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S1 Parameter value ranges

The parameter value ranges shown in Table 1 are taken from Table 2 in [S1], with the following exceptions. The upper
bound for the leak conductances are double the values given in [S1]. The Ih conductances, which were not fitted in [S1],
are limited between 0 and approximately eight-fold value of the maximal conductance of [S1]. The upper limits for CaHV A
and CaLV A conductances in the apical tuft are ten-fold compared to those in [S1] — this is done to make it possible for the
model to capture the contribution of the “hot zone” of Ca2+ channels. For the compartment lengths, the ranges of possible
values are from half to double the corresponding (maximal) compartment lengths in cell #1 of [S1] (note that the apical
dendrite is divided into two compartments). The values of axial resistances are limited to five-fold changes from the original
value (100 ⌦cm) in the soma and ten-fold changes elsewhere. For membrane capacitances at the soma, two-fold changes
from the original value (1.0 µF/cm2) are allowed. In [S1], the membrane capacitances at the dendrites were doubled (2.0
µF/cm2) in order to capture the e↵ect of dendritic spines: here, we set the range of possible values from 0.5 µF/cm2 to 2.0
µF/cm2.
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S2 Fitting the third step parameters using an additional compartment to

describe the hot zone of Ca

2+
channels

Here, we show that the quality of the fit at the third step could be improved by allowing a hot zone of Ca2+ channels inside
what previously was the compartment representing the apical tuft. We used the first and second step model parameters as
obtained in Figure 1–2 (see Table 3), and divided the distal apical compartment into three sections, of which the first and
third have the same Ca2+ conductances, while the HVA Ca2+ conductances of the middle section were multiplied by a factor
from 1 to 20 (10 in the original Hay model) and the LVA Ca2+ conductances by a factor from 1 to 200 (100 in the original
Hay model). Figure S1 shows fitting results obtained with this scheme, and Table S1 shows the obtained paramater values.
The obtained model fitted better to the Ca2+ concentration data along the apical dendrite, especially for the responses to
large-amplitude apical stimuli (objectives 3.4b and 3.5b) that were underestimated in the standard four-compartment model.
Note that also the amplitudes of the responses at the dendrites to other stimuli of objectives 3.2–3.5 were better fitted by
eye, although this was not always captured by the error function — to gain a better fit, the error function (Equation 5)
could be refined to give larger error values to responses of too small amplitudes. The time course of the somatic membrane
potential (objective 3.1) shows a slightly worse fit than in the standard model. However, choosing another parameter set
from the Pareto-front would give a better fit for objective 3.1, at the expense of the fit of the spatial distribution of membrane
potential and Ca2+ concentration (objectives 3.2–3.5). In the obtained parameter set, the Ca2+ dynamics were faster in
the apical dendrite than in the standard four-compartment model where the hot zone was not included (Table 3). While
both HVA and LVA Ca2+ channel conductances were zero in the apical trunk in the four-compartment model, here all Ca2+

channel conductance were non-zero. The SK conductances were very similar between the two (except in the apical trunk,
where the SK channels played no role in the four-compartment model as the Ca2+ inputs to the underlying compartment
were zero).

Figure S1: Third step fit using the scheme where an additional compartment with a hot zone of Ca2+ channels
is included. See Figure 3 for details.
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Table S1: Parameter values from third step fitting including the hot zone of Ca2+ channels.
Variable Value
gsoma
CaHVA 0.000419
gsoma
CaLVA 0.000628
�soma 0.00174

⌧decaysoma 586
gsoma
SK 0.0533

gapicCaHVA 7.79·10�5

gapicCaLVA 0.00139
�apic 0.00103

⌧decayapic 21.3
gapicSK 0.000994

gtuftCaHVA 7.62·10�5

gtuftCaLVA 0.0239
�tuft 0.0005

⌧decaytuft 20
gtuftSK 0.00336

chot zone coe�cient, HVA 13.7
chot zone coe�cient, LVA 4.91

S3 Fitting all parameters simultaneously

The stepwise method we developed benefits both from the fact that the parameter space is smaller and from the fact that
the objective functions at each step quantify the error under circumstances where the fitted conductances play a large role,
i.e., when other, typically faster ion channels are blocked. In this section, we aim to show that fitting the parameters of all
four steps in a single optimization task using objective functions that only quantify the intact neuron behaviour (i.e., without
ion-channel blockers) is less likely to succeed than the stepwise fitting protocol. We used the objective functions of the last
step, but also included the distribution of membrane potential and calcium concentration across the dendrites in a similar
fashion as in the objective functions of the third step. However, we modified the amplitudes of the stimuli of the third step
objectives such that no somatic spikes were initiated. The objective functions are given in Table S2.

