, 10 µM each of Illumina primer 1 and primer 2. The products were verified using PAGE gel 
and purified using Ampure XP beads. PCR products were separated and DNA in the 300-700 bp range 
was selected and extracted for sequencing. 

I.5 DNA sequencing using next-generation short-read sequencing 
Three sequential rounds of Illumina sequencing yielded higher depth and genomic coverage for the 

sequencing libraries.  We performed the first round of single-end 36 bp or 50 bp sequencing reads to 
provide some insight into DNA fragment lengths and distribution in different chambers. Around 40 
million 36 bp single-end reads were obtained using Genome Analyzer II for each of PGP1#21 and 
PGP1#22 samples. Around 50 million 50 bp single-end reads were obtained using MiSeq and sample 
from PGP1#A1. Statistics such as mapping rate, unique rate, fragment size estimation and distribution 
were determined using the data from the first round of sequencing.  The 2nd and 3rd round of single-end or 
paired-end 100 bp reads provided the coverage and depth required for base calling. For the 2nd round, 
about 400 million 100 bp single-end reads from each sample were obtained using HiSeq rapid run. The 3rd 
round of sequencing required to reach over 50% clonal rate was estimated from the unique rate from the 
2nd round of sequencing. Depending on the sequencing level needed, more single-end or paired-end 100 
bp reads were obtained by a combination of HiSeq rapid and high output runs. Sequencing depth and 
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coverage are summarized in Table S3. 

I.6 Genome coverage 
Genome coverage was calculated by the percentage of bases in the genome using uniquely mapped 

reads. Coverage from individual single cell libraries ranged from 54.9%-73.6% of the roughly 2.9 Gb 
reference GRCh37 genome (Table S4). The difference in genome coverage from the three cells summed 
up to a total of 94.9% coverage of the genome. 

I.7 Segmentation of SISSOR fragments using HMM 
Single-stranded DNA fragments from a single-cell genome are randomly distributed in MDA reaction 

chambers in our SISSOR device. The sequencing library from each chamber is presumed to contain no 
more than one single haplotype. However, amplification bias introduced during whole genome 
amplification could result in uneven genome coverage. Using a hidden Markov model (HMM), the 
aligned sequencing reads from the individual MDA chamber are joined into a continuous segment, which 
we call a SISSOR fragment, based on the read depth and proximity in the localized genomic region.  

The CSHL code (2) was used to divide the whole human genome into 50,000 bins of ~60 kb. A string 
of 50,000 digits was created for each chamber and input to an HMM (smooth.discrete of mhsmm package 
(3) in R). Read depths above the threshold in a bin create the “observed” state. The numbers of reads 
below the threshold create the empty (unobserved) state alternatively. Begin and end positions of each 
segment are determined by the bin boundaries. The total number of mappable reads from each individual 
sequencing library divided by 50,000 bins equals to the minimum threshold for segmentation. In this two-
state model, we set the value of such bin to “1” for the observed state and “0” for the empty state. Bins 
containing centromere regions and other bad bins defined by CSHL are removed (set state to “0”) before 
and after Viterbi decoding. We set the probability of moving from i to j in one time step Pr(j|i) =  Pi,j as 
0.01 and staying as 0.99 for the transition matrix, where i is the row and j is the column.  The emission 
matrix is also a two by two matrix with 0.99 as the probability for emitting 1 (above threshold) in 
observed state and the probability for emitting 0 (below threshold) in the empty state. The result of this 
two-state smoothing process closely resembled the start and end of dense reads. Five fold of the minimum 
thresholds was used. This HMM is expected to smooth the sparse but long DNA fragments into a 
continuous “observed” segment. We extracted the reads from SAM/BAM within the fragment boundaries 
and verified the HMM visually using SeqMonk and/or direct plotting with R (Fig. S4 and S5).  

I.8 SNV calling algorithm 

I.8.1 SNV calling overview 
       The goal of SNV calling with SISSOR data is twofold: first, to determine the best consensus call 
(SNV or reference) for every genomic position, given read data for every chamber, second, to determine 
the best call for each individual SISSOR chamber in light of information from the other chambers. For 
instance, if the same SNV is observed in multiple chambers, then the confidence of the SNV call in each 
chamber is higher than if the SNV were only observed in one chamber. Similarly, the confidence for that 
SNV in the consensus genotype over all chambers is higher if it is observed multiple times. In general, a 
group of reads observed in a chamber at a genomic position is generated from one of four strands: the 
forward or reverse strand from one haplotype, or the forward or reverse strand from the other haplotype 
(hereafter referred to as strands 1, 2, 3 and 4, respectively). Traditional SNV calling algorithms are 
unsuitable for the task of calling variants from multiple groups of reads amplified from separate DNA 
strands, especially across multiple cells and in light of protocol-specific error modalities. For this reason, 
we designed a custom consensus SNV calling approach for the SISSOR method. The variant caller 
accounts for multiple sources of errors besides sequencer error, including error introduced during MDA 
from the Phi29 enzyme, and the occurrence of multiple source DNA strands being amplified in the same 
chamber. Given sets of read observations from different chambers, the variant caller considers every 
possible way in which the four single strands of DNA for each genotype could be distributed across 
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chambers. Given multiple single-cell libraries, it considers all combinations of events in each cell that 
could result in the combined set of data. These events are modeled in a likelihood framework to make a 
Bayesian calculation for the posterior probability that a SNV is present. The variant caller is implemented 
in python and takes as input a multi-sample pileup of all the chamber bam files, generated with samtools 
mpileup (4). The caller makes the following primary assumptions: reads are correctly mapped, variant 
calls at different genomic positions are independent, and the genotypes of each cell in the multiple-cell 
case are the same. To make use of reads amplified from strands smaller than the ~60 kb HMM window 
sizes, all chambers with read coverage ≥3 were considered in the model (and genomic positions with 
more than 4 such chambers in a cell were left uncalled, in keeping with the diploid model). The following 
sections describe the consensus SNV calling model. 

