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Supplementary Methods 
 

Binding affinity measurements on Biacore 

The Syn–tubulin binding affinity constants were determined using surface plasmon resonance 

analysis (SPR) on a Biacore T200 system. For this purpose, purified tubulin was biotinylated 

(341-06801, Dojindo. Japan), immobilized onto the surface of an SA sensor chip (BR-1005-31; 

GE Healthcare Bio-Sciences, UK), and subsequently incubated with different concentrations of 

purified Syns in BRB80 buffer. Binding was allowed to proceed for 1 min at 30 μl/min, 

followed by a 5-min dissociation step at a rate of 30 μl/min and a temperature of 20°C. Each 

analytical cycle comprised injection of 88 μl of Syns in 2 series of increasing concentrations (2, 

4, 8, 16, and 32 μM for αSyn, βSyn, and γSyn; 5, 10, 20, 40, and 80 μM for mutated αSyn) in 

BRB80 buffer. The assay was performed using a single-cycle kinetic approach on Biacore T200. 

Biacore software was used to fit the binding curves according to a 1:1 binding model.  

 

MT pelleting assay 

The co-pelleting of Syns with MTs was examined using the following co-sedimentation 

procedure: 4 μM of each synuclein was mixed with 2 μM MTs stabilized with paclitaxel and 

incubated for 30 min at room temperature. The MTs were ultracentrifuged at 100,000 × g for 
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10 min at 25°C, and the supernatants and pellets were subjected to SDS-PAGE (15% 

polyacrylamide) and CBB staining. 

 

DRG preparation and culture  

DRG neuron preparation from postnatal day 3-5 mice was performed as described previously 

1. Immediately after dissection, DRGs were transfected with expression vectors for various 

proteins using the Neon transfection system (Thermo Fisher Scientific, MA, USA) or lentivirus-

mediated expression system. The cells were plated onto poly-L-lysine (Sigma, MO, USA) and 

matrigel (Corning, NY, USA) precoated glass bottom dishes (Iwaki Glass Inc., Tokyo, Japan) 

and cultured in F-12 medium (Wako Chemicals, Osaka, Japan) supplemented with 20 ng/ml 

2.5S mNGF (Sigma-Aldrich, MO, USA), 1% B27 (Thermo Fisher Scientific, MA, USA) for 

24-48 h. 

 

Reconstruction of superresolution image 

Single molecule localization microscopy was setup on an inverted microscope (Ti-E, Nikon, 

Japan) with optics to enable epi-illumination of 405 nm (Excelsior-405C-50-CDRH, Spectra-

Physics, USA), 488 nm (CYAN-488-50-CDRH, Spectra-Physics), and 561 nm (ECLSR-561-
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SH-W, Spectra-Physics) with dichroic mirror (Di01-R405/488/561/635, Semrock, USA). 

Fluorescence signals were detected by 100x objective lens (numerical aperture 1.49, ApoTIRF, 

Nikon, Japan). To obtain CAGE500 and CAGE590 fluorescence signals simultaneously, dual 

view optics (W-VIEW GEMINI, Hamamatsu Photonics K.K., Japan) with dichroic mirror 

(FF605-Di01-25x36, Semrock, USA) and emission filters (FF01-520/35-25 and FF01-628/40-

25 for CAGE500 and CAGE590, respectively, Semrock, USA) were equipped to our system. 

Images were recorded by scientific Complementary MOS camera (ORCA-Flash4.0V2, 

Hamamatsu photonics K.K., Japan) and image acquisition software (HCImageLive, 

Hamamatsu Photonics K.K., Japan). To activate CAGE-dyes periodically, 405 nm was 

illuminated periodically by using mechanical shutter (SH05, Thorlabs Inc., USA) which is 

controlled by LabVIEW software and data acquisition module (LabVIEW2012 and USB-6211, 

National Instruments, USA).  

5000 frames of single molecule images were processed by ImageJ with ThunderSTORM plugin 

2. After reconstruction, both CAGE500 and CAGE590 derived superresolution images were 

aligned by using StackReg plugin 3 of ImageJ with Affine transformation. 

 

Cryo-electron microscopy 
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Purified tubulin and Syns were mixed at a molar ratio of 1:1, diluted with BRB80 buffer to a 

tubulin concentration at 2.5 µM, and incubated with 1 mM GTP at 37°C for 30 min. To avoid 

the influence of paclitaxel on the pfs number 4, the MTs were not stabilized with paclieaxel. 

The polymerized MTs were loaded onto a hydrophilized holy molybdenum grid (R3.5/1, Mo 

#200, Quantifoil, Germany) and embedded into an amorphous thin ice layer by quick freezing. 