Table S2: Objective functions used when all model parameters are fitted simultaneously. The first column shows
the objective number, and the corresponding objective number in the stepwise method is given in parenthesis. See Table 2
for details.
Objective Objective Where Stimulus type Eq. Stimulus
number function measured amplitude

1(3.2) Di↵erence in distribution of Dendrites 3000-ms DC pulse at soma (5) 0.15 nA
steady-state membrane potentials 0.3 nA

2(3.3) Di↵erence in distribution of Apical 3000-ms DC pulse at soma (5) 0.15 nA
steady-state intracellular [Ca2+ ] dendrite 0.3 nA

3(3.4) Di↵erence in distribution of peak Dendrites EPSP-like current injection at the (5) 0.6 nA
membrane potential apical dendrite 620 µm from soma 1.2 nA

4(3.5) Di↵erence in distribution of peak Apical EPSP-like current injection at the (5) 0.6 nA
intracellular [Ca2+ ] dendrite apical dendrite 620 µm from soma 1.2 nA

5(4.1) Di↵erence in membrane potential Soma 100-ms DC pulse at soma (4) 0.25 nA
time series and numbers of spikes 0.5 nA

6(4.2) Di↵erence in membrane potential Soma 5-ms DC at soma (4) 1.9 nA
time series and numbers of spikes

7(4.3) Di↵erence in membrane potential Soma 5-ms DC at soma and (4) 1.9 nA (soma) +
time series and numbers of spikes EPSP-like current at apical dendrite 0.5 nA (apical)

8(4.4) Di↵erence in numbers of spikes Soma 3000-ms DC at soma (3) 0.78 nA
1.0 nA
1.9 nA

We performed the fitting using a population of Nsamp=2000 samples, Ngen=20–29 generations. Out of ten independent
fittings with di↵erent random number seeds, only one gave parameter sets that resulted in both correct numbers of spikes
for objectives 4.1–4.3 and small di↵erences (Equation 3 resulting in a value less than 100) between the f-I curves. The best
fit obtained with these parameter sets is illustrated in Figure 6, and the model parameter values are given in Table S3.
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Table S3: Parameter values obtained from the multi-objective optimizations of Figure 6. See Table 3 for the
corresponding parameter values obtained from the stepwise optimizations.

Variable Value
Lsoma 32.6
Lbasal 309
Lapic 642
Ltuft 945
Rsoma

a 62.4
Rbasal

a 931
Rapic

a 528
Rtuft

a 537
csoma
m 0.877
cbasalm 2.46
capicm 2.57
ctuftm 2.22

Variable Value
gsoma
l 5.44·10�5

gbasall 5.64·10�5

gapicl 7.52·10�5

gtuftl 4.1·10�5

Eh -53.8
gsoma
h 0.000219
gbasalh 0.000452
gapich 0.00107
gtufth 0.00444

Variable Value
gsoma
CaHVA 0.000609
gsoma
CaLVA 0.00365
�soma 0.0005

⌧decaysoma 715
gsoma
SK 0.0251

gapicCaHVA 0.00141
gapicCaLVA 0.011
�apic 0.0462

⌧decayapic 22.5
gapicSK 0

gtuftCaHVA 0.00615
gtuftCaLVA 0.212
�tuft 0.0493

⌧decaytuft 61.4
gtuftSK 0.0037

Variable Value
gsoma
Nat 2.71
gsoma
Nap 0.00833
gsoma
Kt 0.0499
gsoma
Kp 0.0647

gsoma
Kv3.1 0.734
gapicm 0.000445
gapicNat 0.0154
gapicKv3.1 0.00852
gapicm 0.000239
gtuftNat 0.00895
gtuftKv3.1 0.00762

