
Supporting Information1

Appendix A. Validation of optimization method through log-likelihood2

differences3

The likelihood model outlined in the Methods section was initially val-4

idated by testing the relative performance of each of the drift models on5

simulated data generated by exact Wright-Fisher propagation and standard6

Gaussian diffusion (Fig. A.1).7
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Figure A.1: Estimates of drift parameter and respective performance with

length of evolutionary trajectories (T ). (A) Inferred N and (B) Average relative per-

formance ∆L = LWF − LGabs
per locus when simulated data is generated by traditional

Wright-Fisher exact propagation. (C) and (D) equivalent calculations when simulated

data is generated by traditional Gaussian propagation. For all figures sequencing coverage

depth C = 100, sampling period ∆t = 10, grid size 400, starting frequency q(0) = 0.5 and

number of loci L = 2000.

Overall, Fig. A.1 proves that there is no bias in our log-likelihood opti-8

mization method; when data is generated with either a Wright-Fisher or a9

Gaussian model, correct model identification is achieved.10
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Appendix B. An increased quantity of data improves the infer-11

ence of population sizes12

For the Wright-Fisher model, the dispersion of estimates across replicates13

is larger for larger population sizes due to poor conditioning at these mag-14

nitudes, which arises from the variance characteristic of the Wright-Fisher15

process being of order O( 1

N
) (see Eq. E.7). This effect and, consequently, the16

total error in the inferred values decreases with the number of loci used in17

the estimates (see Fig. B.2).18

Figure B.2: Estimates of population size N and respective performance by length

of evolutionary trajectories (T ), and size of genomes L, for the Wright-Fisher

(WF ) drift model, when simulated data is generated by traditional Wright-

Fisher propagation. (A) Inferred N and (B) Inferred σG vs simulated N for T=50 and

300 generations. (C) Mean-square error between simulated and inferred N . (D) Average

performance ∆L = LWF − LGabs
per locus . For all figures sequencing coverage depth

C = 100, sampling period ∆t = 10, grid size 400 and starting frequency q(0) = 0.5. Error

bars are calculated across three replicate calculations.
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The results reported in Fig. B.2 correspond to simulated data where no19

selection, mutation or linkage is assumed. Each trajectory is independent.20

Appendix C. Sampling factors affecting the correct inference of21

Wright-Fisher model parameters22

Calculations shown in Fig. 2 of the main text were repeated for differ-23

ent values of N , sampling frequency ∆t and sampling depth C. In each24

case model inference was performed for simulated Wright-Fisher trajectories25

at 2000 loci, of length 300 generations, and starting frequency q(0) = 0.5.26

Greater discrimination between models (observed via an increased likelihood27

for the Wright-Fisher model) was possible given denser sampling of trajec-28

tories, and increased sampling depth, as was also clear from observing the29

threshold curves’ order represented in Fig.2 of the main text. Mean likelihood30

differences per trajectory and sampling instant are reported in Figure C.3.31

N=400 N=600 N=800 N=1000 N=2000 N=4000 N=400 N=600 N=800 N=1000 N=2000 N=4000

Figure C.3: Average performance per locus per sampling instant with sampling

period (∆t) and sequence coverage depth (C). (A) Average ∆L by ∆t with C = 100.

(B) Average ∆L by C with sampling period ∆t = 10. For both T = 300.

