SUPPLEMENTAL MATERIAL

Thyroid Function Within the Normal Range, Subclinical Hypothyroidism and

the Risk of Atrial Fibrillation

Supplemental Methods 1. Data Sources and Search Strategies

Supplemental Methods 2. Study Quality Assessment

Supplemental Table 1. Definition of Baseline Covariates

Supplemental Table 2. Studies Excluded after Full Text Screening

Supplemental Table 3. Baseline Characteristics of Participants by Thyroid Function

Supplemental Table 4. Quality Assessment of Included Studies

Supplemental Table 5. Sensitivity Analyses of the Association between Thyroid Stimulating Hormone within the Reference Range and the Risk of Atrial Fibrillation

Supplemental Table 6. Stratified Analyses for the Association between Thyroid Stimulating Hormone within the Reference Range and Atrial Fibrillation

Supplemental Table 7. Sensitivity Analyses of the Association between Subclinical Hypothyroidism and the Risk of Atrial Fibrillation

Supplemental Table 8. Stratified Analyses for the Association between Subclinical Hypothyroidism and Atrial Fibrillation

Supplemental Table 9. Sensitivity Analyses of the Association between Quartiles of Free Thyroxine within the Reference Range and the Risk of Atrial Fibrillation

Supplemental Table 10. Stratified Analyses for the Association between Quartiles of Free Thyroxine within the Reference Range and the Risk of Atrial Fibrillation

Supplemental Figure 1. Selection of the Final Study Population for the Individual Participant Data Analysis

Supplemental Figure 2. Study Flow Diagram

Supplemental Figure 3. Restricted Cubic Spline Plot for the Association between Continuous Concentrations of

Thyroid Stimulating Hormone and Atrial Fibrillation

Supplemental Figure 4. Restricted Cubic Spline Plot for the Association between Continuous Concentrations of Free Thyroxine within the Reference Range and Atrial Fibrillation

Supplemental Figure 5. Funnel Plot for the Association between Free Thyroxine within the Reference Range

and Atrial Fibrillation

Supplemental Figure Legends

Supplemental References

Supplemental Methods 1. Data Sources and Search Strategies

We performed a systematic literature review on the risk of atrial fibrillation across the full TSH range in MEDLINE and EMBASE databases without language restriction from inception to July 27, 2016. We did our search on an Ovid (MEDLINE) server by using broadly defined Medical Subject Headings (MeSH): *thyroid diseases*, *hypothyroidism*, *hyperthyroidism*, *thyroid hormones*, *thyrotropin*, *atrial fibrillation*, *arrhythmia*; and the following keywords: *subclinical hypothyroidism*, *subclinical hyperthyroidism*, *subclinical dysthyroidism*, *subclinical thyroid*, and *euthyroid*. We used the filter designed by knowledge information specialists from BMJ to select prospective studies (MEDLINE cohort-study filter)¹ but without their year limitation. A search in EMBASE was done using similar terms. We also conducted a manual literature search with review of expert papers in the field and screened bibliographies from retrieved articles.

Supplemental Methods 2. Study Quality Assessment

Following individual criteria of the Newcastle-Ottawa Quality Assessment Scale² were assessed: 1-2) representativeness of the exposed/unexposed cohort (populations-based vs. convenience based), 3) ascertainment of exposure (thyroid function measurement), 4) demonstration that outcome of interest (atrial fibrillation) was not present at start of study, 5) availability of relevant confounders for adjustment, 6) objective assessment of outcome (assessment of atrial fibrillation by electrocardiogram), 7) adequate length of follow-up period (>5 years), and 8) loss of follow-up (<5%). Two authors independently assessed study quality (C.B. and C.F.).

Supplemental Table 1. Definition of Baseline Covariates

Study	Smoking	Diabetes	Prevalent Cardiovascular Disease
Cardiovascular Health	Self-reported never, former, or	Fasting glucose level of ≥126mg/dL or use of	History of myocardial infarction or angina or CABG or angioplasty
Study ⁴	current smoking (≥100	hypoglycemic medication	or stroke or TIA (adjudicated)
	cigarettes in entire life)		
Health ABC Study ⁹	Self-reported never, former, or	Self-reported diagnosis of diabetes or use of	Self-reported history of myocardial infarction or angina with use
	current smoking (≥100	hypoglycemic medication	of antianginal medications or CABG or angioplasty or stroke or
	cigarettes in entire life)		TIA
Osteoporotic Fractures	Self-reported never, former, or	Self-reported diagnosis of diabetes	Self-reported myocardial infarction or stroke
in Men (MrOS) Study ¹⁰	current smoking		
Bari Study ¹¹	Self-reported non-smoker or	Physician diagnosis of diabetes	History of myocardial infarction or angina or CABG or angioplasty
	current smoker (regular		or stroke (assessed by review of medical records)
	smoking within last 30 days)		
Leiden 85-plus Study ¹²	Self-reported never, former, or	Physician diagnosis of diabetes or use of	History of myocardial infarction or angina or stroke (assessed by
	current smoking	hypoglycemic medication	review of medical records, physician or self-report, and ECG)
SHIP ¹³	Self-reported never, former, or	Self-reported or physician diagnosis of	Self-reported myocardial infarction or CABG or stroke
	current smoking	diabetes	
InChianti Study ¹⁴	Self-reported never, former, or	Fasting blood glucose >140 mg/dL or	History of myocardial infarction or angina or perfusion
	current smoking (if at least 1	glucosuria	deficit/asynergy in scintigraphy or severe stenosis in coronary
	year of cigarette smoking)		angiography or CABG or angioplasty or stroke (adjudicated)
Rotterdam Study ⁸	Self-reported never, former, or	Random or post-load serum glucose level of	History of myocardial infarction or revascularization or stroke
	current smoking	200mg/dL or higher, or use of hypoglycemic	(assessed by self-report, ECG, review of nationwide Medical
		medication	Registry, screening of physician records)
PROSPER Study ¹⁵	Self-reported never, current, or	Self-reported diagnosis of diabetes or use of	Physician diagnosis of vascular disease or myocardial infarction
	former smoking	hypoglycemic drugs or fasting blood glucose	or angina or CABG or angioplasty or stroke or TIA
		of 7.0mmol/l or 11.1mmol/l or greater when	
		fasting status was uncertain	
EPIC-Norfolk Study ¹⁶	Self-reported never, former, or	Self-reported diagnosis of diabetes	Self-reported myocardial infarction or stroke
	current smoking (if ≥1 cigarette		
	a day for ≥1 year)		
Busselton Health Study ¹⁷	Self-reported never, former, or	Self-reported diagnosis of diabetes, use of	History of myocardial infarction or angina (assessed by self-
	current smoking	hypoglycemic drugs, or glucose level >200	reported confirmation of physician diagnosis, Rose
	_	mg/dL 2 hours after glucose load	questionnaire, ECG)

Abbreviations: CABG, coronary artery bypass surgery; ECG, electrocardiogram; TIA, transient ischemic attack