S4 Fitting the model parameters using indicator-based evolutionary algo-

rithm (IBEA)

There is evidence that algorithms using IBEA selection [S2] may outperform NSGA-type algorithms in neuron model fitting
tasks [S3] as well as other optimization problems [S4]. Therefore, it can be questioned whether fitting all parameters simul-
taneously, as done in Section S3, could outperform our four-step fitting scheme if a more suitable genetic algorithm was used.
Here, we repeated the experiments of Section S3 using the Platypus implementation of IBEA (https://github.com/Project-
Platypus/Platypus, Copyright David Hadka) as the optimization algorithm. We performed the fitting using a population
of Nsamp=2000 samples, Ngen=44–57 generations. Only three out of fifteen repetitions of the fitting gave parameter sets
that resulted in both correct numbers of spikes for objectives 4.1–4.3 of Table S2 and small di↵erences (Equation 3 resulting
in a value less than 100) between the f-I curves. In two of these result sets, the best solutions were characterized by AHP
amplitudes that were radically di↵erent from those of the target neuron and relatively large di↵erences in f-I curves (data
not shown). However, one of the result sets had acceptable solutions, the best one of which is illustrated in Figure S2, and
the corresponding model parameter values are given in Table S4. Similarly to the best solution of the single-shot NSGA
algorithm (Figure 6 and Table S3), the solution shown in Figure S2 su↵ers from a mismatch in membrane potential time
series between target and fitted data especially when subthreshold stimulus was used (Figure 6I and S2I). The IBEA-based
solution was more accurate than then NSGA-based solution in reproducing the membrane potential and Ca2+ concentration
distributions along the dendrites as well as the f-I curve, but less accurate in reproducing the spike shapes and timings in
response to short (<100 ms) stimuli. We conclude that in our single-shot parameter estimation scheme, the IBEA algorithm
performed approximately as well as the NSGA algorithm.

Table S4: Parameter values obtained from the multi-objective optimizations of Figure S2.

Variable Value
Lsoma 27.4
Lbasal 553
Lapic 551
Ltuft 623
Rsoma

a 81.7
Rbasal

a 199
Rapic

a 408
Rtuft

a 419
csoma
m 0.611
cbasalm 1.01
capicm 2.24
ctuftm 3.25

Variable Value
gsoma
l 4.33e-05
gbasall 5.26e-05
gapicl 2.83e-05
gtuftl 2.01e-05
Eh -53.8

gsoma
h 0.000601
gbasalh 0.000218
gapich 0.00135
gtufth 0.00127

Variable Value
gsoma
CaHVA 0.000413
gsoma
CaLVA 0.000379
�soma 0.00267

⌧decaysoma 440
gsoma
SK 0.0209

gapicCaHVA 0.00015
gapicCaLVA 0.00207
�apic 0.000784

⌧decayapic 62.4
gapicSK 0.00103

gtuftCaHVA 0.00125
gtuftCaLVA 0.00379
�tuft 0.00387

⌧decaytuft 142
gtuftSK 0.00215

Variable Value
gsoma
Nat 3.5
gsoma
Nap 0.00553
gsoma
Kt 0.0227
gsoma
Kp 0.0852

gsoma
Kv3.1 1.56
gapicm 4.68e-05
gapicNat 0.0189
gapicKv3.1 0.014
gapicm 1.76e-05
gtuftNat 0.00758
gtuftKv3.1 0.0136

To show that the success of our four-step method is not strictly dependent on the type of genetic algorithm used, we
repeated the default fitting task using the abovementioned IBEA algorithm. Figures S3–S6 show that the IBEA algorithm
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Figure S2: Results from the experiment where all parameters model parameters were simultaneously fitted
using IBEA algorithm. See Table S2 for the objective functions and Figure 6 for the results from the corresponding
NSGA optimization. The parameter values are given in Table S4.
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produced a good fit for all four steps. The model parameter values corresponding to the fitted model are shown in Table S5.