It was expected that trajectory length (T ), population size (N) and se-32
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quencing depth (C) would contribute considerably to model identifiability33

as these parameters have been previously tested in the context of inference34

of selection [1, 2]. Sampling period (∆t), on the other hand, has not been35

as extensively explored in the literature of evolutionary time-series analysis,36

although the importance of having several time-points in conjunction with37

replicated trajectories is agreed to be fundamental in order to distinguish38

between selection and drift in relatively small populations [3]. Recently, it39

was reported that for Markov chains such as that represented by the Wright-40

Fisher process, two observations may not determine entirely the behaviour of41

the stochastic paths at all intermediate instances [4], unless the time between42

these observations is below a characteristic value. This finding is in close43

proximity to the importance of sampling frequency determined here and, in44

addition, to the distribution of sampling instances across the duration of45

the experiment. Outside evolutionary time-series analysis, the importance of46

how sparse the collection of information is performed has also been proven to47

be fundamental in correctly inferring parameters of an underlying diffusion48

process [5].49

Appendix D. Effect of additional evolutionary parameters on drift50

model identification51

Appendix D.1. Natural selection52

The presence of selection in the simulated data increases the variance of53

the observed allele frequencies by introducing a systematic deviation from the54

mean (see reccurence relations in Eqs. D.1 and D.2) [6]. Yet, it is decreased55

with respect to the neutral case (Eq. E.7) if each locus is taken independently.56
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As was mentioned in the Methods section, the simulated data with natural57

selection was generated with each locus having a random value in the interval58

[−0.01, 0.01]. Under these circumstances, there is a low probability of gener-59

ating trajectories that, as a group, have a systematic direction towards one60

of the frequency boundaries. Therefore, if all of the loci are taken together in61

order to estimate the drift parameter, the observed variance is increased in62

proportion to the maximum deviation exerted by the combined changes. This63

additional dispersion in the bulk of trajectories led to an under-estimation64

of parameters in our neutral likelihood model (Eq. E.1, without the interme-65

diate pool as was used for the experimental data extracted from [7]), with66

estimates decreasing proportionally with an increase in the number of loci at67

which selection acted.68

EH
WF [q(tk)] ≈

(1 + s)EH
WF [q(tk−1)]

1 + sEH
WF [q(tk−1)]

(D.1)

V arHWF (tk) ≈
EH

WF [q(tk)](1− EH
WF (q(tk)))

2N

+

[

(1 + s)
[

1 + sEH
WF [q(tk−1)]

]2

]2

V arHWF [q(tk−1)]

(D.2)

As the contribution of selection has a frequency-dependent character69

(Eqs. D.1 and D.2), correct identification was not compromised under our70

likelihood model, an advantage in favour of the Wright-Fisher model being71

inferred in cases where frequency dynamics were observed for sufficient time72

(Figure D.4). For shorter trajectories, the models tested are indistinguish-73

able.74
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We must emphasize that we consider selection in the present work as a75

perturbation to the drift models. For larger selection magnitudes, modelling76

through a drift-only paradigm is not sufficient; the variance has to be adapted77

accordingly (see Eqs. D.2) and the relative influence of drift and selection78

depends on the frequency region a system is at a particular generation [8, 9,79

10].80

With respect to the compound nature of the likelihood model used through-81

out our work, we must also highlight that although finite sampling effects led82

to the Gaussian drift model also having a frequency dependent observed vari-83

ance (see Eq. E.8, without the intermediate pool), this does not seem to in-84

terfere with correct model selection, as higher moments become crucial when85

the probability density approaches the boundaries, in longer trajectories.86

(Sel=0.01,Prop=0.01,T=50) (Sel=0.01,Prop=0.01,T=300)

(Sel=0.01,Prop=0.1,T=50) (Sel=0.01,Prop=0.1,T=300)

(Sel=0.01,Prop=0.01,T=50) (Sel=0.01,Prop=0.01,T=300)

(Sel=0.01,Prop=0.1,T=50) (Sel=0.01,Prop=0.1,T=300)

Figure D.4: Estimates of drift parameter and respective performance with

length of evolutionary trajectories (T ), when simulated data is generated by

traditional Wright-Fisher propagation with selection. (A) Inferred N vs simulated

N , for 300 generations, for several selection strengths and proportion of loci under selec-

tion for q(0) = 0.5, C = 100 and ∆t = 10. (B) Average performance ∆L = LWF − LGabs

per locus corresponding to (A).
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Appendix D.2. Mutation87
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Figure D.5: Difference in contributions between drift and mutation with pop-

ulation size N . ∆ =
√

V arHWF (tk)− | EH
WF [q(tk)] − EH

WF [q(tk−1)] | assuming that

V arHWF (tk−1) = 0. Interpretation of terms according to a diffusion approximation to the

Wright-Fisher model with mutation [8].