I.8.2 SNV calling parameters 
       The SNV caller models the experimental workflow of the SISSOR method. As such, it requires 
knowledge of various library-specific parameters. We estimated parameters for the model either 
empirically from the data or based on prior studies. The prior probability of a genotype, , was 
estimated using the method described by Li et al (5). We refer to the set of genotype priors as . We 
denote the probability of sampling a fragment from a given chamber  as .  was assumed to be 
proportional to the relative genomic coverage of a chamber: 

1 ∅ ∗
∑ ∈ ..

 

∅  represents the probability that a strand is not sampled, and was estimated to be consistent 
with the distribution of strand depth (the number of chambers at a given position containing fragments). 
Let S i  be the number of genomic positions with exactly  chambers with reads. Let the 4-tuple 

, , , represent a chamber configuration of 4 distinct DNA strands to chambers, with 
, , , ∈ 1,2, . . . ,24, ∅ . Let Č refer to the set of all possible configurations, and let Č ⊂ Č be the set 

of chamber configurations such that exactly  of , , ,  are not equal to ∅. If we assume that strand 
coverage per position results from independent trials depending only on the overall probability of drawing 
exactly that many strands, we can describe a likelihood for the observed strand coverages: 

P S	|
∈Č

∗ ∗ ∗  

We selected ∅ 0.81 as the approximate value that maximizes this likelihood, and this 
result was consistent with estimates based on the difference of the total coverage from theoretical 
perfect 4-strand coverage. We use  to refer to the probability of error in base-calling. It is 
described as a constant variable for simplicity but in general represents the per-base quality score 
of a read position. We use  to denote the probability that  fraction of reads in a chamber 
are “noise” of a minority base resulting from MDA amplification. Assuming the X chromosome 
should be monoallelic except for MDA error, we estimated  as the distribution of the 
fraction of the second-most-common allele for each position on the X chromosome. Although 
this accounts for noise from secondary bases due to MDA, it is known that the consensus error 
rate from MDA is on the order of 1 ∗ 10  (6). We let 1 ∗ 10  represent the probability 
that the majority base in a chamber (the “consensus”) was changed as a result of MDA 
amplification. We use  to denote the probability that  fraction of reads in a chamber 
originate from a given parent.  accounts for the possibility of strands from different 
haplotypes occuring at the same position in the same chamber. 	  was estimated using the logic 
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that the fragments of the hemizygous X chromosome can be shuffled to random positions to 
simulate a separate homologous chromosome. By overlapping the original fragments with the 
shuffled fragments we can simulate strand overlaps in a diploid case. With this in mind, we 
sampled coverages 1 and 2 of independent random positions from the X chromosome 1081 ∗
10  times, and used the distribution of the value 1

2
 as an estimate of . In the following 

formulation, we use , , , , ,  to refer to the entire collection of parameters. 

I.8.3 SNV calling framework 
       We begin by considering a single genomic position, with some number of observed reads aligned to 
the position in each of 24 chambers. Let  represent the pileup of observed bases in chamber , and ,  
denote the base ∈ , , ,  observed in chamber  at the th read (in chamber ’s base pileup). The set 
of observed data is , , … , . Let  denote the true genotype of the individual at the site, so  
can be homozygous in the reference or alternate allele, or heterozygous. Using Bayes’ rule, we can 
compute the posterior probability of a specific genotype in terms of the probability of the data given each 
genotype: 

| ,
| ,

∑ | ,
 

     Because of DNA strand loss and uneven amplification, the data for many positions may be insufficient 
to assign a diploid genotype even though it is highly likely that a specific allele is present. For this reason, 
we computed all alleles ∈ , , ,  such that the probability that  is present, regardless of genotype, 
is greater than a threshold : 

| ,
, ∈

| ,  

	 	|	 | ,  

I.8.4 Likelihood of data in all chambers 
       In order to calculate | , , it is necessary to account for every configuration in which the 4 
strands can be distributed amongst 25 chambers (treating ∅, or “unsampled”, as a 25th chamber). Let 

, , ,  be the chambers corresponding to the four strands where  can take values from 1-25. 
We can compute the probability of this configuration as the product of the probabilities of sampling 
strands in those chambers: 

∈

 

     Given SISSOR read data  for a single position, Let ⊆ Č denote the set of configurations that 
could have generated  with non-zero probability. 

     Then, 

| ,
∈

| , , | | , ,
∈

|  

     In the case of multiple cells, the data from different cells is independent conditional on the 
genotype . To generalize to multiple (in our case, 3) cell samples, we change  to be of 
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length 24  and refer to the observed data across all 24 72 chambers. We redefine Č for 
multiple cells as the n  Cartesian power of Č in the single-cell case, or the set of unique n-tuples 
of 4-tuples that combines one single-cell strand configuration of each cell. An n-cell 
configuration  describes one way to combine one single-cell configuration from each cell, and 
Č (in the n-cell case) describes every such way. The probability of an n-cell configuration is 
equal to the product of the constituent single-cell strand configurations’ probabilities. 