Supplemental Table 2. Studies Excluded after Full Text Screening

Reason for exclusion	References
Review, meeting abstract, poster or	Erichsen R, Christiansen CF, Froslev T, Jacobsen J, Sorensen HT. Intravenous bisphosphonate therapy and risk of atrial fibrillation in
editorial	cancer patients. Pharmacoepidemiology and Drug Safety. 2011;20((Erichsen R.; Christiansen C.F.; Froslev T.; Jacobsen J.;
	Sorensen H.T.) Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus N, Denmark):S121.
	Kim SC, Liu J, Solomon DH. The risk of atrial fibrillation in patients with rheumatoid arthritis compared to the general population: A
	large cohort study. <i>Arthritis and Rheumatism</i> . 2012;64((Kim S.C.) Brigham and Women's Hospital, Boston, United States):S722.
	Nanchen D, Gussekloo J, Westendorp RGJ, et al. Subclinical thyroid dysfunction and the risk of heart failure, other cardiovascular
	events and mortality in the elderly. Journal of General Internal Medicine. 2011;26((Nanchen D.; Gussekloo J.; Westendorp
	R.G.J.; Jukema J.W.; Trompet S.; Mooijaart S.P.; De Craen A.J.M.) Leiden University Medical Center, Leiden, Netherlands):S140.
	Stojanovic M, Sabljak V, Markovic D, Ladjevic N, Zivaljevic V, Kalezic N. New onset atrial fibrillation during goitre surgery. European
	Journal of Anaesthesiology. 2013;30((Stojanovic M.; Sabljak V.; Markovic D.; Ladjevic N.; Zivaljevic V.; Kalezic N.) Clinical
	Centre of Serbia, Dept of Anaesthesiology, Belgrade, Serbia):28.
	Chelazzi C, Giugni D, Villa G, De Gaudio R. Postoperative atrial fibrillation among non cardio-thoracic surgical patients: Associated
	clinical factors and outcome. <i>Critical Care Medicine.</i> 2011;39((Chelazzi C.; Giugni D.; Villa G.; De Gaudio R.) University of Florence, Italy):148.
	Rothstein M, Pereira E, Baker S, Arora R, Bhatkar V, Colombo J. Parasympathetic involvement in sleep medicine, cardiovascular implications. <i>Clinical Autonomic Research</i> . 2011;21(4):298.
	Ryodi E, Salmi J, Valimaki M, et al. Cardiovascular morbidity after surgical treatment of hyperthyroidism - A nationwide cohort
	study with a long-term follow-up. <i>Endocrine Reviews.</i> 2012;33(3).
	Selmer C, Olesen J, Lindhardsen J, et al. Subclinical thyroid disease and risk of new-onset atrial fibrillation. <i>Journal of the American</i> College of Cardiology. 2012;59(13):E662.
	Proenca M, Cardiga R, Araujo I, et al. Prognostic value of subclinical hyperthyroidism in an internal medicine ward. European
	Journal of Internal Medicine. 2013;24((Proenca M.; Cardiga R.; Araujo I.; Marques F.; Jesus S.; Cardoso D.; Serra S.; Fonseca
	C.; Leitao A.; Ceia F.) Medicine III, Sao Francisco Xavier Hospital, Lisbon, Portugal):e102.
	Mueller PS. Thyroid function and risk for AF: A linear relation. <i>Medicine Today</i> . 2013;14(1):64.
No prospective cohort study	Collet T-H, Gussekloo J, Bauer DC, et al. Subclinical hyperthyroidism and the risk of coronary heart disease and mortality. Archives
	of Internal Medicine. 2012;172(10):799-809.
	Katircibasi MT, Deniz F, Pamukcu B, Binici S, Atar I. Effects of short-term propylthiouracil treatment on p wave duration and p wave
	dispersion in patients with overt hypertyroidism. Experimental & Clinical Endocrinology & Diabetes. 2007;115(6):376-379.
	Tanase DM, Ionescu SD, Ouatu A, Ambarus V, Arsenescu-Georgescu C. Risk assessment in the development of atrial fibrillation at
	patients with associate thyroid dysfunctions. Revista Medico-Chirurgicala a Societatii de Medici Si Naturalisti Din Iasi.

	2013;117(3):623-629.
	Tenerz A, Forberg R, Jansson R. Is a more active attitude warranted in patients with subclinical thyrotoxicosis? <i>Journal of Internal Medicine</i> . 1990;228(3):229-233.
	Selmer C, Olesen JB, Hansen ML, et al. The spectrum of thyroid disease and risk of new onset atrial fibrillation: a large population cohort study. <i>BMJ.</i> 2012;345:e7895.
	Ruigomez A, Johansson S, Wallander M-A, Garcia Rodriguez LA. Predictors and prognosis of paroxysmal atrial fibrillation in general practice in the UK. BMC Cardiovascular Disorders. 2005;5:20.
	Aras D, Maden O, Ozdemir O, et al. Simple electrocardiographic markers for the prediction of paroxysmal atrial fibrillation in hyperthyroidism. International Journal of Cardiology. 2005;99(1):59-64.
	Klein Hesselink EN, Lefrandt JD, Schuurmans EP, et al. Increased Risk of Atrial Fibrillation After Treatment for Differentiated Thyroid Carcinoma. The Journal of clinical endocrinology and metabolism. 2015; 100(12):4563-9
No measurement of both serum thyroid stimulating hormone and	Geng J, Hu T, Wang B, Lu W, Ma S. Thyroid stimulating hormone levels and risk of coronary heart disease in patients with type 2 diabetes mellitus. International Journal of Cardiology. 2014;174(3):851-853.
thyroxine at baseline	Kim E-J, Lyass A, Wang N, et al. Relation of hypothyroidism and incident atrial fibrillation (from the Framingham Heart Study). American Heart Journal. 2014;167(1):123-126.
No explicit assessment of atrial fibrillation outcome events	Trivalle C, Doucet J, Chassagne P, et al. Differences in the signs and symptoms of hyperthyroidism in older and younger patients. Journal of the American Geriatrics Society. 1996;44(1):50-53.
	Kentsch M, Otter W, Kroger B, et al. [Bradycardia despite hyperthyroidism]. Zeitschrift fur Kardiologie. 2001;90(7):492-497. Nasim A, Shahzad A, Saeed S. Medium term effectiveness of thyroxine treatment in congestive cardiac failure (CCF). Journal of Postgraduate Medical Institute. 2009;23(2):124-134.
	Yonem O, Dokmetas HS, Aslan SM, Erselcan T. Is antithyroid treatment really relevant for young patients with subclinical hyperthyroidism? <i>Endocrine Journal</i> . 2002;49(3):307-314.
	Azemi T, Bhavnani S, Kazi F, et al. Prognostic impact of thyroid stimulating hormone levels in patients with cardiomyopathy. Connecticut Medicine. 2013;77(7):409-415.
	Auer J, Scheibner P, Mische T, Langsteger W, Eber O, Eber B. Subclinical hyperthyroidism as a risk factor for atrial fibrillation. American Heart Journal. 2001;142(5):838-842.
	Akdemir R, Ebru Eryasar N, Celik K, et al. Increased P wave dispersion in hypothyroidism: A sign of risk of atrial fibrillation. <i>Turkish Journal of Medical Sciences</i> . 2009;39(4):629-633.
	Osman F, Franklyn JA, Daykin J, et al. Heart rate variability and turbulence in hyperthyroidism before, during, and after treatment. American Journal of Cardiology. 2004;94(4):465-469.
	Ceresini G, Marina M, Lauretani F, et al. Relationship Between Circulating Thyroid-Stimulating Hormone, Free Thyroxine, and Free Triiodothyronine Concentrations and 9-Year Mortality in Euthyroid Elderly Adults. <i>Journal of the American Geriatrics Society</i> . 2016;64(3):553-60.
Studies assessing only postoperative	Cerillo AG, Bevilacqua S, Storti S, et al. Free triiodothyronine: a novel predictor of postoperative atrial fibrillation. <i>European Journal</i>
atrial fibrillation events	of Cardio-Thoracic Surgery. 2003;24(4):487-492. Kokkonen L, Majahalme S, Koobi T, et al. Atrial fibrillation in elderly patients after cardiac surgery: postoperative hemodynamics

and low postoperative serum triiodothyronine. Journal of C	Cardiothoracic & Vascular Anesthesia. 2005;19(2):182-187.
Park YJ, Yoon JW, Kim KI, et al. Subclinical hypothyroidism might inc	crease the risk of transient atrial fibrillation after coronary artery
bypass grafting. Annals of Thoracic Surgery. 2009;87(6):18-	46-1852.
Guden M, Akpinar B, Saggbas E, Sanisoglu I, Cakali E, Bayindir O. Eff	fects of intravenous triiodothyronine during coronary artery
bypass surgery. Asian Cardiovascular & Thoracic Annals. 20	002;10(3):219-222.
Ozcan S. Relationship between atrial fibrilation and coronary bypas	s surgery. Pakistan Journal of Medical Sciences. 2014;30(3):630-
633.	