As we are assuming a one locus case for our drift model, mutation is88

easily understood by investigating the transition observed for the frequency89

stationary distributions as µN is changed [8]. Recalling the diffusion approx-90

imation to the Wright-Fisher model [8], for values of µN below a threshold in91

the vicinity of 0.5, a transition ensues where the frequency boundaries occur92

with high probability and the predicted stationary distribution is roughly93

U-shaped [8]. Above that threshold the most probable value is q(t) = 0.5, at94

a particular instant t, and the distribution is bell-shaped [8].95

In fact, the contributions of drift and mutation to the overall distribution96
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can also be understood via recurrence relationship for the mean and the97

variance of the Wright-Fisher process with mutation included, as we did98

above. For large µN , the contribution of the mutation mostly supersedes99

the drift term (see Fig. D.5). Only in the region close to q(0) = 0.5 is the100

contribution of the drift term sufficient to overcome the overall tendency101

imposed by mutation. For lower values of µN , the variance dominates102

EH
WF [q(tk)] = EH

WF [q(tk−1)] + µ

[

1− 2EH
WF [q(tk−1)]

]

(D.3)

V arHWF (tk) =
EH

WF [q(tk)](1− EH
WF (q(tk)))

2N

+ (1− 2µ)2

[

1−
1

2N

]

V arHWF [q(tk−1)]
(D.4)
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Figure D.6: Time-dependent hidden probability density from simulated data as

a function of µN . (A) q(0) = 0.1. (B) q(0) = 0.5. For both N = 500.

By propagating populations under mutation throughout the duration of103

the experiment, we are increasing the proportion of loci distributed around104

the frequency value q(t) = 0.5, either when starting at q(t) = 0.5 or q(t) = 0.1105

(Fig. D.6). Consequently, mutation diminishes the potential for correct106

model identification in sufficiently long experiments, when the transient ini-107

tial period is much smaller than the total duration of the experiment. In108
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fact, for high values of µN , a Gaussian distribution may, in fact, without109

considering any extra parameters besides drift in our likelihood model (see110

Eq. E.1), be identified as the best model describing the observed time-series111

(Fig. D.7). The opposing forces of drift and mutation may be modelled more112

accurately by a Gaussian model when µN is larger due to the fact that the113

mutation term in this case is dominant. Also, if the starting frequency is114

q(0) = 0.1, the mutation term indues a systematic movement of the mean115

towards a frequency of 0.5 which, since the Gaussian model variance is linear116

with time (see for example Eq. E.5, without the intermediate pool), con-117

tributes to its success in modelling the linear character of the general trend118

enforced by mutation.119
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Figure D.7: Estimates of drift parameter and respective performance with popu-

lation size (N), when simulated data is generated by traditional Wright-Fisher

propagation with mutation. (A) Inferred N vs simulated N for several mutation

strengths measured by µN with q(0) = 0.1. (B) Average performance ∆L = LWF −LGabs

per locus corresponding to (A). (C) and (D) similar to (A) and (B), respectively, but for

q(0) = 0.5. For both T = 300, C = 100 and ∆t = 10.