I.8.5 Likelihood of data in one chamber 
       Now we consider how to calculate | , , or the likelihood of the observed chamber data (read 
bases) given the genotype and knowledge of which strands are present (strand configuration). Let 
, ∈ , , ,  denote the allelic values of  currently being considered. First, we define the 

probability of seeing a read base ,  given that it originated from genotype allele : 

, ,
1 ,  

     We address each possible case for chamber-strand configurations separately. We use  to represent 
the set of configurations in which 1 strand falls into chamber . We use  to represent the set of 
configurations in which 2 or more strands fall into chamber , and more than 1 distinct allele is present. 

     In the case where there is only one strand allele present, we take the product of the probabilities of 
observing each base ,  given that the true allele is .  refers to the allele of  that is present in chamber 
 as a result of configuration . We assume that MDA error changes the majority allele from  to a 

different base  (the consensus allele) with probability . We assume that MDA also introduces  “noise” 

bases of a base ~b with probability , and otherwise the base is  with probability .  is the 

probability that  of the  bases are noise.  

1

3
 

| ∈ , , |b, ,
∈ , , ,

 

     To compute the probability of chamber data given that the consensus allele is b, we sum over all 
possible proportions of allele mixture from MDA: 

| , , , ~b, , b,  

     We now consider the case where there are multiple strands with different alleles occurring in the same 
chamber. This is modeled similarly to MDA noise. To compute the total likelihood of an allele call  
given a genotype, we sum over all possible proportions of strand mixture, with j representing reads 
originating from parental allele 1 and  representing reads originating from parental allele 2: 

| ∈ , , , , , ,  

     The  term accounts for the probability of occurrence of a parental allele in the given fraction.  
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represents the current index in the set of base calls for chamber . The term ,  represents the 

case that ,  was generated by  from strand 1 (probability  that ,  came from strand 1, times 

,  the probability of allele ,  given that it came from ). The next two terms represent 
analogous information for the case that ,  came from strand 2. To reduce computation, we assume that 
MDA noise and strand overlap do not occur in the same chamber. Computation was further minimized by 
constraining the domains of  and  to 20 evenly spaced bins. 

I.8.6 Likelihood of an allele in a chamber 
       Along with a consensus call across many chambers, we also called the most likely allele occurring in 
a specific chamber, in light of information from other chambers. This is done in a similar fashion to 
computing the most likely genotype . Consider a single chamber  for which we want to determine the 
allele present (if any) on the original strand. We denote the assignment of an allele ∈ , , ,  to 
chamber  as . We want to choose the most likely : 

		 | ,  

     As before, we use Bayes’ rule: 

| ,
| ,

∑ | ,
 

     Computing | ,  follows similarly to computing | , , except that we sum the 
likelihood of chamber data over all genotypes and configurations in which chamber  contains 
allele . 

I.9 Haplotype assembly 
       Haplotype assembly requires a large set of high-confidence heterozygous SNVs. For the purpose of 
haplotype assembly, we used a set of heterozygous SNVs from 60× Illumina WGS of PGP1f cells  
(Encode phase 3, ENCSR674PQI) (7). The original VCF containing SNV calls was lifted over to hg19 
using CrossMap and sorted with vcftools (8, 9). After this, the heterozygous SNV calls were filtered for 
coverage ≥10 and quality score ≥30. Reference and variant calls in each SISSOR chamber were grouped 
into haplotype fragments if they fell inside the boundaries of the same called fragment. Chamber calls that 
differed from the majority base in the chamber’s base pileup were filtered out (e.g. in unusual cases where 
data for individual chambers does not fit cleanly into the diploid base-calling model). Only base calls with 
coverage ≥5 5that overlapped the set of heterozygous SNVs were retained, and quality scores of allele 
calls in haplotype fragments were fixed to 20. Four post-processing steps were applied to increase 
haplotype accuracy: first, fragments were filtered out if more than 5% of base calls were mixed alleles, 
which indicate strand overlap from different haplotypes or similar error. Then, fragments were split at 
spans of multiple mixed-allele base calls (more than 25% of calls having a mixed allele in a span of ≥3 
heterozygous SNV locations). Then, fragments that were highly discordant to other fragments were 
filtered out (≥30% rate of switch errors of any length across all overlaps to other fragments). Finally, a 
haplotype fragment was split if it had a switch error of length 2 SNVs or greater with respect to multiple 
overlapping fragments. If it was ambiguous which fragment was the source of the error (for instance, in 
the case of only two overlapping fragments), multiple fragments were split. Following these fragment 
processing steps, 3The processed fragments were assembled into haplotype blocks with HapCUT2 
(10). SNVs were pruned at a HapCUT2 SNV confidence level of 0.95, blocks were split at a switch 
confidence level of 0.95, and a standard discrete pruning heuristic was applied (11). 
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I.10 Accuracy of haplotypes 
       To assess haplotype accuracy, it is important to compare against a confident reference 
haplotype. We compared against haplotypes assembled from BAC clones (12). To maximize the 
accuracy of the BAC clone haplotypes, the original BAC fragments were filtered for 
heterozygous SNVs present in the PGP1f Illumina WGS dataset used to generate SISSOR 
haplotype fragments (7). In the same fashion as raw SISSOR fragments were processed, BAC 
clones were split at positions where 2 or more heterozygous SNVs were switched with respect to 
other clones. After this, the processed BAC clones were assembled into haplotype blocks using 
HapCUT2 (10) and pruned at high stringency: SNVs were removed at HapCUT2 SNV 
confidence level of 0.9999, blocks were split at switch confidence level of 0.9999, and a standard 
discrete pruning heuristic was applied (11). Accuracy of SISSOR haplotypes was assessed by all-
pairs comparison of SISSOR haplotype blocks to these high-stringency BAC haplotype blocks. 
Accuracy was measured using the concept of switch and mismatch errors (also called long and 
short switches, respectively) (13) . Looking at positions shared by a single SISSOR haplotype 
block and a single BAC haplotype block, a switch error is defined as a heterozygous SNV 
position where the phase in the SISSOR haplotype block is different than the BAC reference 
with respect to the previous shared position (called in both haplotypes). Two switch errors 
occurring in a row are instead called a single mismatch error, which results in a difference in 
phase of only one SNV with respect to the BAC reference. The mismatch discordancy rate is 
defined as the fraction of compared positions that had a mismatch error. The switch discordancy 
rate is similarly defined, but the denominator is slightly smaller as it does not count first and last 
compared SNVs in a block (these are always called mismatch errors if the phase differs). The 
term “discordancy rate” is used instead of “error rate” because it is assumed that the BAC 
haplotypes, while accurate, may have non-negligible error. 

