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Supplemental Information 

Supplemental Methods 

Data Acquisition 

The data for this study was obtained by leveraging the library of resting-state and task fMRI images from 

the Human Connectome Project (HCP), a joint project between Washington University and the 

University of Minnesota (Van Essen et al., 2012b). These data were acquired using a customized Siemens 

3T “Connectome Skyra” and the 32 channel, anterior/posterior, head receive coil. T1 weighted 

anatomical scans were acquired via a 3D MPRAGE sequence with �� = 2400 ms, � = 2.14 ms, �� = 1000 ms, flip angle of 8°, ��� = 224 × 224 mm, and voxel size 0.7 mm isotropic. BOLD-weighted 

fMRI images were acquired via a gradient-echo EPI sequence with �� = 720 ms, � = 33.1 ms, flip 

angle of 52°, ��� = 208 × 180 mm, 72 slices, 2.0 mm isotropic voxels, and multiband factor of 8. 

Functional scans imaged individuals while they adopted a comprehensive battery of states. These states 

may be subdivided into the 9 scans named as follows: REST1, REST2, EMOTION, GAMBLING, LANGUAGE, 

MOTOR, RELATIONAL, SOCIAL, and WORKING MEMORY (WM). Each scan was performed twice for each 

volunteer, each time with an opposite phase encoding gradient (left to right, vs right to left). In total, 

each individual contributed 8,680 temporal and 91,282 spatial data points. REST scans spanned 4,800 

time points. All data were de-identified before download. 

Data Preprocessing 

Data preprocessing include spatial artifact and distortion removal, surface generation, anatomical 

registration, and alignment to grayordinate space (gray-matter vertices or voxels). Subsequent use of 

spatial filters from a separate Independent Component Analysis (ICA) assume that data follow an 

isotropic noise model; thus, all voxel time series are normalized to zero mean and unit variance. To 

reduce the influence of edge effects during spectral filtering, contiguous, 300 image segments from a 

volunteer’s REST scans were placed in-between their task scans. The remaining 900 REST images capped 

the beginning and the end of the concatenated series with 450 time points each. The order of 

concatenated rest and task images were randomized across volunteers. 

Spectral and Spatial Filtering 

The BOLD signal bears a log linear relationship between power spectrum and frequency: log ���� = � +� log �; alternatively, ����~1/�!. For the average BOLD signal in brains, the power law exponent, � ≅ −1. The variable c is a constant. Such ‘1/f-type’ systems denote that the system’s high-frequency 

realizations establish and maintain its low-frequency structure (Wornell, 1993). The simplest 1/f-type 

systems are termed, ‘scale-free,’ that is, one observes rescaled versions of some elementary process, a 

“fractal”, at all observable scales. On the other hand, complex 1/f-type systems exhibit emergent 

properties at multiple scales (Ciuciu et al., 2012; He, 2014; Liu et al., 2014). A theoretically optimal 

method for observing 1/f-type processes is to transform them using a scale-free, or multiresolution, 

basis set (Bullmore et al., 2004; Ciuciu et al., 2012). Coefficient variance in the scale-free domain is thus 

a representation of the emergence of novel signal characteristics resolved to one or more scales 

(Daubechies, 1992). Wavelet transforms are especially useful multiresolution transforms as their kernel 

functions reduce to zero over a finite time-span. By convolving a 1/f-type signal with a finite, scale-free 
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kernel, wavelet transforms highlight the signal’s dynamical properties in both the temporal and the 

spectral domains.  

Previous studies demonstrated that BOLD data segment into static FC subnetworks from the application 

of multiscale filter banks (Billings et al., 2015). In the present study, spectral filtering utilized the 

continuous wavelet transform with a Daubechies 4 wavelet. This continuous wavelet filterbank 

segmented BOLD signals into an octave of 8 frequency bands log-spaced across the decade [0.01, 0.1] 

Hz. This frequency range corresponds to the low-frequency fluctuation range in which BOLD fluctuations 

bear maximal information about neuronal activity. The mother wavelet, Daubechies 4-tap, was chosen 

to achieve a relatively short temporal window over each spectral band, while the number of bands is 

sufficient to capture the inter scale network variation observed in Billings et al. 2015. 