Although we tested the influence of µN on drift model inference, mutation120

rates operating in experimental evolution in Drosophila are unlikely to cause121

any observed mutations to take place during the duration of the experiment.122

If we consider biologically plausible mutation rates present in E&R studies,123
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e.g. µ ≈ 10−9/bp/gen [11], µN will become much smaller than 1, even124

for populations of order of ≈ 106 [11], leading to the most likely number125

of mutations appearing at each generation being zero, at least according126

to a Poisson model. This renders the contribution from mutation terms127

insignificant (see for example in Fig. D.5 the trend observed from µN = 10128

to µN = 0.1). Consequently, in this scenario the drift parameter estimates129

are expected to be slightly over-estimated, if at all.130

Appendix D.3. Linkage disequilibrium131

Linkage disequilibrium has been proven to be a confounding factor for132

identification of selection acting on single loci. As such, one might expect133

the noise signatures characteristic of each of the drift models tested in our134

work to be muddled. Despite the fact that over-estimation of population135

size was observed across all cases, correct drift model identification is still136

achieved (see Fig. D.8).137
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Figure D.8: Estimates of drift parameter and respective performance with popu-

lation size (N), when simulated data is generated by traditional Wright-Fisher

propagation of founding genomes with linkage disequilibrium characteristic of

Drosophila. (A) Inferred N vs simulated N for several mutation strengths measured by

µN with q(0) = 0.1. (B) Average performance ∆L = LWF−LGabs
per locus corresponding

to (A). T = 300, C = 100 and ∆t = 10. Error bars represent dispersion among replicates.

Each color is associated with different examples generated by a coalescent neutral model.

See Methods section for details on generated genomes.

Appendix E. Alternative measures for evaluating evolutionary time-138

series data139

Appendix E.1. Combined forward-backward/predict-update posterior and goodness-140

of-fit calculation141

In addition to the computation of the likelihood we also resorted to an-142

other statistic, the goodness-of-fit (GOF ), taking into account the posterior143

for each locus frequency at each time-point resulting from the combined144

forward-backward/predict-update optimization algorithm presented in the145

Methods section.146

147
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As was outlined in the main text, the likelihood function arising from148

optimization algorithm is149

L(θ|D) =
L
∑

i=1

∑

k

log

∫

dqi(tk)P (Di(tk)|qi(tk))P (qi(tk)|Di(t1:k−1), θ) (E.1)

.150

Effectively, P (qi(tk)|Di(1 : tk−1), θ), can be determined in an initial step,151

referred here as the predict step, where we take the data into account. The152

emission model P (Di(tk)|qi(tk)) is a compound of binomial distributions as153

was clarified in the Main Text.154

155

The backward computation is analogous to the forward step described156

above and the combined forward-backward/predict-update posterior distri-157

bution for each locus can be computed by averaging according to Eq. E.2,158

thus allowing for all of the data to be taken into account, from the initial159

sampling instant up to the last at tk = T .160

P (qi(tk)|Di(t1 : T ), θ) =
P (qi(tk)|Di(t1 : tk))P (qi(tk)|Di(tk+1 : T )

∫

dqi(tk)P (qi(tk)|Di(t1 : tk))P (qi(tk)|Di(tk+1 : T )
(E.2)

The posterior corresponding to the maximum likelihood estimate can ul-161

timately be used to calculate an additional statistic commonly referred to as162

Goodness-of-Fit (GOF ), see Eq. E.3.163

GOF(θ|D) =
L
∑

i=1

∑

k

log

∫

dqi(tk)(qi(tk)− qDi (tk))
2P (qi(tk)|Di(t1 : T ), θ)(E.3)
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Eq. E.3 allows us to compute the error, across all loci and sampling in-164

stants, in the position of the posterior distribution with respect to the actual165

data.166

167

Appendix E.2. Drift model identification according to goodness-of-fit applied168

to experimental data169

In agreement with the likelihood calculation of the main text, GOF statis-170

tics calculated for the experimental data showed a closer fit to the data for171

the Wright-Fisher, as opposed to the Gaussian model (Figure E.9).172
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Figure E.9: Goodness-of-fit difference per locus between exact Wright-Fisher

and Gaussian propagation models applied to each each replicate of each chro-

mosome reported in [7]. (C) and (D) correspond to the results on samples generated

by bootstrapping (see Methods in Main Text).