Supplemental Table 3. Baseline Characteristics of Participants by Thyroid	Function
---	----------

Characteristic	Euthyroidism (n=28,127)	Subclinical Hypothyroidism (n=1,958)	p-value*
Age in y, mean (SD)	64.4 (13.5)	69.9 (10.0)	<0.001
Women, n (%)	14,285 (50.8)	1,223 (62.5)	<0.001
Caucasian, n (%) †	18,095 (91.8)	1,406 (91.8)	0.92
Body mass index in kg/m ² , mean (SD) ‡	26.6 (4.2)	26.8 (4.3)	0.072
Thyroid stimulating hormone in mIU/L, mean (SD)	1.81 (0.91)	6.68 (2.59)	<0.001
Present or former smoker, n (%)	15,799 (56.2)	980 (50.1)	<0.001
Systolic blood pressure in mmHg, mean (SD) §	139.2 (21.5)	139.6 (22.4)	0.36
Total cholesterol in mmol/l, mean (SD)	6.08 (1.67)	5.94 (1.38)	<0.001
Cardiovascular disease, n (%)	4,928 (17.5)	443 (22.6)	<0.001
Heart failure, n (%)	655 (2.3)	59 (3.0)	0.054
Stroke, n (%)	624 (2.2)	61 (3.1)	0.010
Diabetes, n (%)	2,108 (7.5)	196 (10.0)	<0.001
Antihypertensive medication, n (%)	10,593 (37.7)	878 (44.8)	<0.001
Lipid-lowering medication, n (%)	3,772 (13.4)	305 (15.6)	0.007
Amiodarone, n (%) #	101 (0.4)	22 (1.1)	<0.001

Abbreviation: SD, standard deviation.

*p-values were derived from a chi-squared test or Student's t-test, as appropriate

+ Information on race was missing in 8,408 (29.9%) participants with euthyroidism and 427 (21.8%) with

subclinical hypothyroidism

‡ Information on body mass index was missing in 128 (0.5%) participants with euthyroidism and 11 (0.6%) with

subclinical hypothyroidism

§ Information on systolic blood pressure was missing in 79 participants with euthyroidism (0.3%) and 4 (0.2%)

with subclinical hypothyroidism

|| Information on total cholesterol was missing in 126 (0.4%) participants with euthyroidism and 7 (0.4%) with

subclinical hypothyroidism

Information on amiodarone use at baseline was missing in all participants of the Busselton Health Study

(1,023 participants with euthyroidism and 37 with subclinical hypothyroidism)

Supplemental Table 4. Quality Assessment of Included Studies*

Study	Population studied †	Ascertainment of exposure ‡	Assessment of AF at baseline	Controlling for additional factors	Methods for AF ascertainment	Duration of follow-up, median (IQR), y	Lost to follow- up (%)
United States							
Cardiovascular Health Study	P, 4 communities (USA)	Third generation TSH assay	yes	age and sex, systolic blood pressure, current or former smoking, diabetes mellitus, total cholesterol, and prevalent cardiovascular disease, lipid lowering medications, antihypertensive medications, BMI, heart rate, and alcohol consumption	Self-report, annual ECG, ICD-9 hospital discharge codes	11.7 (7.0-18.1)	7.9- 10.1
Health ABC Study	P, 2 cities (USA)	Third generation TSH assay	yes	age and sex, systolic blood pressure, current or former smoking, diabetes mellitus, total cholesterol, and prevalent cardiovascular disease, lipid lowering medications, antihypertensive medications, BMI, heart rate, and alcohol consumption	Recoded Minnesota at baseline and year 4 follow-up visits, ICD-9 coded diagnoses from CMS (center for Medicare and Medicaid) data	8.1 (7.4-8.3)	<5
Osteoporotic Fractures in Men (MrOS) Study	P, 6 clinical centers (USA)	Third generation TSH assay	yes	age and sex, systolic blood pressure, current or former smoking, diabetes mellitus, total cholesterol, and prevalent cardiovascular disease, lipid lowering medications, antihypertensive medications, BMI, heart rate, and alcohol consumption	self report and ECG at baseline, medical records and supporting documentation collected every 4months (phone or postcard follow-up)	12.6 (11.2-13.1)	6
Europe							
Bari Study	Outpatients with congestive heart failure (Italy)	Third generation TSH assay	yes	age and sex, systolic blood pressure, current or former smoking, diabetes mellitus, total cholesterol, and prevalent cardiovascular disease, lipid lowering medications, antihypertensive medications, BMI	ICD-9 at discharge	1.3 (0.6-1.9)	<5

Leiden 85+ Study	P, 1 town (Leiden, The Netherlands)	Third generation TSH assay	yes	age and sex, systolic blood pressure, current or former smoking, diabetes mellitus, total cholesterol, and prevalent cardiovascular disease, lipid lowering medications, antihypertensive medications, BMI, and alcohol consumption	Annual ECG, Minnesota	5.5 (2.7-9.0)	<5
Study of Health in Pomerania	P, 1 region (West Pomerania, Germany)	Third generation TSH assay	yes	age and sex, systolic blood pressure, current or former smoking, diabetes mellitus, total cholesterol, and prevalent cardiovascular disease, lipid lowering medications, antihypertensive medications, BMI, heart rate	Minnesota at baseline + year 5 follow-up and ongoing year 10 follow-up	11.5 (11.1-12.1)	37
Invecchiare in Chianti Study	P, 2 towns in Toscany (Italy)	Third generation TSH assay	yes	age and sex, systolic blood pressure, current or former smoking, diabetes mellitus, total cholesterol, and prevalent cardiovascular disease, lipid lowering medications, antihypertensive medications, BMI, heart rate, and alcohol consumption	ECG at baseline and year 3 follow-up, year 6 follow-up and year 9 follow-up	9.0 (8.3-9.2)	35
Rotterdam Study	P, 1 district (The Netherlands)	Third generation TSH assay	yes	age and sex, systolic blood pressure, current or former smoking, diabetes mellitus, total cholesterol, and prevalent cardiovascular disease, lipid lowering medications, antihypertensive medications, BMI, heart rate, and alcohol consumption	i) 12 lead ECG at baseline and follow-up visits ii) ICD-10 coded info from GPs (own records, hospital discharge letters) with requirement of ECG verifying the diagnosis iii) hospital discharge diagnoses through Dutch National Medical Registration	15.5 (11.4-16.9)	0.9
PROSPER Study	Primary care patients, in 3 countries (The Netherlands, Ireland, Scotland)	Third generation TSH assay	yes	age and sex, systolic blood pressure, current or former smoking, diabetes mellitus, total cholesterol, and prevalent cardiovascular disease, lipid lowering medications, antihypertensive medications, BMI, heart rate, and alcohol consumption	Annual single-lead ECG or 12-lead ECG or telemetry during hospitalization or other clinical care	3.3 (3.0-3.5)	<5

EPIC-Norfolk	P, 1 county (Norfolk, England)	Third generation TSH assay	yes	age and sex, systolic blood pressure, current or former smoking, diabetes mellitus, total cholesterol, and prevalent cardiovascular disease, lipid lowering medications, antihypertensive medications, BMI, heart rate, and alcohol consumption	Baseline: self-reported intake of drugs used for AF treatment: digitalis and vitamin K antagonists. Incident AF: ICD-10 coded hospital discharge codes	17.0 (16.1-18.0)	<2
Australia Busselton Health Study	P, 1 district (Busselton, Australia)	Third generation TSH assay	yes	age and sex, systolic blood pressure, current or former smoking, diabetes mellitus, total cholesterol, and prevalent cardiovascular disease, antihypertensive medications, BMI	ECG at baseline and year 14 follow-up	14.0 (14.0-14.0)	37

Abbreviations: AF, atrial fibrillation; BMI, body mass index; ECG, electrocardiogram; GP, general practitioner; NR, not reported; P, population-based study.