Electron micrographs were recorded using a TEM (EF2000, Hitachi, Japan) equipped with a 

2k × 2k CCD camera (TVIPS, Germany) with under-focus values of 2.5-5 μm. The 

magnification of the micrographs was 130,000×, with a sampling interval of 1.94 Å and an 

electron dose of approximately 14 e/Å2. Image processing was performed using the Extensible 

object-oriented system (Eos) 5 and ImageJ. All TEM images were subjected to contrast transfer 

function (CTF) corrections, through which the images were compensated using phase flipping 

with consideration of the CTFs following the estimated defocusing values using “ctfDisplay”. 

 

 

 

 



8 

 

Supplementary Figure Legends 

Supplementary Figure S1. Summary of the LC-MS/MS analysis. (a) Interactorme of III-

tubulin assigned by the LC-MS/MS analysis. Candidate interactors are listed in order of higher 

“unused score” from the data list of the III-tubulin interactome. αSyn and γSyn were 

selectively detected in the ligated femoral nerve. Three independent experiments were 

performed. (b) Generation of an antibody specific for murine γSyn. This antibody specifically 

recognizes murine γSyn as confirmed by the disappearance after absorption of the antiserum 

with the murine recombinant γSyn that was used for immunization. β-actin was used as a 

loading control. (c) Brain extract was incubated with or without alkaline phosphatase, and 

incubation with alkaline phosphatase was shown to shift the electrophoretic mobility of γSyn. 

The filled arrowhead indicates phosphorylated γSyn, and the open arrowhead indicates 

unphosphorylated γSyn. 

 

Supplementary Figure S2. Analysis of the binding affinity of Syn to tubulin. (a) Prepared 

recombinant αSyn, βSyn, and γSyn. Each bacterially expressed GST-fusion Syn used in this 

experiment was treated with thrombin and confirmed by CBB staining. (b-h) Binding affinities 

of Syns for tubulin were examined by surface plasmon resonance on a Biacore™-T200 
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instrument. Sensorgram plots of the binding of recombinant Syns to tubulin are shown. One 

sensorgram (colored curve) is from a run in single-cycle kinetics mode. In this mode, the analyte 

is injected at increasing concentrations in a single cycle and the surface is not regenerated 

between injections. The data were fitted to a 1:1 binding model (black curves). (i) Biacore 

binding affinities of Syns to tubulin. (j-l) Protein–protein interactions of αSyn, βSyn, and γSyn. 

The sensorgram plots for each Syn indicated a lack of obvious interactions between the Syns 

under our conditions. (m,n) MT pelleting assays with Syns. Syns were incubated with or 

without MTs and subjected to CBB staining. Consistent with the results of a previous study 6, 

αSyn interacted with MTs. In addition, βSyn, γSyn and αSyn S129A exhibited binding affinity 

for MTs, although αSyn S129E, A30P and E46K did not. S: Supernatant; P: Precipitate. 

 

Supplementary Figure S3. Expression of Syns, tau and DCX in DRG. Exogenously 

expressed mChe-Syn (a,b), mChe-Syn (d,e), mChe-tau (g,h) and mChe-DCX (j,k) were 

confirmed by WB (a,d,g,j), and shown to be present within the axons of DRG neurons (b,e,h,k). 

The endogenous expression of each target was also confirmed by WB (open arrowheads in a, 

d, g and j), or by immunostaining with antibodies against Syn (c), Syn (f), tau (i) and DCX 

(l). The areas surrounded by yellow rectangles are shown at higher magnification in the lower 
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panel. The yellow arrows indicate the punctate distributions of each target within the axon. 

Scale bars: 5 μm in (b), (e), (h) and (k); and 10 μm in (c), (f), (i) and (l). 

 

Supplementary Figure S4. SR-SIM images of axons. Co-localization of mNG-DIC1, mChe-

αSyn and mTQ-βIII-tubulin (a), mNG-LIS1, mChe-αSyn and mTQ-βIIItubulin (b), and mNG-

mNudC, mChe-αSyn and mTQ-βIII-tubulin (c) were observed by SR-SIM. The white 

arrowheads indicate co-localized particles. S and P indicate the direction of the neuronal soma 

and the periphery of DRG neurons, respectively. Scale bar, 10 μm. 