Appendix E.3. Estimation of variance across the frequency spectrum173

We note that, given finite sampling, the Gaussian noise model, in com-174

mon with the Wright-Fisher model, exhibits frequency-dependent compound175

variance.176

177

Ignoring the effect of the absorbing boundaries, the inherent variance178

of the Gaussian drift model is frequency-independent and increases linearly179

with time, as can be derived by applying the law of total expectation and180
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total variance:181

V arHG (tk) = σ2tk (E.4)

while the inherent expectation is constant182

EH
G (tk) = EH

G (tk−1) = q(0) (E.5)

A similar calculation for the Wright-Fisher drift model shows the expected183

frequency-dependent variance at each sampling time as:184

EH
WF [q(tk)] = q(0) (E.6)

V arHWF [q(tk)] = q(0)(1− q(0))
[

1− (1− 1

2N
)tk

]

(E.7)

Applying once again the law of total expectation and variance for the185

sampling step we can obtain variances of the compound sampling problem,186

at a generation tk, under the HMM chain associated with the likelihood187

function previously presented in Eq. E.1:188

V arSG(tk) = ES
G[q(tk)](1−ES

G(q(tk)))

[

1

C(tk)
+
(

1−
1

C(tk)

) 1

2Npool

]

+
(

1−
1

C(tk)

)(

1−
1

2Npool

)

V arHWF [q(tk)]

= q(0)(1− q(0))

[

1

C(tk)
+
(

1−
1

C(tk)

) 1

2Npool

]

+
(

1−
1

C(tk)

)(

1−
1

2Npool

)

σ2

Gtk

(E.8)
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V arSWF (tk) = ES
WF [q(tk)](1− ES

WF (q(tk)))

[

1

C(tk)
+
(

1−
1

C(tk)

) 1

2Npool

]

+
(

1−
1

C(tk)

)(

1−
1

2Npool

)

V arHWF [q(tk)]

= q(0)(1− q(0))

×

{[

1

C(tk)
+
(

1−
1

C(tk)

) 1

2Npool

]

+
(

1−
1

C(tk)

)(

1−
1

2Npool

)

[

1− (1−
1

2N
)tk

]}

(E.9)

where C(tk) is the total read depth at a specific sampling generation and189

Npool is the size of pool of individuals chosen for sequencing. In the case of190

the data used in the work presented here, 500 female flies were used for the191

pool [7] (see also Methods section in Main Text).192

Given this calculation, a study was conducted of the extent to which the193

frequency-dependent variance observed in the data was reproduced by each194

model.195

196

Considering the experimental data, observed allele frequencies were binned197

according to the predicted posterior means found for each locus and time-198

point. Plotting the variance of the allele frequency q(tk+1) against the mea-199

sure q(tk)(1− q(tk)) allowed us to verify the frequency dependence predicted200

by each drift model, either through the analytical derivations represented201

in Eqs. E.8 and E.9, or through the inferred posterior variances resulting202

from the combined forward-backward/predict-update HMM algorithm out-203

lined above (Appendix E.1).204

Given these measures, the mean squared error between the observed and205

inferred variances was calculated across the binned frequencies. Despite no206
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clear pattern being observed in these statistics for each replicate and chro-207

mosome, the Gaussian predicted variance calculated through the posterior208

outperforms the respective Wright-Fisher posterior model if the difference in209

mean squared error is summed across time-points and replicates (Figs. E.11210

and E.12). With respect to the variance calculated by applying the analyti-211

cal solutions represented in Eqs. E.8 and E.9, the opposite result is observed212