I.11 Same haplotype strand pairing 
       Fragments were assigned to haplotypes by matching them back to the assembled haplotype blocks. A 
fragment was required to match the assembled block with 80% accuracy or greater and contain at least 2 
haplotype-informative calls at heterozygous SNV positions. After assignment, all base calls (with calls 
different from the pileup majority base filtered out) inside overlapping fragments were analyzed and a 
position was classified as a strand-match if both fragments had the same call and as a strand-mismatch if 
the fragments had different calls. Strand-mismatched positions were quantified for the purpose of 
estimating the effects of errors from MDA, DNA damage, and other sources. Strand-matched positions in 
adjacent chambers (chambers 1 and 2, chambers 2 and 3, ... chambers 23 and 24) were discarded, because 
cases of DNA leakage were observed where DNA from a single strand leaked to physically adjacent 
chambers and generated a false haplotype-paired strand. The remaining strand-matched calls are of higher 
confidence than other calls because of their haplotype support, so these calls were tested for concordance 
against a curated set of SNV and reference calls for PGP1 (described below). Strand-matched calls 
between strands in different cells that differed from the PGP1 reference were used to estimate the 
maximum error rate for strand-matched calls in SISSOR technology since these calls are shared by the 
cell line. Strand-matched calls between strands in the same cell that differed from the PGP1 reference 
were analyzed as potential de novo variants specific to the cell. 

I.12 Accuracy of SNV calling 
       SNV (and reference) calls from SISSOR were compared to a dataset obtained by combining multiple 
sources for PGP1. First, raw BAMs from a 60× Illumina WGS sequencing of PGP1f cells  (Encode phase 
3, ENCSR674PQI) were used to generate calls at every genomic position using Freebayes with the 
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standard_filters and report_monomorphic options (7). These calls were lifted over to hg19 with CrossMap 
and sorted with vcftools (8, 9). The single-nucleotide calls in this dataset were filtered for those matching 
a CGI WGS dataset for PGP1, to filter for only high-quality calls shared by both samples (14). The 
resulting intersected dataset had 2.7 billion reference calls and 3.0 million SNV calls. This dataset served 
as the basis for comparison (SISSOR calls were compared against positions called in the intersected 
dataset). Variants observed in BAC sequencing libraries (12) served as an extra source for validation; 
calls that differed from the intersected data but were seen in BAC were considered to be correct. 

I.13 Workflow management 
       The complete workflow for variant calling, haplotype assembly, haplotype strand pairing, and 
accuracy calculations was managed with Snakemake (15). 

I.14 Differences to LFR technology 
LFR technology uses reproducibly phased variants in the two replicate libraries to distinguish de novo 

and cell line specific mutations from false positive variants (1). SISSOR essentially calculates the 
sequencing error rate from phased variants in two individual SISSOR libraries. We distinguished de novo 
variants in a single cell by correctly calling the reference base in the SISSOR libraries from the other 
cells. We also distinguished cell line specific variants by calling the  identical consensus call in a third 
chamber in the other SISSOR libraries. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  11

II. Supplementary Figures 
 

 