Figure S3: First step fit using the IBEA algorithm. See Figure 1 for the corresponding results obtained with NSGA
algorithm.

Figure S4: Second step fit using the IBEA algorithm. See Figure 2.
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Figure S5: Third step fit using the IBEA algorithm. See Figure 3.

Figure S6: Fourth step fit using the IBEA algorithm. See Figure 4.
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Table S5: Parameter values obtained from the multi-objective optimizations of Figures S3–S6. See Table 3 for
the corresponding parameter values obtained with NSGA algorithm.

STEP 1
Variable Value
Lsoma 29.8
Lbasal 420
Lapic 451
Ltuft 976
Rsoma

a 460
Rbasal

a 172
Rapic

a 925
Rtuft

a 104
csoma
m 1.26
cbasalm 2.35
capicm 1.29
ctuftm 2.65

STEP 2
Variable Value

Eh -48.9
gsoma
h 0.000678
gbasalh 0.000184
gapich 0
gtufth 0.0094
gsoma
l 3.16·10�5

gbasall 4.42·10�5

gapicl 4.87·10�5

gtuftl 5.36·10�5

STEP 3
Variable Value
gsoma
CaHVA 0.000837
gsoma
CaLVA 0.000896
�soma 0.0005

⌧decaysoma 527
gsoma
SK 0.0506

gapicCaHVA 0
gapicCaLVA 0.00678
�apic 0.00365

⌧decayapic 58
gapicSK 0

gtuftCaHVA 0.0111
gtuftCaLVA 0.0185
�tuft 0.043

⌧decaytuft 21
gtuftSK 0.00418

STEP 4
Variable Value
gsoma
Nat 2.24
gsoma
Nap 0.000295
gsoma
Kt 0.0515
gsoma
Kp 0

gsoma
Kv3.1 0.616
gapicm 0.0005
gapicNat 0.00863
gapicKv3.1 0.0119
gapicm 0.000188
gtuftNat 0.00819
gtuftKv3.1 0.0109

S5 Model fitting can be carried out using noisy measurements along the

dendrites

In experimental recordings, patch-clamp as well as current-clamp data are usually relatively accurate, while the data from
VSD measurements are subject to higher levels of noise. We tested the performance of our fitting method using the objective
functions of Table 2, but adding a small (SD 1 mV), medium (SD 2 mV), or large (SD 5 mV) Gaussian noise component to
all membrane potential values measured along the dendrites. Similarly, all Ca2+ concentration values were multiplied by a
log-normal noise component exp(N (0,�)) with small (� = 0.05), medium (� = 0.1), or large (� = 0.2) variance. By contrast,
the membrane-potential data at soma were kept accurate. The fitting was carried out to five independently (di↵erent random
number seeds) generated data sets of each of the three levels of noise. For each level of noise, at least one parameter set
that produced an acceptable fit was obtained. Figures S7, S8, S9, and S10 illustrate the fits of the best parameter set (see
Table S6) obtained using a large noise in dendritic measurements during each step. Figures S7–S9 show that the noise in
dendritic membrane potential and Ca2+ concentration data did not invalidate the fit to the data, and Figure S10 shows that
the previously obtained parameters for leak, Ih, Ca2+ and SK channel conductances allowed the rest of the parameters (Na+

and K+ channel conductances) to be fitted to the data such that the correct spiking behavior (including the BAC firing) was
reproduced.
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Figure S7: First step fit using noisy dendritic measurements. See Figure 1 for the corresponding figure illustrating
fitting to noiseless data.

Figure S8: Second step fit using noisy dendritic measurements. See Figure 2.
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Figure S9: Third step fit using noisy dendritic measurements. See Figure 3.

Table S6: Parameter values obtained from the multi-objective optimizations of Figures S7–S10. See Table 3 for
the corresponding parameter values obtained from fitting to noiseless data.