*If an article did not clearly mention one of these characteristics, we considered that is had not been done. All included studies were prospective cohort studies.

[†] A population-based study was defined as a random sample of the general population.

‡ A formal adjudication procedure was defined as having clear criteria for the outcome that were reviewed by experts for each potential case.

TSH level (mIU/I)	0.45-0.99		1.00-1.49		1.50-2.49		2.50-3.49		3.50-4.49	
	Events /	HR	Events /	HR						
	Persons	(95% CI)	Persons	(95% CI)						
Main analysis	372/5665	1.10	402/6275	1.03	893/9990	1.04	412/4201	0.94	100/1800	ref.
(age- and sex-adjusted)	372/3003	(0.92-1.31)	492/6275	(0.87-1.22)	895/9990	(0.89-1.22)	412/4391	(0.79-1.12)	190/1806	rei.
Excluding users of amiodarone and	365/5369	1.09	485/5956	1.02	883/9622	1.03	408/4293	0.93	190/1763	ref.
a study with missing relevant data*	,	(0.91-1.30)	,	(0.86-1.21)	000,0000	(0.88-1.21)	,	(0.78-1.11)		i en
Excluding thyroid medication use at BL and/or FUP and studies with	225/3510	1.05	306/3286	1.01	596/4994	1.06	292/2412	0.96	124/945	ref.
missing relevant data †	223/3310	(0.84-1.32)	500/5280	(0.82-1.25)	550/4554	(0.88-1.29)	252/2412	(0.78-1.18)	124/ 343	Tel.

Supplemental Table 5. Sensitivity Analyses of the Association between Thyroid Stimulating Hormone within the Reference Range and the Risk of Atrial Fibrillation

Abbreviations: BL, baseline; CI, confidence interval; FUP, follow-up; HR, hazard ratio; TSH, thyroid stimulating hormone.

* A total of 1,183 participants were excluded for this sensitivity analysis of the association between TSH and atrial fibrillation: 2 participants who took amiodarone in the

Cardiovascular Health Study; 3 in the Health ABC Study; 1 in the Osteoporotic Fractures in Men Study; 79 in the Bari Study; 1 in the Leiden 85+ Study; 1 in the Study of Health in

Pomerania; 6 in the Invecchiare in Chianti Study; 6 in the Rotterdam Study; 23 in the PROSPER Study; 1 in the EPIC-Norfolk Study, and all 1,060 participants from the Busselton

Health Study, in which information on amiodarone use was not available.

[†] The number of thyroid medication users during follow-up are indicated in Table 1. We additionally excluded 11,642 participants in the EPIC-Norfolk Study and 1,607 in the

Rotterdam Study from this sensitivity analysis on the association between TSH and atrial fibrillation, because information on thyroid medication use during follow-up was not

available in these studies.

TSH level (mIU/I)	0.45-0.99			1.00-1.49			1.50-2.49			2.50-3.49			3.50-4.49
Variable	Events/ Persons	HR (95% CI)	HR (95%Cl)	Events/ Persons	HR (95% CI)	HR (95% CI)	Events/ Persons	HR (95% CI)	HR (95% CI)	Events/ Persons	HR (95% CI)	HR (95% CI)	Events/ Persons
		Age/Sex Adj	Multivariate Model §		Age/Sex Adj	Multivariate Model ‡		Age/Sex Adj	Multivariate Model ‡		Age/Sex Adj	Multivariate Model‡	
Total Population	372/5665	1.10 (0.92-1.31)	1.07 (0.89-1.28)	492/6275	1.03 (0.87-1.22)	0.99 (0.84-1.18)	893/9990	1.04 (0.89-1.22)	1.02 (0.87-1.19)	412/4391	0.94 (0.79-1.12)	0.92 (0.78-1.10)	190/1806
Age, y													
18-64	59/3051	0.82 (0.48-1.42)	0.86 (0.50-1.47)	67/2760	0.83 (0.49-1.41)	0.87 (0.51-1.47)	102/3935	0.81 (0.49-1.33)	0.78 (0.47-1.30)	34/1367	0.81 (0.46-1.44)	0.78 (0.44-1.37)	18/563
≥65	313/2614	1.06 (0.88-1.28)	1.04 (0.86-1.25)	425/3515	0.97 (0.82-1.16)	0.94 (0.79-1.13)	791/6055	1.03 (0.87-1.21)	1.01 (0.85-1.19)	378/3024	0.92 (0.77-1.11)	0.91 (0.76-1.09)	172/1243
P for Trend		0.97	0.97		0.97	0.97		0.97	0.97		0.97	0.97	
Sex													
Women	160/2791	1.03 (0.80-1.32)	1.00 (0.78 -1.28)	210/3079	0.97 (0.76-1.22)	0.93 (0.74-1.18)	408/4967	1.02 (0.82-1.26)	1.00 (0.80- 1.24)	202/2352	0.93 (0.74-1.18)	0.91 (0.72-1.16)	107/1096
Men	212/2874	1.16 (0.89-1.50)	1.13 (0.87-1.47)	282/3196	1.11 (0.87-1.42)	1.07 (0.83-1.37)	485/5023	1.09 (0.86 to 1.38)	1.06 (0.84-1.35)	210/2039	0.97 (0.75-1.25)	0.95 (0.73-1.23)	83/710
P for Interaction		0.64	0.81		0.64	0.81		0.64	0.81		0.64	0.81	
Race †													
White	247/2763	1.19 (0.97-1.46)	1.17 (0.95-1.44)	332/4059	1.00 (0.83-1.22)	0.96 (0.79-1.17)	619/6922	1.01 (0.84-1.20)	0.97 (0.81-1.17)	292/3038	0.90 (0.74-1.09)	0.87 (0.72-1.06)	153/1313
Non-white	23/268	0.95 (0.42-2.12)	0.92 (0.41-2.07)	47/381	1.48 (0.70-3.13)	1.38 (0.65-2.93)	68/610	1.40 (0.67-2.91)	1.34 (0.64-2.80)	35/264	1.63 (0.75-3.51)	1.51 (0.70-3.27)	8/101
P for Interaction		0.037	0.033		0.037	0.033		0.037	0.033		0.037	0.033	
Previous CVD													
None‡	263/4876	1.15 (0.93-1.42)	1.14 (0.92-1.41)	349/5196	1.10 (0.90-1.34)	1.08 (0.88-1.32)	616/8186	1.07 (0.89-1.29)	1.05 (0.87-1.28)	278/3471	0.96 (0.78-1.18)	0.96 (0.78-1.19)	132/1470
Yes	109/789	0.91 (0.66-1.26)	0.91 (0.66-1.26)	143/1079	0.82 (0.61-1.12)	0.81 (0.60-1.10)	277/1804	0.92 (0.70-1.23)	0.93 (0.70-1.24)	134/920	0.84 (0.62-1.14)	0.83 (0.60-1.13)	58/336
P for Interaction		0.78	0.74		0.78	0.74		0.78	0.74		0.78	0.74	
Thyroxine use at BL													
None	372/5665	1.10 (0.92-1.31)	1.07 (0.89-1.28)	492/6275	1.03 (0.87-1.22)	0.99 (0.84-1.18)	893/9990	1.04 (0.89-1.22)	1.02 (0.87-1.19)	412/4391	0.94 (0.79-1.12)	0.92 (0.78-1.10)	190/1806
Yes	27/244	1.28 (0.62-2.66)	1.45 (0.68-3.10)	22/154	1.57 (0.74-3.33)	1.65 (0.76-3.60)	32/233	1.52 (0.74-3.10)	1.60 (0.76-3.37)	19/139	1.42 (0.66-3.07)	1.52 (0.68-3.39)	10/105
P for Interaction		0.37	0.31		0.37	0.31		0.37	0.31		0.37	0.31	