 

Supplementary Figure S5. SR-PALM images of axons. (a-c) Averaged and SR-PALM 

images of axons were visualized using antibodies against III-tubulin and DIC1 (a), III-

tubulin and Syn (b), or DIC1 and Syn (c). The averaged images simulate those obtained by 

conventional fluorescence microscopy, in which tubulin fluorescence was blurred and appeared 

as indistinct blobs. In contrast, SR-PALM images sharply visualized short MT fragments along 

axons. The white square shows the regions of interest that are enlarged in Fig. 3g-i. (d) Enlarged 

SR-PALM image of (a). The yellow arrows indicate free dynein particles without III-tubulin 

fragments. Scale bars: 5m in (a-c); and 1 m in (d). 
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Supplementary Figure S6. Effect of detergent on the tubulin pull-down assay. Anti-βIII-

tubulin antibody pre-bound to Protein G-Sepharose was incubated with cell extracts from DRG 

neurons with or without 0.1% Triton X-100. After centrifugation, the supernatants and 

precipitates were collected and subjected to WB analysis. The graph shown was obtained from 

three independent experiments. 

 

Supplementary Figure S7. Evaluation of siRNA-mediated depletion of αSyn and γSyn. (a) 

siRNA against αSyn (left) or γSyn (right) efficiently depleted endogenous synucleins, as 

confirmed by WB. β-actin was used as a loading control. The quantification data for each 

siRNA from 3 independent sets of experiments are shown in the lower panel. The signal 

intensity of αSyn or γSyn in the control siRNA treated sample was set at 100%. The percentages 

of each sample are given as signal intensity ratios. The data are presented as the mean ± SEM; 

p values were calculated using analysis of variance, ***p < 0.001, “NS” means not significant. 

(b) Effect of αSyn and γSyn in dynein distribution. After siRNAs treatment, endogenous dynein 

distribution in the DRG axon was probed using an anti-DIC1 antibody. Each phase-contrast 

image is shown in the lower panel. Scale bar: 10 m. 
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Supplementary Figure S8. Effect of Synus on tubulin polymerization examined by dark-

field light microscopy. Galleries of polymerized MTs obtained under the conditions indicated 

in the upper side of each image set.  

 

Supplementary Figure S9. Effect of Syns on tubulin polymerization examined by TEM. 

(a) MTs polymerized at 40 μM tubulin. (b) MTs captured at higher magnification. (c-e) Tubulin 

concentration at 5 μM failed to polymerize MTs (c). Addition of 0.4 mg/ml BSA (d) or GST 

(e) to 5 μM tubulin did not facilitate tubulin polymerization. (f) Higher magnification of (a). (g-

m) MT polymerization was performed at 5 μM tubulin with αSyn (g), βSyn (h), γSyn (i), αSyn 

S129A (j), αSyn S129E (k), αSyn A30P (l), or αSyn E46K (m). (n) Numbers of surface MTs 

observed in a 10.9 μm × 10.9 μm field were measured (N = 20 in each condition). The data are 

presented as the mean ± SEM; p values were calculated by t-test, ***p < 0.001, “NS” means 

not significant. Scale bar: 2 μm in (a), (c), (d) and (e); and 100nm in (b) and (f-m). 

 

Supplementary Figure S10. Colloidal gold particle-based characterization of synuclein 

binding to MTs. (a) To verify specific labeling, colloidal gold was mixed with MT solution in 
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the absence of His-αSyns. Here, no specific binding of colloidal gold particles to MTs was 

detected. (b,c) Galleries of His-αSyn binding to MTs with different concentrations. (d,e) 

Galleries of His-αSyn binding to MTs with string-like (d) and necklace-like (e) binding 

confirmed with tilting TEM images as described in Supplementary Fig. S11. (f,g) Galleries of 

His-βSyn (f) and His-γSyn (g) binding to MTs. Scale bars: 100 nm in (a); and 30 nm in (b-g). 

 

Supplementary Figure S11. Stereo images showing the topography of Syn bound to MTs. 

(a) Schematic drawing showing a comparison of the stereo-pairs. When the gold particles are 

located on the same flattened surface of a MT, tilting produces a compressed image of the width 

vertical to the tilting axis (upper). If the particles are located on different surfaces of a MT, 

tilting causes deformation of the visual alignment (lower). (b,c) Stereo pairs of Gold-Syn 

bound MTs. The electron beam is approximately normal to the carbon surface (left) and the 

surface has been tilted (middle) by 60°. The simulated images are shown with their compressed 

width at cos 60° vertical to the tilting axis (right). Simulated tilting images were overlapped 

with the images taken after actual tilting. When the visual alignment of gold particles in the 

tilted image (middle) and the simulated image (right) were similar, the particles were considered 

to be located on the flattened carbon surface (b). When the tilted image (middle) differed from 
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that in the simulated image (right), the gold particles were considered to be located at the 

different surface, on which Gold-Syns were encircling the MT (c) 7.  