STEP 1
Variable Value
Lsoma 41.2
Lbasal 501
Lapic 1.3·103
Ltuft 742
Rsoma

a 229
Rbasal

a 122
Rapic

a 190
Rtuft

a 984
csoma
m 0.688
cbasalm 3.27
capicm 3.26
ctuftm 2.61
gsoma
l 3.02·10�5

gbasall 7.02·10�5

gapicl 9.73·10�5

gtuftl 9.27·10�5

STEP 2
Variable Value

Eh -39.7
gsoma
h 0.000177
gbasalh 0.000244
gapich 0.00203
gtufth 0.0146
gsoma
l 2.97·10�5

gbasall 7.18·10�5

gapicl 0.0001
gtuftl 0.0001

STEP 3
Variable Value
gsoma
CaHVA 0.000826
gsoma
CaLVA 0.00588
�soma 0.000637

⌧decaysoma 400
gsoma
SK 0.0328

gapicCaHVA 1.53·10�7

gapicCaLVA 0.0224
�apic 0.0005

⌧decayapic 43
gapicSK 0.00231

gtuftCaHVA 0.0152
gtuftCaLVA 0.248
�tuft 0.0232

⌧decaytuft 151
gtuftSK 0.00392

STEP 4
Variable Value
gsoma
Nat 3.71
gsoma
Nap 0
gsoma
Kt 0.1
gsoma
Kp 0

gsoma
Kv3.1 0.549
gapicm 0.000172
gapicNat 0.0196
gapicKv3.1 0.00228
gapicm 7.71·10�5

gtuftNat 0.00472
gtuftKv3.1 0.0132
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Figure S10: Fourth step fit using parameters from previous step fits with noisy dendritic measurements. See
Figure 4.
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S6 Fitting stepwise to temporally downsampled target data

Here, we downsampled the membrane potential measurements at the dendrites using 100-Hz sampling frequency, and the
Ca2+ concentration measurements at the dendrites using 10-Hz sampling frequency. We compared the results of the second
step optimization using the downsampled target data with those obtained using accurate data. Figure S11 shows the
objective function values f2.1 and f2.2 of a population of N = 4000 particles after 60 evolutionary algorithm iterations from
ten independent trials. Figures S12 and S13, by contrast, show the distribution of function f2.1 and f2.2 values, respectively,
against the underlying parameter values. In all three figures, the distributions corresponding to accurate target data were
indistinguishable from those corresponding to lower resolution target data. We confirmed this using U-test, which gave values
larger than 0.05 for all parameter and objective function value distributions.

Figure S11: Objective function values in the second step optimization — di↵erences between fitting to accurate
and temporally downsampled target data. The ten small panels show ten repetitions of the same optimization procedure
(each with di↵erent random number seed). The axes show the objective function values f2.1 and f2.2 for the N = 4000
particles after 60 generations. Red: optimization with target data, where the dendritic membrane-potential measurements
are acquired with a 100-Hz sampling frequency and the dendritic Ca2+ concentration measurements with a 10-Hz sampling
frequency. Blue: optimization with accurate target data. The large panel shows the combined data.

12



Figure S12: Parameter values in the second step optimization plotted against the values of f2.1 — di↵erences
between fitting to accurate and temporally downsampled target data. The di↵erent panels show values of dif-
ferent model parameters fitted during the second step. Combined data from ten independent trials (see Figure S11). Red:
optimization with target data, where the dendritic membrane-potential measurements are acquired with a 100-Hz sampling
frequency and the dendritic Ca2+ concentration measurements with a 10-Hz sampling frequency. Blue: optimization with
accurate target data. The reversal potential parameter values are given in mV and the conductance parameter values in
S/cm2.
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Figure S13: Parameter values in the second step optimization plotted against the values of f2.2 — di↵erences
between fitting to accurate and temporally downsampled target data. The di↵erent panels show values of dif-
ferent model parameters fitted during the second step. Combined data from ten independent trials (see Figure S11). Red:
optimization with target data, where the dendritic membrane-potential measurements are acquired with a 100-Hz sampling
frequency and the dendritic Ca2+ concentration measurements with a 10-Hz sampling frequency. Blue: optimization with
accurate target data. The reversal potential parameter values are given in mV and the conductance parameter values in
S/cm2.
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S7 Fitting with predetermined leak conductance

If the purpose of the fitting is to reduce a neuron model with complex morphology with a reduced-morphology model (as
in our case), an alternative procedure can be chosen for the first step. Here, following the procedure of [S5], we set the
leak conductances to a set value, 5⇥10�5 S/cm2, in both the reduced (fitted) model and the model with full morphology
(data). The rest of the parameters of the first step (section lengths, membrane capacitances, and axial resistances) were
fitted normally, and likewise the parameters of the second to fourth steps were fitted according to Tables 1 and 2. Figures
S14–S17 illustrate the fitting results of the four steps using this scheme, and show that an acceptable fit was obtained also
using this procedure.