Supplemental Table 6. Stratified Analyses for the Association between Thyroid Stimulating Hormone within the Reference Range and Atrial Fibrillation*

Abbreviations: Adj, adjusted; AF, atrial fibrillation; BL, baseline; CI, confidence interval; CVD, cardiovascular disease; E, events; HR, hazard ratio; NA, data not applicable; P, participants; TSH, thyroid-stimulating hormone

* The TSH category 3.50-4.49mIU/I was the reference category

[†] African Americans, Hispanics, Asian, and others were considered as non-white population. Data on race were missing for all participants of the SHIP study, the InChianti

Study, and the PROSPER Study, 67 participants of the Rotterdam Study and 44 of the EPIC-Norfolk Study.

‡ Previous cardiovascular was defined as a history of stroke, transient ischemic attack, myocardial infarction, angina pectoris, coronary angioplasty, bypass surgery. Participants

without any of these events were considered having no previous cardiovascular disease.

§ Adjusted for age, sex, systolic blood pressure, current and former smoking, diabetes, total cholesterol and prevalent cardiovascular disease.

TSH level (mlU/l)	3.50-4.49		4.5-6.9		7.0-9.9		10.0-19.9	
	Events /	HR	Events /	HR	Events /	HR	Events /	HR
	Participants	(95% CI)	Participants	(95% CI)	Participants	(95% CI)	Participants	(95% CI)
Main analysis	100/1906	rof	140/1204	0.92	44/202	1.02	22/101	0.94
(age- and sex-adjusted)	190/1806	ref.	149/1384	(0.74-1.14)	44/383	(0.73-1.41)	22/191	(0.61-1.47)
Excluding users of amiodarone and a	190/1763	ref.	146/1355	0.90	43/371	1.00	20/173	0.90
study with missing relevant data*	190/1705	Tel.	140/1555	(0.73-1.12) 43/3/1		(0.72-1.39)	20/1/5	(0.57-1.42)
Excluding thyroid medication use				0.87		1.22		1.56
at BL and/or FUP and studies with	124/945	ref.	81/719	(0.66-1.16)	22/147	(0.78-1.92)	11/60	(0.84-2.90)
missing relevant data †				(0.66-1.16)		(0.78-1.92)		(0.84-2.90)

Supplemental Table 7. Sensitivity Analyses of the Association between Subclinical Hypothyroidism and the Risk of Atrial Fibrillation

Abbreviations: BL, baseline; CI, confidence interval; FUP, follow-up; HR, hazard ratio; TSH, thyroid stimulating hormone.

* Information on amiodarone use at baseline was not available in the Busselton Health Study.

[†] The number of thyroid medication users during follow-up are indicated in Table 1. We additionally excluded participants in the EPIC-Norfolk Study and the Rotterdam Study,

because information on thyroid medication use during follow-up was not available in these studies.

TSH level (mIU/I)	3.50-4.49	4.5-6.9			7.0-9.9			10.0-19.9		
Variable	Events/	Events/	HR	HR	Events/	HR	HR	Events/	HR	HR
variable	Persons	Persons	(95% CI)	(95%CI)	Persons	(95% CI)	(95% CI)	Persons	(95% CI)	(95% CI)
			Age/Sex Adj	Multivariate Model §		Age/Sex Adj	Multivariate Model ‡		Age/Sex Adj	Multivariate Model ‡
Total Population	190/1806	149/1384	0.92 (0.74-1.14)	0.91 (0.74-1.14)	44/383	1.02 (0.73-1.41)	0.95 (0.68-1.33)	22/191	0.94 (0.61-1.47)	0.93 (0.60-1.44)
Age										
18-64	18/563	7/339	0.69 (0.29-1.64)	0.67 (0.28-1.60)	2/91	0.72 (0.17-3.09)	0.79 (0.18-3.40)	1/51	0.66 (0.09-4.95)	0.76 (0.10-5.70)
≥65	172/1243	142/1045	0.95 (0.76-1.19)	0.96 (0.76-1.19)	42/292	1.02 (0.72-1.42)	0.96 (0.68-1.34)	21/140	1.05 (0.67-1.65)	1.03 (0.65-1.62)
P for Trend			0.97	0.97		0.97	0.97		0.97	0.97
Sex										
Women	107/1096	75/853	0.79 (0.59-1.06)	0.80 (0.60-1.08)	25/249	0.96 (0.62-1.48)	0.90 (0.58-1.40)	10/121	0.71 (0.37-1.37)	0.73 (0.38-1.39)
Men	83/710	74/531	1.11 (0.81-1.52)	1.07 (0.78-1.47)	19/134	1.10 (0.67-1.81)	1.01 (0.60-1.68)	12/70	1.27 (0.69-2.34)	1.21 (0.66-2.22)
P for Interaction			0.64	0.81		0.64	0.81		0.64	0.81
Race †										
White	153/1313	133/989	1.03 (0.82-1.30)	1.01 (0.80-1.28)	39/278	1.14 (0.80-1.62)	1.05 (0.73-1.50)	18/139	0.94 (0.58-1.54)	0.93 (0.57-1.52)
Non-white	8/101	5/90	0.58 (0.19-1.78)	0.54 (0.17-1.64)	1/25	0.41 (0.05-3.25)	0.38 (0.05-3.07)	0/10	NA	NA
P for Interaction			0.037	0.033		0.037	0.033		0.037	0.033
Previous CVD										
None ‡	132/1470	100/1078	0.97 (0.75-1.26)	0.99 (0.76-1.29)	28/291	0.98 (0.65-1.48)	0.93 (0.61-1.41)	16/146	1.11 (0.66-1.87)	1.13 (0.67-1.90)
Yes	58/336	49/306	0.76 (0.52-1.11)	0.77 (0.53-1.14)	16/92	1.00 (0.58-1.74)	0.99 (0.57-1.73)	6/45	0.65 (0.28-1.52)	0.67 (0.29-1.55)
P for Interaction			0.78	0.74		0.78	0.74		0.78	0.74
Thyroxine use at BL										
None	190/1806	149/1384	0.92 (0.74-1.14)	0.91 (0.74-1.14)	44/383	1.02 (0.73-1.41)	0.95 (0.68-1.33)	22/191	0.94 (0.61-1.47)	0.93 (0.60-1.45)
Yes	10/105	13/135	0.98 (0.43-2.24)	0.95 (0.40-2.26)	3/73	0.45 (0.12-1.63)	0.53 (0.14-1.95)	11/63	1.87 (0.79-4.41)	1.95 (0.81-4.74)
P for Interaction			0.37	0.31		0.37	0.31		0.37	0.31

Supplemental Table 8. Stratified Analyses for the Association between Subclinical Hypothyroidism and Atrial Fibrillation*

Abbreviations: AF, atrial fibrillation; BL, baseline; CI, confidence interval; CVD, cardiovascular disease; E, events; HR, hazard ratio;

NA, data not applicable; P, participants; TSH, thyroid-stimulating hormone

* The TSH category 3.50-4.49mIU/I was the reference category

[†] African Americans, Hispanics, Asian, and others were considered as non-white population. Data on race were missing for all participants of the SHIP study, the InChianti

Study, and the PROSPER Study, 67 participants of the Rotterdam Study and 44 of the EPIC-Norfolk Study.