(Figs. E.11 and E.12).213

Overall, the use of the posterior variances improves the inferred values214

of variance when the Gaussian drift model is used, which points to the ad-215

vantage, in this case, of taking data into account in the HMM algorithm216

presented above. The same observation is not clearly verified for the Wright-217

Fisher model. This result contrasts with that reported in the main text218

where across all chromosomes and replicates the Wright-Fisher is the most219

representative. This further emphasizes the importance of higher distribution220

moments prevalent in the total likelihood approach and respective goodness-221

of-fit results. As stated in the Main Text, performance without trajectories222

reaching loss or fixation still favoured the Wright-Fisher model. Consistently223

with this, the results plotted in Figs. E.10, E.11, E.12 and E.13 were also224

found for trajectories that did not reach the frequency boundaries.225

Curves predicted for the X chromosome are shown in Figure E.10 and226

the respective error is presented in Fig. E.11. Data for other chromosomes227

is shown in Fig. E.12 and E.13228
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Figure E.10: Estimates of compound distribution variance from Drosophila ex-

perimental evolution time-series [7] (chromosome X, replicate 1). (A) Compound

variance curves obtained with posterior means and variances (Full lines, WFpost) as well

as with compound variance analytical expressions (Dashed, WF ) (see Eqs. E.9 and E.8)

for Wright-Fisher and (B) Gaussian drift models.
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Figure E.11: Difference in mean square error in the estimates of compound dis-

tribution variance from Drosophila experimental evolution time-series [7] for

Wright-Fisher and Gaussian models (chromosome X). WFpost, Gpost: calculations

with posterior variances. WF,G: Calculation with analytical solutions. From left to right:

replicate 1, 2 and 3.
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Figure E.12: Difference in mean square error in the estimates of compound

distribution variance from Drosophila experimental evolution time-series [7]

for Wright-Fisher and Gaussian models. WFpost, Gpost: calculations with posterior

variances. WF,G: Calculation with analytical solutions. From left to right: replicate 1, 2

and 3. From top to bottom: chromosome 2L, 2R, 3L, 3R, 4.
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Figure E.13: Difference in mean square error between estimates of compound

distribution variance from Drosophila experimental evolution time-series [7]

obtained with posterior variances and analytical solutions. WFpost, Gpost: calcu-

lations with posterior variances. WF,G: Calculation with analytical solutions. From left

to right: replicate 1, 2 and 3. From top to bottom: chromosome 2L, 2R, 3L, 3R, 4.

24



Appendix F. Frequency spectrum for experimental data229

The probability density functions for each chromosome collected from230

[7] is shown in Figs. F.14. All instants when data was collected during the231

experiment are presented.232

25



( )

tk = 0

tk = 15

tk = 37

tk = 59

( )

tk = 0

tk = 23

tk = 37

tk = 59

( )

tk = 0

tk = 15

tk = 37

tk = 59

( )

tk = 0

tk = 15

tk = 37

tk = 59

( )

tk = 0

tk = 23

tk = 37

tk = 59

( )

tk = 0

tk = 15

tk = 37

tk = 59

( )

tk = 0

tk = 15

tk = 37

tk = 59

( )

tk = 0

tk = 23

tk = 37

tk = 59

( )

tk = 0

tk = 15

tk = 37

tk = 59

( )

tk = 0

tk = 15

tk = 37

tk = 59

( )

tk = 0

tk = 23

tk = 37

tk = 59

( )

tk = 0

tk = 15

tk = 37

tk = 59

( )

tk = 0

tk = 15

tk = 37

tk = 59

( )

tk = 0

tk = 23

tk = 37

tk = 59

( )

tk = 0

tk = 15

tk = 37

tk = 59

( )

tk = 0

tk = 15

tk = 37

tk = 59

( )

tk = 0

tk = 23

tk = 37

tk = 59

( )

tk = 0

tk = 15

tk = 37

tk = 59

Figure F.14: Frequency spectrum from Drosophila experimental evolution time-

series measured by Pool-Seq [7]. From left to right: replicate R1, R2 and R3 (see

Methods in Main Text). From top to bottom: chromosome 2L, 2R, 3L, 3R,X, 4.
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