Figure S14: First step fit using the scheme where the leak conductance is explicitly set to a fixed value both
in the data and in the fitted model during the first step. See Figure 1 for the corresponding figure for fitting of
parameters according to Table 1.

Table S7: Parameter values obtained from the multi-objective optimizations of Figures S14–S17. See Table 3
for the corresponding parameter values obtained from the optimizations where passive conductances are fitted during both
first and second step.

STEP 1
Variable Value
Lsoma 28
Lbasal 424
Lapic 329
Ltuft 743
Rsoma

a 442
Rbasal

a 230
Rapic

a 933
Rtuft

a 292
csoma
m 1.36
cbasalm 1.78
capicm 1.17
ctuftm 3.15

STEP 2
Variable Value

Eh -40.6
gsoma
h 0.000107
gbasalh 0.000194
gapich 8.89·10�5

gtufth 0.00457
gsoma
l 6.05·10�5

gbasall 2.17·10�5

gapicl 5.88·10�5

gtuftl 6.34·10�5

STEP 3
Variable Value
gsoma
CaHVA 0.000669
gsoma
CaLVA 0.00943
�soma 0.0005

⌧decaysoma 597
gsoma
SK 0.0555

gapicCaHVA 6.8·10�5

gapicCaLVA 5.04·10�6

�apic 0.0471
⌧decayapic 135

gapicSK 0
gtuftCaHVA 0
gtuftCaLVA 0.0262
�tuft 0.000942

⌧decaytuft 109
gtuftSK 0.0013

STEP 4
Variable Value
gsoma
Nat 2.25
gsoma
Nap 0.00449
gsoma
Kt 0.0294
gsoma
Kp 0

gsoma
Kv3.1 1.16
gapicm 6.26·10�5

gapicNat 0.0182
gapicKv3.1 0.00218
gapicm 8.15·10�5

gtuftNat 0.0129
gtuftKv3.1 0.0023
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Figure S15: Second step fit using the scheme with fixed leak channel conductances during the first step. See
Figure 2.
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Figure S16: Third step fit using the scheme with fixed leak channel conductances during the first step. See
Figure 3.
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Figure S17: Fourth step fit using the scheme with fixed leak channel conductances during the first step. See
Figure 4.
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S8 Fitting stepwise by passing the whole population of solutions to the next

step

Instead of choosing at the end of each step the best candidate parameter set (see Section 2.2.6) and passing it to the next
step fitting, the whole population can be passed on to the next step. In this section, we applied this approach. Each particle
in the further steps had both variables that were being fitted (see Table 1) and variables that had been fitted during the
previous steps. We modified the genetic algorithm such that only the variables that were fitted were applied to the NSGA
crossover mechanism, while the variables of the earlier steps were chosen in an all-or-none fashion such that one of the
parent particles (randomly chosen) was made the dominant particle, and all previous-step variable values were taken from
that particle. Figures S18–S21 illustrate the fitting results of the four steps using this scheme, and show that an acceptable
(albeit slightly worse for the early steps) fit was obtained also using this procedure.

Figure S18: First step fit using the scheme where the whole population of parameter sets is passed on to the
next step. See Figure 1 for the corresponding figure of the scheme of Section 2.2.6.

Table S8: Parameter values obtained from the multi-objective optimizations of Figures S18–S21. See Table 3
for the corresponding parameter values obtained from the standard scheme as described in Section 2.2.6.