‡ Previous cardiovascular was defined as a history of stroke, transient ischemic attack, myocardial infarction, angina pectoris, coronary angioplasty, bypass surgery. Participants

without any of these events were considered having no previous cardiovascular disease.

§ Adjusted for age, sex, systolic blood pressure, current and former smoking, diabetes, total cholesterol and prevalent cardiovascular disease.

fT4 quartile	First quartile		Second quartile		Third quartile		Fourth quartile		
	Events / Participants	HR (95% CI)	Events / Participants	HR (95% CI)	Events / Participants	HR (95% CI)	Events / Participants	HR (95% CI)	P for trend
Main analysis (age- and sex-adjusted)	371/5642	ref.	390/4989	1.17 (1.02-1.35)	438/5272	1.25 (1.09-1.43)	474/5018	1.45 (1.26-1.66)	≤0.001
Excluding users of amiodarone and a study with missing relevant data *	367/5245	ref.	389/4817	1.17 (1.02-1.35)	433/5000	1.24 (1.08-1.42)	463/4793	1.42 (1.24-1.63)	≤0.001
Excluding thyroid medication use at BL and/or FUP and studies with missing relevant data †	211/2345	Ref.	238/2063	1.17 (0.97-1.40)	218/2115	1.16 (0.96-1.40)	250/2063	1.37 (1.14-1.64)	0.002

Supplemental Table 9. Sensitivity Analyses of the Association between Quartiles of Free Thyroxine within the Reference Range and the Risk of Atrial Fibrillation

Abbreviations: BL, baseline; CI, confidence interval; fT4; free thyroxine; FUP, follow-up; HR, hazard ratio.

* A total of 1,066 participants were excluded for this sensitivity analysis of the association between fT4 and atrial fibrillation: 1 participant who took amiodarone in the CHS; 1

in the MrOS; 57 in the Bari Study; 3 in the InChianti Study; 1 in the EPIC-Norfolk Study, and all 1003 participants in the Busselton Health Study, in which information on

amiodarone use was not available.

+ A total of 12,335 participants were excluded for this sensitivity analysis of the association between fT4 and atrial fibrillation: 139 participants in the CHS; 11 in the MrOS; 15 in

the Bari Study; 3 in the Leiden 85+ Study; 156 in the SHIP; 13 in the InChianti Study; 2 in the PROSPER Study; and 9 in the Busselton Health Study; and all 10,745 participants in

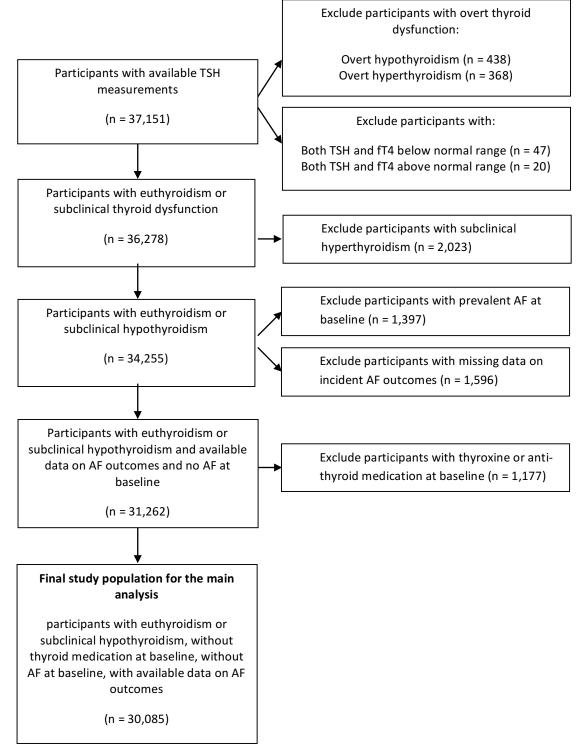
the EPIC-Norfolk Study and all 1,242 participants in the Rotterdam Study, because information on thyroid medication use during follow-up was not available in these studies.

fT4 Quantile	First			Second			Third			Fourth		
	Quartile			Quartile			Quartile			Quartile		
M. 1.11	Events/	HR	HR	Events/	HR	HR	Events/	HR	HR	Events/	HR	HR
Variable	Persons	(95% CI)	(95%CI)	Persons	(95% CI)	(95% CI)	Persons	(95% CI)	(95% CI)	Persons	(95% CI)	(95% CI)
		Age/Sex Adj	Multivariate Model §		Age/Sex Adj	Multivariate Model §		Age/Sex Adj	Multivariate Model §		Age/Sex Adj	Multivariate Model §
Total Population	371/5642	ref.	ref.	390/4989	1.17 (1.02-1.35)	1.16 (1.00-1.33)	438/5272	1.25 (1.09-1.43)	1.19 (1.04-1.37)	474/5018	1.45 (1.26-1.66)	1.39 (1.22-1.60)
Age, y												
18-64	62/3146	ref.	ref.	47/2704	0.85 (0.58-1.24)	0.85 (0.58-1.24)	73/2818	1.26 (0.90-1.77)	1.25 (0.89-1.76)	81/2561	1.54 (1.10-2.14)	1.53 (1.09-2.14)
≥65	309/2496	ref.	ref.	343/2285	1.23 (1.05-1.43)	1.20 (1.03-1.40)	365/2454	1.23 (1.06-1.43)	1.17 (1.00-1.37)	393/2457	1.46 (1.25-1.69)	1.39 (1.20-1.62)
P for Trend					0.16	0.15		0.16	0.15		0.16	0.15
Sex												
Women	170/3123	ref.	ref.	169/2596	1.13 (0.91-1.39)	1.12 (0.90-1.39)	215/2700	1.41 (1.15-1.72)	1.33 (1.09-1.64)	214/2269	1.56 (1.27-1.90)	1.51 (1.23-1.85)
Men	201/2519	ref.	ref.	221/2393	1.20 (0.99-1.46)	1.18 (0.97-1.43)	223/2572	1.12 (0.93-1.36)	1.07 (0.88-1.30)	260/2749	1.36 (1.13-1.64)	1.30 (1.08-1.56)
P for Interaction					0.16	0.18		0.16	0.18		0.16	0.18
Race †												
White	311/4405	ref.	ref.	333/3848	1.17 (1.00-1.36)	1.16 (0.99-1.35)	383/4072	1.29 (1.11-1.50)	1.23 (1.06-1.44)	414/3876	1.48 (1.28-1.71)	1.41 (1.22-1.64)
Non-white	27/208	ref.	ref.	27/141	1.42 (0.83-2.43)	1.46 (0.84-2.53)	32/179	1.36 (0.81-2.27)	1.43 (0.85-2.42)	30/172	1.61 (0.96-2.72)	1.77 (1.04-3.01)
P for Interaction					0.93	0.98		0.93	0.98		0.93	0.98
Previous CVD												
None ‡	267/5089	ref.	ref.	288/4449	1.20 (1.02-1.42)	1.17 (0.99-1.39)	324/4670	1.32 (1.12-1.55)	1.26 (1.07-1.49)	362/4394	1.57 (1.34-1.84)	1.52 (1.29-1.78)
Yes	104/553	ref.	ref.	102/540	1.06 (0.80-1.39)	1.07 (0.81-1.41)	114/602	1.01 (0.77-1.32)	1.01 (0.77-1.32)	112/624	1.05 (0.81-1.38)	1.05 (0.80-1.37)
P for Interaction					0.068	0.084		0.068	0.084		0.068	0.084
Thyroxine use at BL												
None	371/5655	ref.	ref.	414/5122	1.16 (1.01-1.34)	1.15 (1.00-1.32)	431/5335	1.28 (1.11-1.47)	1.22 (1.06-1.41)	457/4809	1.43 (1.25-1.64)	1.38 (1.20-1.59)
Yes	9/69	ref.	ref.	13/78	1.69 (0.70-4-05)	1.66 (0.69-3.98)	16/120	1.59 (0.68-3.70)	1.68 (0.72-3.95)	30/275	1.41 (0.65-3.08)	1.48 (0.67-3.26)
P for Interaction					0.53	0.58		0.53	0.58		0.53	0.58