Fig. S1. SISSOR device.  
(A) The overall CAD design. (B) An image of a functional SISSOR device filled with dye solutions (red: 
fluidic channels; blue: the valves and valve lines). (C) A zoom-in view of the regions with functional 
modules. Highlighted in an orange box is a single unit with the neutralization, partitioning and MDA 
chambers. Black lines are valves and valve lines. Blue lines are 12 µm (H) x 120 µm (H) domed channels. 
Magenta lines are 25 µm (H) x 250 µm (W) domed channels. Green lines are 60 µm (H) x 200 µm (W) 
rectangle MDA chambers with vertical side walls. 
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Fig. S2. Multiple versions of tested SISSOR devices.  
(A) Optimized SISSOR device with a rotary mixer and ~20nL MDA chambers. (B) SISSOR device with 
reduced volume in MDA reaction chambers. (C) SISSOR device with a mixer actuated by the PDMS 
valve above the denaturation chamber.  
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Fig. S3. Schematic overview of data analysis.  
(A) Routine sequencing and mapping. (B) Determination of SISSOR fragments. (C) Variant calling with 
novel algorithm (SI Appendix, Supplementary methods). Haplotyping: (D) Processing SISSOR fragments 
and (E) assigning fragments to haplotypes. Two-strand comparison: (F) Pairing overlapped positions in 
fragments. 
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Fig. S4. Visualization of reads and single-stranded fragments within a 4 Mbp region of 
Chromosome 4 in four selected chambers. 
Genomic positions of reads and fragments were visualized using SeqMonk and HMM SISSOR fragments 
extraction. (A) Dense sequencing reads depicted the replica of single-stranded DNA. Red and blue lines 
are forwardly and reversely mapped reads created by MDA. (B) Fragment size and boundaries were 
determined by the number of read counts in 50k variable bins and hidden Markov model (mshmm in R). 
Two fragments from the same parental origin appeared at the same genomic position validates single 
stranded DNA amplification. 
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Fig. S5. Schematic view of segmentation by HMM on 100 bins.  
The first 100 bins of chromosome 4 in cell 1 chamber 22 are selected to illustrate the segmentation result. 
Circles depict the observations of each bin, where state “0” and “1” respectively represent the number of 
reads below and above the threshold (> 5x average reads per bin). Two color fragments, directly plotted 
by R, showed the calculated hidden states. The discrete states were smoothed and four SISSOR fragments 
are created by HMM in this example. 
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Fig. S6. Quantification of 12 nucleotide substitutions in all same-cell strand-strand mismatches. 
High ratio of transition to transversion (~3.45) usually indicates higher accuracy in SNPs discovery (16). 
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Fig. S7. Phasing SISSOR fragments to human leukocyte antigen (HLA) region (28.5-33.5 Mbp on 
Chromosome 6).  
Representative SISSOR fragments overlapping the HLA regions visualized using SeqMonk. 
Heterozygous SNPs were matched to PGP1 haplotype library and were counted against two parental 
origins (Hap1/Hap2). High connectivity in long fragments >500 kb enables correctly phased haplotype. 
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Fig. S8. Distribution of unprocessed sequencing reads on chromosome 1 of PGP1 Cell 1.  
The entire human genome was divided into 50,000 bins by variable bin method and normalized reads per 
bin were calculated (2). The first 3916 bins, representing chromosome 1, were displayed here. Bins in red 
color represented the normalized number of reads per bin and were subjected to the segmentation 
algorithm. Bins in blue color represented five times higher than normalized reads per bin. The whole 
chromosome coverage, where the highest value of each bin at each position, was collapsed into a single 
track at the bottom (chamber 0). 
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Fig. S9. Distribution of unprocessed sequencing reads on chromosome 2 of PGP1 Cell 1.  
The entire human genome was divided into 50,000 bins by variable bin method and normalized reads per 
bin were calculated (2). 4235 bins, representing chromosome 2, were displayed here. Bins in red color 
represented the normalized number of reads per bin and were subjected to the segmentation algorithm. 
Bins in blue color represented five times higher than normalized reads per bin. The whole chromosome 
coverage, where the highest value of each bin at each position, was collapsed into a single track at the 
bottom (chamber 0). 
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Fig. S10. Distribution of unprocessed sequencing reads on chromosome 3 of PGP1 Cell 1.  
The entire human genome was divided into 50,000 bins by variable bin method and normalized reads per 
bin were calculated (2). 3520 bins, representing chromosome 3, were displayed here. Bins in red color 
represented the normalized number of reads per bin and were subjected to the segmentation algorithm. 
Bins in blue color represented five times higher than normalized reads per bin. The whole chromosome 
coverage, where the highest value of each bin at each position, was collapsed into a single track at the 
bottom (chamber 0). 
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Fig. S11. Distribution of unprocessed sequencing reads on chromosome 4 of PGP1 Cell 1.  
The entire human genome was divided into 50,000 bins by variable bin method and normalized reads per 
bin were calculated (2). 3373 bins, representing chromosome 4, were displayed here. Bins in red color 
represented the normalized number of reads per bin and were subjected to the segmentation algorithm. 
Bins in blue color represented five times higher than normalized reads per bin. The whole chromosome 
coverage, where the highest value of each bin at each position, was collapsed into a single track at the 
bottom (chamber 0). 
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Fig. S12. Distribution of unprocessed sequencing reads on chromosome 5 of PGP1 Cell 1.  
The entire human genome was divided into 50,000 bins by variable bin method and normalized reads per 
bin were calculated (2). 3158 bins, representing chromosome 5, were displayed here. Bins in red color 
represented the normalized number of reads per bin and were subjected to the segmentation algorithm. 
Bins in blue color represented five times higher than normalized reads per bin. The whole chromosome 
coverage, where the highest value of each bin at each position, was collapsed into a single track at the 
bottom (chamber 0). 
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Fig. S13. Distribution of unprocessed sequencing reads on chromosome 1 of PGP1 Cell 2.  
The entire human genome was divided into 50,000 bins by variable bin method and normalized reads per 
bin were calculated (2). The first 3916 bins, representing chromosome 1, were displayed here. Bins in red 
color represented the normalized number of reads per bin and were subjected to the segmentation 
algorithm. Bins in blue color represented five times higher than normalized reads per bin. The whole 
chromosome coverage, where the highest value of each bin at each position, was collapsed into a single 