 

Supplementary Figure S12. TEM analyses of the synuclein bound to MTs. (a) Additional 

TEM image of MT polymerized with Halo-αSyn. Bamboo joint-like structures on the MTs are 

indicated by magenta arrowheads. (b) Additional image of the MT end structure with Halo-

αSyn (blue arrowheads). (c) Negatively stained Gold-mNudC labeled by an anti-mNudC 

antibody conjugated colloidal gold. (d) Negatively stained image of MT with colloidal gold 

particles ( = 10 nm). (e) Additional TEM image of MT bound Halo-αSyn (magenta) and Gold-

mNudC (green). (f) Additional cryo-TEM image of MTs polymerized with Halo-αSyn. Joint-

like structures on MTs are indicated by the magenta arrowheads. (g) Additional cryo-TEM 

image of MTs polymerized at 5 µM of tubulin in the presence of Syn. The MT pfs numbers 

in (f) and (g) determined from Moiré patterns are indicated at the top left. Scale bar: 30 nm. 

 

Supplementary Figure S13. Characterization of Syn binding to MTs in vitro. (a) Two 

additional image sets related to Fig. 6l. (b) Steady-state MT binding of Syn. Co-sedimentation 

assays were performed at a constant concentration of Syn and various concentrations of MT 
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(filled circles). The smooth curve displays the best fits of the data to a hyperbola and indicates 

the dissociation constants (Kd) and maximum bindings (Bmax). The error bars indicate the SEM 

(N = 3).  

 

Supplementary Figure S14. Galleries of unconventional MTs carrying 14-pfs in femoral 

nerves. Galleries of MTs with 14-pfs in unligated (a) and ligated (b) femoral nerves are shown. 

 

Supplementary Figure S15. Original gel/blotting images showed in the manuscript. 

Original images of Fig. 1c (a), Fig. 1d (b), Fig. 1e (c), Fig. 6f (d), Supplementary Fig. S1b (e), 

Supplementary Fig. S1c (f), Supplementary Fig. S2a (g), Supplementary Fig. S2m (h), 

Supplementary Fig. S2n (i), Supplementary Fig. S3a (j), Supplementary Fig. S3d (k), 

Supplementary Fig. S3g (l), Supplementary Fig. S3j (m), Supplementary Fig. S6 (n) and 

Supplementary Fig. S7a (o) were shown. Magenta rectangle surrounding area in each image 

indicates cropped region. 
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Supplementary Video Legends 

Supplementary Video 1. Live-cell imaging of mChe-tagged Syns in DRG neurons. Moving 

particles corresponding to mChe-αSyn, mChe-Syn and mChe-Syn were observed in DRG 

axons. Speed: 5×. Scale bar: 5 µm. 

 

Supplementary Video 2. Live-cell imaging of mChe-tagged mutated Syns in DRG neurons. 

mChe-Syn S129A particles exhibited active moving similar to that of WT Syn. However, 

significantly decreased movement was observed in mChe-Syn S129E, mChe-Syn A30P or 

mChe-Syn E46K were observed in DRG axons. Speed: 5×. Scale bar: 5 µm. 

 

Supplementary Video 3. Live-cell imaging of mChe-tagged tau and DCX in DRG neurons. 

mChe-tau showed actively moving particles with the cytoskeletal background in a DRG axon, 

whereas mChe-DCX displayed only the fibrous structures. Speed: 5×. Scale bar: 5 µm. 

 

Supplementary Video 4. Triple-color live-cell imaging of fluorescently tagged proteins in 

a DRG neuron. Co-migration of mNG-DIC1, mChe-αSyn, and mTQ-βIII-tubulin; mNG-LIS1, 

mChe-αSyn, and mTQ-βIII-tubulin; and mNG-mNudC, mChe-αSyn, and mTQ-βIII-tubulin in 

DRG axons was shown. Speed: 5×. Scale bar: 5 µm. 
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Supplementary Video 5. Live-cell imaging of mChe-tagged or LysoTracker-labeled 

proteins in DRG neurons. Robust axonal transport of mChe-DIC1, VP26-mChe and 

LysoTracker was inhibited by the treatment of the cells with siRNAs against αSyn and Syn. 

Speed: 5×. Scale bar: 5 µm. 

 

Supplementary Video 6. Dark-field imaging of the pivot movement of MTs on a coverslip. 

Spontaneous depolymerization of MTs was observed after MTs were captured on a coverslip. 

The yellow arrow indicates a nodal point of a pivoted MT. Speed: 5×. Scale bar: 5 µm. 

 

Supplementary Video 7. Dark-field imaging of the depolymerizing MTs on a coverslip. 

Spontaneous depolymerization of MTs was observed in the absence of αSyn and in the presence 

of αSyn or αSyn E46K. The yellow arrows indicate the depolymerizing ends of the MTs at the 

start of the movie. Speed: 5×. Scale bar: 5 µm. 
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