Spatial filtering utilized a 50-component ICA decomposition. The ICA transform matric was calculated as 

part of the HCP beta-release of group-ICA maps (Human Connectome Project, 2014). The number of 

components was chosen by identifying the intersection between the eigenvalues of a volunteer’s real 

concatenated input data matrix, and a randomly shuffled version of that matrix, and choosing a number 

of components that just exceeded this point of intersect (data not shown). 

Manifold Embedding 

Each temporal sample for each volunteer’s high-dimensional state descriptor (50 spatial components by 8 
spectral components) was pairwise compared using the Pearson correlation distance, 

 #$% = &'$ − '%& = 1 − �'$ − '()�*'% − '+),-
.�'$ − '()�*'$	 − '(),-.*'% − '+),*'% − '+),-

. 
(1) 

Because of the theoretically optimal whitening properties of the wavelet transform, and because we have 
normalized time series via z-scoring, the Pearson correlation distance highlights coordinated deviations 
from normative spectral intensities.  

Manifold embedding was performed with the algorithm t-Distributed Stochastic Neighborhood 
Embedding (t-SNE) (Berman et al., 2014; van der Maaten and Hinton, 2008; van der Maaten et al., 2009). 
The algorithm begins by transforming high-dimensional pairwise distances into conditional probabilities, 0%|$, along a Gaussian probability distribution, 

 

0%|$ =
exp5−&'$ − '%&627$6 8

∑ exp:−‖'$ − '<‖627$6 =<>$
. (2) 

The variable 7$ is equal to the variance of the high-dimensional data when multiplied by a Gaussian 

centered over point i. The width of each Gaussian is adjusted to cover an equivalent amount of points. 

Formally, the width is adjusted until the base 2 exponent of the Shannon entropy measured in the 

stochastic distribution around the ith point achieves a fixed value termed the perplexity. For the present 

study, we follow the recommendation from van der Maaten & Hinton (2008) of a perplexity equal to 30. 

Collectively, the transformation from inter-sample distances to conditional probabilities emphasizes the 

natural associations of each sample to its neighbors. The authors of t-SNE also described a problem with 
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previous implementations of SNE-based algorithms wherein moderately dissimilar samples, in the high-

dimensional space, crowd together in the low-dimensional map (van der Maaten and Hinton, 2008). 

Therefore, t-SNE calculates the low-dimensional probabilities, ?, using a distribution having a much 

longer tail than in the high-dimensional case.  A good choice to avoid this problem was found to be the 

Student t-distribution with one degree of freedom: 

 

@$% = A1 + &B$ − B%&6CDE∑ �1 + ‖B< − BF‖6�DE	<>F , (3) 

where &B$ − B%& is the Euclidean distance between samples i and j in the low-dimensional space.  

 

A natural cost function, H, to calculate the fidelity of the low-dimensional representation relative to the 

high-dimensional data is the Kullback-Liebler (KL) divergence which is related to the cross-entropy 

between the two distributions. A symmetrized version of the KL divergence is used here to expedite 

computation time and to balance the cost of representing points that are close together in the high-

dimensional space as distant points in the low-dimensional space, and vice-versa. Thus,  

 H = KKL�L||?�
$

= KK0$% log 0$%@$%%$
. 

(4) 

The joint probabilities in the high-dimensional space are calculated as 0$% = MN|OPMO|N6Q ,	where R are the 

number of samples.  

This collective description of high-dimensional and low-dimensional spaces, as well as the relationship 

between them, emphasizes both that similar map points are modeled by small pairwise distances and 

that dissimilar map points are modeled by large pairwise distances. This is the case at all but the finest 

scales, at which point, the numerator of equation (3) is dominated by a constant rather than by 

variations from the input data. The t-SNE algorithm is implemented as a gradient descent process. The 

form of the gradient, as well as detailed notes on methods to improve the speed of convergence may be 

found in van der Maaten and Hinton, 2008.  