track at the bottom (chamber 0). 
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Fig. S14. Distribution of unprocessed sequencing reads on chromosome 2 of PGP1 Cell 2.  
The entire human genome was divided into 50,000 bins by variable bin method and normalized reads per 
bin were calculated (2). 4235 bins, representing chromosome 2, were displayed here. Bins in red color 
represented the normalized number of reads per bin and were subjected to the segmentation algorithm. 
Bins in blue color represented five times higher than normalized reads per bin. The whole chromosome 
coverage, where the highest value of each bin at each position, was collapsed into a single track at the 
bottom (chamber 0). 
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Fig. S15. Distribution of unprocessed sequencing reads on chromosome 3 of PGP1 Cell 2.  
The entire human genome was divided into 50,000 bins by variable bin method and normalized reads per 
bin were calculated (2). 3520 bins, representing chromosome 3, were displayed here. Bins in red color 
represented the normalized number of reads per bin and were subjected to the segmentation algorithm. 
Bins in blue color represented five times higher than normalized reads per bin. The whole chromosome 
coverage, where the highest value of each bin at each position, was collapsed into a single track at the 
bottom (chamber 0). 
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Fig. S16. Distribution of unprocessed sequencing reads on chromosome 4 of PGP1 Cell 2.  
The entire human genome was divided into 50,000 bins by variable bin method and normalized reads per 
bin were calculated (2). 3373 bins, representing chromosome 4, were displayed here. Bins in red color 
represented the normalized number of reads per bin and were subjected to the segmentation algorithm. 
Bins in blue color represented five times higher than normalized reads per bin. The whole chromosome 
coverage, where the highest value of each bin at each position, was collapsed into a single track at the 
bottom (chamber 0). 
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Fig. S17. Distribution of unprocessed sequencing reads on chromosome 5 of PGP1 Cell 2.  
The entire human genome was divided into 50,000 bins by variable bin method and normalized reads per 
bin were calculated (2). 3158 bins, representing chromosome 5, were displayed here. Bins in red color 
represented the normalized number of reads per bin and were subjected to the segmentation algorithm. 
Bins in blue color represented five times higher than normalized reads per bin. The whole chromosome 
coverage, where the highest value of each bin at each position, was collapsed into a single track at the 
bottom (chamber 0). 
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Fig. S18. Distribution of unprocessed sequencing reads on chromosome 1 of PGP1 Cell 3.  
The entire human genome was divided into 50,000 bins by variable bin method and normalized reads per 
bin were calculated (2). The first 3916 bins, representing chromosome 1, were displayed here. Bins in red 
color represented the normalized number of reads per bin and were subjected to the segmentation 
algorithm. Bins in blue color represented five times higher than normalized reads per bin. The whole 
chromosome coverage, where the highest value of each bin at each position, was collapsed into a single 
track at the bottom (chamber 0). 
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Fig. S19. Distribution of unprocessed sequencing reads on chromosome 2 of PGP1 Cell 3.  
The entire human genome was divided into 50,000 bins by variable bin method and normalized reads per 
bin were calculated (2). 4235 bins, representing chromosome 2, were displayed here. Bins in red color 
represented the normalized number of reads per bin and were subjected to the segmentation algorithm. 
Bins in blue color represented five times higher than normalized reads per bin. The whole chromosome 
coverage, where the highest value of each bin at each position, was collapsed into a single track at the 
bottom (chamber 0). 
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Fig. S20. Distribution of unprocessed sequencing reads on chromosome 3 of PGP1 Cell 3.  
The entire human genome was divided into 50,000 bins by variable bin method and normalized reads per 
bin were calculated (2). 3520 bins, representing chromosome 3, were displayed here. Bins in red color 
represented the normalized number of reads per bin and were subjected to the segmentation algorithm. 
Bins in blue color represented five times higher than normalized reads per bin. The whole chromosome 
coverage, where the highest value of each bin at each position, was collapsed into a single track at the 
bottom (chamber 0). 
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Fig. S21. Distribution of unprocessed sequencing reads on chromosome 4 of PGP1 Cell 3.  
The entire human genome was divided into 50,000 bins by variable bin method and normalized reads per 
bin were calculated (2). 3373 bins, representing chromosome 4, were displayed here. Bins in red color 
represented the normalized number of reads per bin and were subjected to the segmentation algorithm. 
Bins in blue color represented five times higher than normalized reads per bin. The whole chromosome 
coverage, where the highest value of each bin at each position, was collapsed into a single track at the 
bottom (chamber 0). 
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Fig. S22. Distribution of unprocessed sequencing reads on chromosome 5 of PGP1 Cell 3.  
The entire human genome was divided into 50,000 bins by variable bin method and normalized reads per 
bin were calculated (2). 3158 bins, representing chromosome 5, were displayed here. Bins in red color 
represented the normalized number of reads per bin and were subjected to the segmentation algorithm. 
Bins in blue color represented five times higher than normalized reads per bin. The whole chromosome 
coverage, where the highest value of each bin at each position, was collapsed into a single track at the 
bottom (chamber 0). 
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Fig. S23. Distribution of unprocessed sequencing reads in a 1Mbp region on chromosome 15.  
(A) Mapped locations of unprocessed reads in a single bin were visualized by SeqMonk. (B) Distribution 
of unprocessed reads per bin was shown in a 1Mbp region on chromosome 15. Bins in red and blue colors 
represented the normalized and the more than five times higher than normalized reads per bin 
respectively. Maximum 4-strand coverage at each position was possible in each single cell. In the case of 
4+ coverage of a single bin (arrows pointed to the chambers in cell 1), we observed some fragments that 
were smaller than the bin size and occupied different regions within this single bin. The distribution of 
these smaller fragments may result in the observation of 4+ coverage in a single bin region. 
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Fig. S24. Distribution of unprocessed sequencing reads in a 10Mbp region on chromosome 15.  
Zoom-out (10x) view of the same genomic region as shown in Fig. S23. Coverage of some SISSOR 
fragments was visible from the unprocessed sequencing data. 
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III. Supplementary Tables 
 