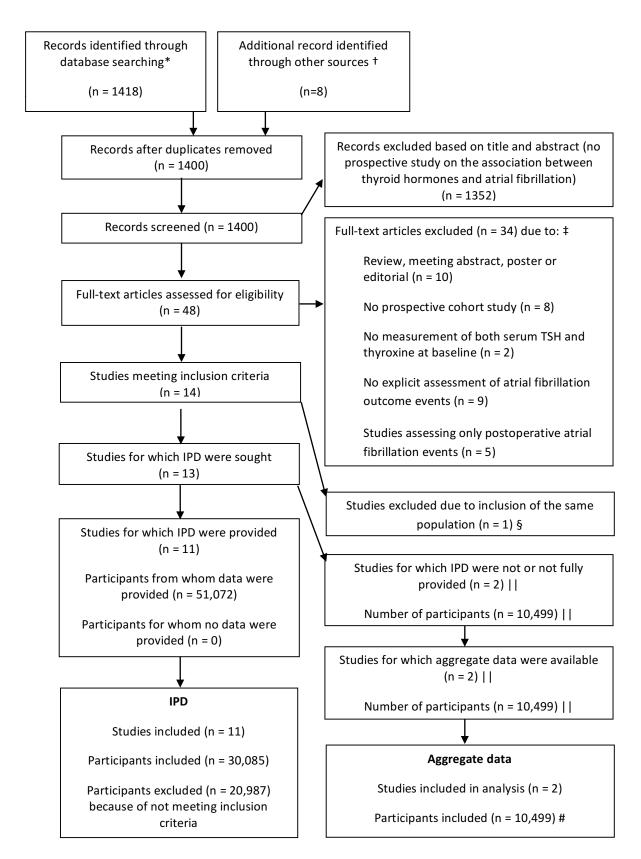
Supplemental Table 10. Stratified Analyses for the Association between Quartiles of Free Thyroxine within the Reference Range and the Risk of Atrial Fibrillation *

Abbreviations: Adj, adjusted; AF, atrial fibrillation; BL, baseline; CI, confidence interval; CVD, cardiovascular disease; E, events; HR, hazard ratio; NA, data not applicable; P, participants; ref., reference; TSH, thyroid-stimulating hormone

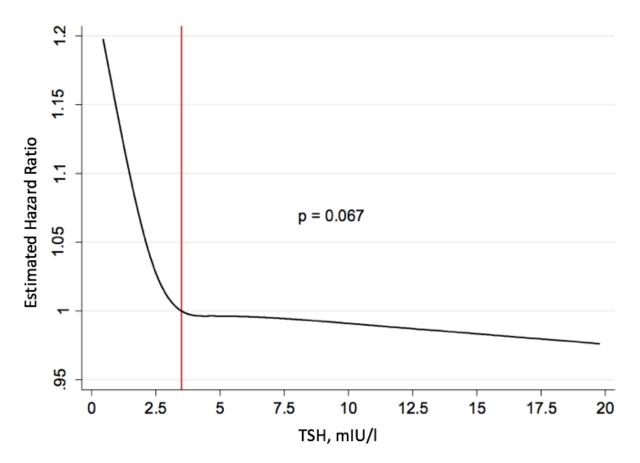
* This analysis was restricted to normal thyroid function, i.e. TSH and thyroxine in the reference range. From the overall sample a total of 9164 participants were excluded for this analysis with either missing measurements of fT4 or thyroid function outside the reference range. 479 participants of the Cardiovascular Health Study, 59 of the Osteoporotic Fractures in Men Study, 32 of the Bari Study, 137 of the Leiden 85+ Study, 125 of the Study of Health in Pomerania, 42 of the InChianti Study, 365 of the Rotterdam Study, 897 of the EPIC-Norfolk Study, and 57 of the Busselton Health Study. In participants of the Health ABC Study, fT4 was measured only in TSH ≥ 7.0 mIU/L; therefore all 2346 participants were excluded for this analysis. In the PROSPER Study, fT4 was measured only in participants with TSH <0.45mIU/l or TSH ≥4.5mIU/l; therefore, 4625 participants were excluded from this analysis.

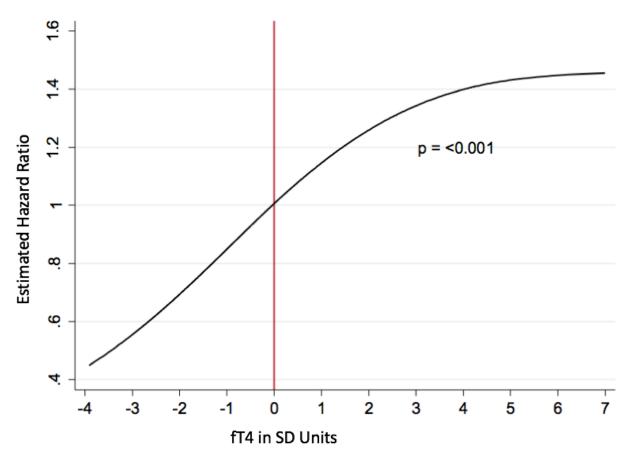

⁺ African Americans, Hispanics, Asian, and others were considered as non-white population. Data on race were missing for all participants of the SHIP study, the InChianti Study, and the PROSPER Study, 51 participants of the Rotterdam Study and 37 of the EPIC-Norfolk Study.

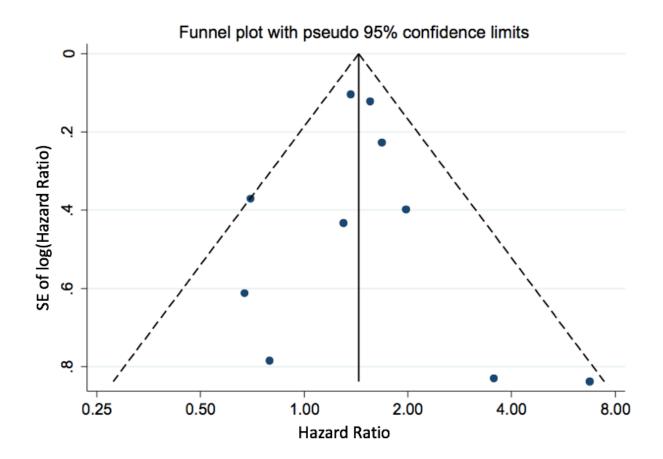
[‡] Previous cardiovascular was defined as a history of stroke, transient ischemic attack, myocardial infarction, angina pectoris, coronary angioplasty, bypass surgery. Participants without any of these events were considered having no previous cardiovascular disease.