The initial construction of a t-SNE embedding is computationally expensive: O(n
2
). For a compute node 

having 256 GB of RAM, the maximum number of double precision data points that may be included in a 

single t-SNE embedding is limited to about 90,000 samples. The full complement of 4 resting state scans 

and 14 task scans contains 8,680 images for each of the 446 included volunteers. To overcome the 

computational limits of embedding larger datasets, the present study follows the recommendations 

from Berman et al. for training a low-dimensional embedding space from a subsampling of data points 

(Berman et al., 2014). Briefly, t-SNE embeddings were generated from each of 446 volunteers, 

individually. Next, 200 sample points were pulled from each volunteer’s embedding, at random, and in 

proportion to the density of points within the embedding. A group-level embedding was then trained 

from each volunteer’s sample of 200 time points. The best low-dimensional locations of the remaining 

time points vis-à-vis the trained embedding were then calculated in two steps: 1) Approximate the out-

of-sample point’s low dimensional location as a weighted sum of its nearest neighbors in the full high-
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dimensional space. 2) Determine the local KL divergence minimum by changing only the location of the 

out-of-sample point. As this minimization is not convex, it is worthwhile to jitter the out-of-sample 

point’s initial low-dimensional location by sampling from a range of its high-dimensional neighbors. This 

procedure reduces the computational load to O(n). The subsampling procedure greatly increases the 

interpretability of the resulting map by removing the bias experienced among sequentially sampled—

and hence, temporally correlated—points when they are embedded simultaneously.  

Sub-Space Identification and Characterization 

One method to summarize 2-dimensional point distributions is by convolution with a Gaussian filter. In 

order to account for both coarse and fine features of the embedded distribution, two filter radiuses 

were selected for the present study—one at 1/32 the maximum displacement from the map center and 

the other at 1/256. Particularly dense map regions are segmented from one another, in a data-driven 

fashion, by taking the watershed transform of the inverse of each density map (Meyer, 1994).  

Velocity Field 

Instantaneous velocities, were calculated by taking the difference in the embedded location of 

successive sample points. The group-level displacement magnitude was averaged, separately, in each of 

the 4 cardinal Euclidean directions, -i, +j, +i, and -j, for each point in a 32x32 grid. Results were 

normalized to unit magnitude. 

Comparing Embeddings 

Embeddings were segmenting against the HCP’s experimentally defined states, i.e. the resting-state and 

the task-based scans. To test the inference that scan-segmented maps depicted distinct brain-state 

distributions, we conducted an ANOVA with multiple comparisons testing using a bootstrapped sample 

of each experimentally defined state. Points within each bootstrap realization were chosen from 

segmented group-level datasets. The lower bound to the number of points in each bootstrap realization 

sample was chosen to ensure a full coverage of the state’s embedded range. The upper bound was 

chosen to ensure that few points were sampled twice in any two bootstrap realizations.  

Bootstrap realizations were pairwise compared using the Structural Similarity Index (SSIM) (Zhou et al., 

2004). SSIM measures the similarity between two images, x and y, as the multiplicative combination of 

three image quantities, the cross-luminance, I, cross-variance, c, and cross-structure, s. Thus:  

���S�', B� = T��', B�UV ⋅ T��', B�UX ⋅ T��', B�U!, 
where 

��', B� = 2YZY[ + HEYZ6 + Y[6 + HE 

��', B� = 27Z7[ + H67Z6 + 7[6 + H6 

��', B� = 7Z[ + H\7Z7[ + H\ 
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where μx, μy, σx,σy, and σxy are the local means, standard deviations, and cross-covariance for images x, 

y. The values H\, H\, and H\ are small constants given by HE = �]E^�6, H6 = �]6^�6, and H\ = H6/2. 
Here L is the dynamic range of pixel values. The variable ]E ≪ 1, and the variable ]6 ≪ 1. The 