Table S1. Summary of some selected PGP1 fibroblast cells for low depth sequencing 

Libraries1 

 

Raw 
Reads 

preseq 
Extrapolated 
Coverage2 

Device 
Mixing 

with 
ALS 

ALS 
[KOH] 

final 

CoRE 
or 

Tag3 
Added PCR 

Mapping 
Rate 

Clonal 
Rate 

PGP1#1 61M 400M v7 5min 357mM CoRE dUTP 11 97.36% 34.7% 

PGP1#3 23M 75M v7 10min 133mM CoRE dUTP 9 98.15% 75.7% 

PGP1#6 37M 167M v7 5min 357mM CoRE dUTP 11 97.58% 59.6% 

PGP1#7 32M 208M v7 5min 240mM CoRE dUTP 11 99.80% 55.4% 

PGP1#15 16M 633M v7 1min 240mM Tag X 8+9 91.29% 97.3% 

PGP1#18 7M 52M v9 5min 240mM Tag X 8+9 98.87% 70.6% 

PGP1#21 47M 641M v7 10min 357mM Tag dUTP 7+7 97.38% 45.3% 

PGP1#21 40M 1057M v7 10min 357mM CoRE dUTP 12 97.84% 19.9% 

PGP1#22 57M 789M v7 10min 357mM Tag dUTP 5+7 98.80% 21.6% 

PGP1#23 43M 626M v8 10min 340mM Tag dUTP 5+7 97.26% 34.0% 

PGP1#24 39M 865M v8 10min 340mM Tag 
N8 

primer 
5+7 95.96% 23.1% 

PGP1#25 47M 517M v8 10min 340mM Tag 
N9 

primer 
5+7 96.69% 35.2% 

PGP1#26 17M 206M v8 10min 340mM Tag 
N10 

primer 
5+7 96.30% 39.5% 

PGP1#27 44M 957M v9 10min 340mM CoRE 

N8 
primer 

+ 
dUTP 

12 84.84% 18.1% 

PGP1#28 2M 239M v7 8min 357mM CoRE dUTP 12 82.77% 3.6% 

PGP1#29 8M 385M v9 5min 340mM CoRE dUTP 12 92.10% 13.0% 
 

1 Libraries prepared for low depth sequencing. PGP1#21 and PGP1#22 were further sequenced in high depth and 
renamed as PGP1 Cell 1 and PGP1 Cell 2 in our qualitative analysis. 

2 Numbers of base covered extrapolated at 3 billion total base with preseq (17). 
3 Sequencing library construction using CoRE fragmentation or transposon tagmentation. 
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Table S2. Summary of Sequencing Data from 3 PGP1 fibroblast cells 

  
DNA Bases 

Sequenced (Gb) 
Base Coverage on 
Human Genome 

SNP Total 
Count 

Mappable Rate of 
Sequencing Reads 

Unique Rate of 
Sequencing Reads 

PGP1 Cell 1 190 73.6% 1083220 97.3% 60.8% 

PGP1 Cell 2 198 54.9% 692831 98.8% 26.5% 

PGP1 Cell 3 141 62.8% 664898 92.6% 35.6% 

PGP1 Combined 529 94.9% -- -- -- 
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Table S3. Number of sequencing reads mapped to SISSOR fragments and the human genome in 
cell 3. 

Chamber Unique Reads in Fragment All Unique Reads 

24 1,813,125 3,101,368 
23 2,421,665 3,894,385 
22 3,366,394 4,480,834 
21 6,060,740 7,525,072 
20 7,695,503 9,063,380 
19 11,783,636 12,983,541 
18 12,556,521 13,785,402 
17 11,301,391 12,443,243 
16 26,324,802 29,653,811 
15 24,114,819 26,419,863 
14 27,235,070 30,883,732 
13 26,621,859 29,668,057 
12 36,945,999 41,482,629 
11 31,198,047 33,821,487 
10 34,703,295 39,150,198 
9 4,039,953 5,201,503 
8 31,802,553 35,339,846 
7 27,879,285 31,421,882 
6 30,459,420 34,661,523 
5 26,215,007 29,447,284 
4 16,434,969 18,851,221 
3 21,832 347,626 
2 5,427,028 6,740,287 