§ Adjusted for age, sex, systolic blood pressure, current and former smoking, diabetes, total cholesterol and prevalent cardiovascular disease.

|| 542 participants with available measurement of fT4 and normal thyroid function were on thyroxine at baseline: 167 participants of the CHS, 33 of the MrO2, 6 of the Bari, 5 of the Leiden 85+ Study, 76 of SHIP, 11 of the InChianti Study, 9 of the Rotterdam Study, 8 of the PROSPER Study, 224 of the EPIC-Norfolk Study, and 3 of the Busselton Health Study.


Supplemental Figure 1


Supplemental Figure 2



Supplemental Figure 3.

Supplemental Figure 4.

Figure Legends

Supplemental Figure 1. Selection of the final study population for the individual participant data analysis.

Abbreviations: AF, atrial fibrillation; fT4, free thyroxine; TSH, thyroid stimulating hormone.

Supplemental Figure 2. Study flow diagram. Studies evaluated for inclusion in the IPD analysis, adapted from PRISMA-IPD Statement Flow Diagram.³ Abbreviations: IPD, individual participant data

* Until July 27, 2016

⁺ from prospective cohorts participating in the international Thyroid Studies Collaboration that had prospective data on atrial fibrillation outcomes

‡ List of excluded full text articles in Supplemental Table 2

§Two articles retrieved through database searching included the same population of the Cardiovascular Health Study ^{4,5}

|| Data on 1759 euthyroid and subclinically hypothyroid participants from the Framingham Heart Study ⁶ were not provided free of charge. Among the 8740 participants included in the Rotterdam Study,⁷ data of the 1426 participants included in the Rotterdam Study Cohort I that had been previously published ⁸ were provided, whereas data on 7314 participants of the Rotterdam Study Cohorts II and III were not provided.

Chaker and colleagues reported aggregate data of the Rotterdam Study Cohorts I, II, and III, therefore the individual participant data of Rotterdam Cohort I (that were included in our main analysis) were excluded for the sensitivity analysis including the aggregate data.⁷

Supplemental Figure 3. Restricted cubic spline plot for the association between continuous concentrations of thyroid stimulating hormone and atrial fibrillation. The p-value for a non-linear trend was 0.067. Abbreviations: TSH, thyroid stimulating hormone.

Supplemental Figure 4. Restricted cubic spline plot for the association between continuous concentrations of free thyroxine within the reference range and atrial fibrillation. The p-value for a non-linear trend was ≤0.001. Abbreviations: fT4, free thyroxine; SD, standard deviation.

Supplemental Figure 5. Funnel plot for the association between free thyroxine within the reference range and atrial fibrillation. Estimates of the highest fT4 quartile compared to the lowest fT4 quartile were considered. Abbreviations: fT4, free thyroxine; SE, standard error.

Supplemental References

1. Search design search filters (Medline cohort study strategy). ClinicalEvidence website; http://clinicalevidence.bmj.com/x/set/static/ebm/learn/665076.html. Accessed July 25, 2017.

2. Wells G, Shea B, O'Connell D, Peterson J, Welch V, Losos M and Tugwell P. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed August 3, 2016.

3. Stewart LA, Clarke M, Rovers M, Riley RD, Simmonds M, Stewart G, Tierney JF and Group P-ID. Preferred Reporting Items for Systematic Review and Meta-Analyses of individual participant data: the PRISMA-IPD Statement. *JAMA*. 2015;313:1657-1665.

4. Cappola AR, Fried LP, Arnold AM, Danese MD, Kuller LH, Burke GL, Tracy RP and Ladenson PW. Thyroid status, cardiovascular risk, and mortality in older adults. *JAMA*. 2006;295:1033-1041.

5. Cappola AR, Arnold AM, Wulczyn K, Carlson M, Robbins J and Psaty BM. Thyroid function in the euthyroid range and adverse outcomes in older adults. *J Clin Endocrinol Metab*. 2015;100:1088-1096.

6. Sawin CT, Geller A, Wolf PA, Belanger AJ, Baker E, Bacharach P, Wilson PW, Benjamin EJ and D'Agostino RB. Low serum thyrotropin concentrations as a risk factor for atrial fibrillation in older persons. *N Engl J Med*. 1994;331:1249-1252.

7. Chaker L, Heeringa J, Dehghan A, Medici M, Visser WE, Baumgartner C, Hofman A, Rodondi N, Peeters RP and Franco OH. Normal Thyroid Function and the Risk of Atrial Fibrillation: the Rotterdam Study. *J Clin Endocrinol Metab*. 2015;100:3718-3724.

8. Heeringa J, Hoogendoorn EH, van der Deure WM, Hofman A, Peeters RP, Hop WC, den Heijer M, Visser TJ and Witteman JC. High-normal thyroid function and risk of atrial fibrillation: the Rotterdam study. *Arch Intern Med*. 2008;168:2219-2224.

9. Rodondi N, Newman AB, Vittinghoff E, de Rekeneire N, Satterfield S, Harris TB and Bauer DC. Subclinical hypothyroidism and the risk of heart failure, other cardiovascular events, and death. *Arch Intern Med*. 2005;165:2460-2466.

10. Mehra R, Stone KL, Varosy PD, Hoffman AR, Marcus GM, Blackwell T, Ibrahim OA, Salem R and Redline S. Nocturnal Arrhythmias across a spectrum of obstructive and central sleep-disordered breathing in older men: outcomes of sleep disorders in older men (MrOS sleep) study. *Arch Intern Med.* 2009;169:1147-1155.

11. Iacoviello M, Guida P, Guastamacchia E, Triggiani V, Forleo C, Catanzaro R, Cicala M, Basile M, Sorrentino S and Favale S. Prognostic role of sub-clinical hypothyroidism in chronic heart failure outpatients. *Curr Pharm Des.* 2008;14:2686-2692.

12. Gussekloo J, van Exel E, de Craen AJ, Meinders AE, Frolich M and Westendorp RG. Thyroid status, disability and cognitive function, and survival in old age. *JAMA*. 2004;292:2591-2599.

13. Ittermann T, Haring R, Sauer S, Wallaschofski H, Dorr M, Nauck M and Volzke H. Decreased serum TSH levels are not associated with mortality in the adult northeast German population. *Eur J Endocrinol*. 2010;162:579-585.

14. Ceresini G, Ceda GP, Lauretani F, Maggio M, Usberti E, Marina M, Bandinelli S, Guralnik JM, Valenti G and Ferrucci L. Thyroid status and 6-year mortality in elderly people living in a mildly iodinedeficient area: the aging in the Chianti Area Study. *J Am Geriatr Soc.* 2013;61:868-874.

15. Nanchen D, Gussekloo J, Westendorp RG, Stott DJ, Jukema JW, Trompet S, Ford I, Welsh P, Sattar N, Macfarlane PW, Mooijaart SP, Rodondi N and de Craen AJ. Subclinical thyroid dysfunction and the risk of heart failure in older persons at high cardiovascular risk. *J Clin Endocrinol Metab*. 2012;97:852-861.

16. Pfister R, Bragelmann J, Michels G, Wareham NJ, Luben R and Khaw KT. Performance of the CHARGE-AF risk model for incident atrial fibrillation in the EPIC Norfolk cohort. *Eur J Prev Cardiol*. 2015;22:932-939.

17. Walsh JP, Bremner AP, Bulsara MK, O'Leary P, Leedman PJ, Feddema P and Michelangeli V. Subclinical thyroid dysfunction as a risk factor for cardiovascular disease. *Arch Intern Med*. 2005;165:2467-2472.