exponents over each SSIM term were set to 1 so as to weight each term equally. SSIM values range 

between 0, no image similarity, and 1, complete image similarity. SSIM statistical testing was conducted 

simultaneously for all SSIM pairs (50*50/2 independent comparisons). Maps were deemed to provide 

insignificant segmentation if the 95% confidence interval of the within-state SSIM fell within or below 

the range of any of its between-state SSIM 95% confidence intervals. The multivariate construction of 

the SSIM algorithm makes it a useful technique for quantifying the differences between density maps. 

Density maps contained equal numbers of points to ensure that the SSIM metric to remain balanced.  

Real-Time Dynamics 

Group level brain-state dynamics are characterized through map segmentation at the level of each task’s 

block-design contrasts. For instance, MOTION task blocks are segmented into movement of the tongue, 

the left hand, right hands, etc. The total set of block-design contrasts, from all individuals and each 

individual’s task repetitions, are aligned at time t = 0s, the start of the block (including the cue, if 

present). Group level density images are then calculated for each aligned image acquisition. The resting 

state was aligned to a single time point. 

Permutation Testing for Labeling the Embedded map. 

To test the preference of labeled times and conditions for particular map regions, a null distribution was 

constructed by randomly permuting the labels assigned to each embedded point. Thereafter, it is 

possible to compare the mean number of points randomly assigned to each region, under a particular 

condition/time, with the actual number of points in that region, at that same condition/time. Map 

regions may then be labeled in terms of the preference of each region for particular condition/times. 
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Supplemental Figures 

 

Supplemental figure S1 elaborates on the point distributions within watershed catchment-basins for 

task-active maps. Part A displays the percentage of points contained within each region. Part B displays 

the dwell-time for each region, reported as the mean number of temporally contiguous points contained 

within each region.  
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Supplemental figure S2 displays the relatedness between each of the 50 ICA components. Data were 

generated using the FSLNets toolbox provided through the HCP. The hierarchical clustering map was 

calculated from time-series from each ICA network back-projected for each volunteer included in the 

original analysis. The projection onto the brain of each of 5 ICA clusters is also shown.  
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Supplemental figure S2 displays the dwell-time distribution for the highlighted regions in parts A and B 

(respectively) of figure 2.  
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Supplemental figure S4 displays the descriptive statistics from bootstrap, between-scan, structural 

similarity index testing as a box-stem plot.   
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Supplemental figure S5 displays and compares 2D Euclidean embeddings of instantaneous brain states, 

segmented by within-scan events. Part A displays the density of each scan’s embedded points. Part B 

displays the mean structural similarity index (SSIM) from 50 bootstrap comparisons, with 2500 points 

per comparison. Asterisks indicate between-group comparisons whose SSIM was not significantly less 

than either within-group comparison.  
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Supplemental figure S6 addresses the likelihood that each of the experimental condition results in any of 

the brain states. Conditions are aligned task blocks. The resting state is taken as a single condition. 

Watershed regions are from a fine-grained density map, and resulted in ~5000 regions. A z-statistic was 

calculated across all possible affinities. The null distribution was generated by randomly permuting the 

labels associated with each point 100 times. The top plot highlights statistically significant affinities 

(after Bonferroni correction). The bottom plot displays each comparison’s p-value. 
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Supplemental Movies 

Movie 1 depicts mean brain states after segmenting the embedding using the point distribution of the 

resting state. 

Movie 2 depicts mean brain states after segmenting the embedding using the point distribution of all 

tasks. 

Movie 3 depicts the temporal evolution of volunteer brain states through the embedded state space 

during the mental contrast of the SOCIAL task. 

Movie 4 depicts the temporal evolution of volunteer brain states through the embedded state space 

during the random contrast of the SOCIAL task. 

Movie 5 depicts the temporal evolution of group-level volunteer brain states through the embedded 

state space during the random contrast of the SOCIAL task. 

 