1 962,272 1,606,947 

Total 407,385,185 461,975,121 

 Total Positions Removed 54,589,936 

 % removed 11.8% 
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Table S4. Summary of HMM SISSOR fragments from 3 PGP1 fibroblast cells 
 Raw DNA Fragments in SISSOR Chambers 

 
Number of DNA 

Fragments 

Fragment 
Average Size 

(kb) 
N50 Fragment 

Length (kb) 
Biggest Fragment 

Length (Mb) 
4-strand Coverage 

for DNA Fragments 
PGP1 Cell 1 8310 415 589 5.1 30.3% 
PGP1 Cell 2 7123 658 1040 8.5 41.2% 
PGP1 Cell 3 16517 479 727 5.9 69.6% 
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Table S5. Tabulated data in cross chamber base calling algorithm 
 

Phred-scaled Quality 10 30 50 70 90 110 130 150 

Calls above cutoff1 2.10E+09 2.10E+09 2.09E+09 2.05E+09 1.33E+09 1.33E+09 1.30E+09 6.98E+08 

Calls seen in References2 2.05E+09 2.05E+09 2.05E+09 2.01E+09 1.31E+09 1.31E+09 1.28E+09 6.89E+08 

Mismatch References3 122852 45563 26663 12152 4614 2027 1396 510 

SNV Matches 1704182 909054 889605 613669 379925 357653 177096 144378 

False Positive Rate4 5.47E-05 1.35E-05 5.07E-06 1.42E-06 1.03E-06 5.40E-07 1.31E-07 2.13E-07 

False Discovery Rate 4 6.72E-02 4.77E-02 2.91E-02 1.94E-02 1.20E-02 5.64E-03 7.82E-03 0.000992 

Error rate4 5.98E-05 2.22E-05 1.30E-05 6.05E-06 3.52E-06 1.55E-06 1.18E-06 8.44E-07 
 

1 Unique base called in SISSOR. 
2 Regions covered by both SISSOR and the combined coverage of CGI, WGS and BAC references (7, 12, 14). 
3 Base call (SNV or reference) disagreed with CGI, WGS and BAC references. 
4 These are upper bounds for each statistic; Calculated against CGI/WGS+BAC data set as ground truth: 
 False Positive Rate = FP / (FP + TN) 
 False Discovery Rate = FP / (TP + FP) 
 Error Rate = (FP + FN) / (FP + TP + FN + TN) 
where: 
 FP = called SNV allele, CGI+WGS called 0/0 
 TP = called SNV allele, CGI+WGS called 0/1 or 1/1 (same SNV) 
 FN = called hg19 reference allele, CGI+WGS called 1/1 
 TN = called hg19 reference allele, CGI+WGS called 0/0 or 0/1 
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Table S6. Summary of Strand-to-Strand mismatch base consensus 
 

 All Cell1 

Total strand-strand mismatch 10,975 

Total strand-strand match 654,210,076 

Mismatch rate 1.68E-05 
 

1 Two strands of identical haplotype matching in any cell. (Unique haploid positions) 
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Table S7. Summary of error rate analysis from strand-strand consensus 
 

 

 Same Cell1 All Cell2 Cross Cell3 

Total Unique Positions (DP>=5) 4 153,115,359  461,395,530  355,226,678  

Positions included in CGI/WGS reference5 150,976,835  455,719,630  351,156,792  

SNP counts 118308 357722 273683 
Difference to CGI/WGS reference5 98 115 19 

Difference to CGI/WGS/BAC reference6 94 102 9 
Difference to CGI/WGS/BAC/3rd chamber7 

and unconfirmed variants 68 72 4 

Error rate (upper bound) 8 4.50E-07 1.58E-07 1.14E-08 

False Discovery rate 5.07E-04 1.79E-04 1.46E-05 
 
 

1 Two strands of identical haplotype only in the same cell. (Unique haploid positions) 
2 Two strands of identical haplotype matching in any cell. (Unique haploid positions) 
3 Two strands of identical haplotype only in between two different cells. (Unique haploid positions) 
4 SISSOR coverage 
5 CGI/WGS reference coverage 
6 Combined CGI/WGS reference to BAC reference (12) 
7 Internal reference from SISSOR 
8 Maximum error rate in SISSOR 
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Table S8. Summary of differences in individual cells 

 

 Cell 1 Cell 2 Cell 3 

Total Unique Positions (DP>=5) 1 53,956,666  70,285,423  30,654,766  

Positions included in CGI/WGS reference2 53,203,331  69,220,980  30,306,948  

SNP counts 41400 54832 23477 

Difference to CGI/WGS reference2 14 75 9 

Difference to CGI/WGS/BAC reference3 14 71 9 
Difference to CGI/WGS/BAC/3rd 
chamber4 and unconfirmed variants 14 45 9 

Error rate (upper bound) 5 2.63E-07 6.50E-07 2.97E-07 
 
1 SISSOR coverage 
2 CGI/WGS reference coverage 
3 Combined CGI/WGS reference to BAC reference (12) 
4 Internal reference from SISSOR 
5 Maximum error rate in SISSOR 
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Table S9. qPCR primers used for quality control 
 

 
Name Forward Reverse 

Human Alu CTGGGCGACAGAACGAGATTCTAT CTCACTACTTGGTGACAGGTTCA 

Human Mito CCCCACAAACCCCATTACTAAACCCA TTTCATCATGCGGAGATGTTGGATGG 
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