STEP 1
Variable Value
Lsoma 29.8
Lbasal 420
Lapic 451
Ltuft 976
Rsoma

a 460
Rbasal

a 172
Rapic

a 925
Rtuft

a 104
csoma
m 1.26
cbasalm 2.35
capicm 1.29
ctuftm 2.65

STEP 2
Variable Value

Eh -48.9
gsoma
h 0.000678
gbasalh 0.000184
gapich 0
gtufth 0.0094
gsoma
l 3.16·10�5

gbasall 4.42·10�5

gapicl 4.87·10�5

gtuftl 5.36·10�5

STEP 3
Variable Value
gsoma
CaHVA 0.000837
gsoma
CaLVA 0.000896
�soma 0.0005

⌧decaysoma 527
gsoma
SK 0.0506

gapicCaHVA 0
gapicCaLVA 0.00678
�apic 0.00365

⌧decayapic 58
gapicSK 0

gtuftCaHVA 0.0111
gtuftCaLVA 0.0185
�tuft 0.043

⌧decaytuft 21
gtuftSK 0.00418

STEP 4
Variable Value
gsoma
Nat 2.24
gsoma
Nap 0.000295
gsoma
Kt 0.0515
gsoma
Kp 0

gsoma
Kv3.1 0.616
gapicm 0.0005
gapicNat 0.00863
gapicKv3.1 0.0119
gapicm 0.000188
gtuftNat 0.00819
gtuftKv3.1 0.0109
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Figure S19: Second step fit using the scheme where the whole population of parameter sets is passed on to
the next step. See Figure 2.
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Figure S20: Third step fit using the scheme where the whole population of parameter sets is passed on to the
next step. See Figure 3.
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Figure S21: Fourth step fit using the scheme where the whole population of parameter sets is passed on to
the next step. See Figure 4.
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S9 Fitting a neuron model with reconstructed morphology

In this section, we applied our method to fit the conductance parameters along a reconstructed morphology. We used the
cell #2 of [S1] as the morphology for the fitted model (in contrast to the target data which was generated using cell #1), and
divided the dendro-somatic segments of this morphology to five groups: basal dendrite, soma, proximal apical dendrite, apical
trunk, and apical tuft. In addition, the axonal segments were kept as a separate group, where only passive parameters (axial
resistance, capacitance, and leak conductance) were fitted. The separation between apical groups was made such that the
segments in the apical dendrite whose mid-point was up to 500 µm from the soma belonged to the proximal apical dendrite,
while the segments whose mid-point was between 500 and 800 µm belonged to the apical trunk, and segments further than 800
µm belonged to the apical tuft. All segments in the same group had identical model parameters (conductances, capacitance
and axial resistance).

As there was no need for fitting morphological parameters, we combined the first two steps in our four-step scheme,
while we kept the last two steps unchanged. The adapted objective functions are given in Table S9. Figures S22–S24 show
that our method succeeded in fitting the model parameters of a neuron model with a complex morphology as well, and the
obtained parameter values are given in Table S10. Future studies should, however, optimize the way the conductances are
parametrized in order to better reproduce the observed shapes of ion-channel distributions [S6], [S7]. Ultimately, if there
exist target data containing measurements along di↵erent dendritic branches, the fitting methods should be designed to fit
the conductance parameters along the reconstructed morphology to these data in order to better represent the dendritic
computations that take place in the neuron.

Table S9: Objective functions used when fitting a neuron model with reconstructed morphology. The first
column shows the objective number, and the corresponding objective number in the default four-step method is given in
parenthesis. The rest of the columns are shown in the same way as in Table 2.
Objective Objective Where Stimulus type Eq. Stimulus
number function measured amplitude

1.1(1.1 & 2.1) Di↵erence in distribution of Dendrites 3000-ms DC pulse at soma (5) 0.0 nA
steady-state membrane potential 0.5 nA

1.0 nA
1.2(1.2) Di↵erence in distribution of peak Dendrites EPSP-like current injection at the (5) 0.5 nA

membrane potential apical dendrite 620 µm from soma 1.0 nA
1.3(1.3 & 2.2) Di↵erence in membrane potential Soma 100-ms DC pulse at soma (2) 0.5 nA

time series 1.0 nA

2.1(3.1) Di↵erence in membrane potential Soma 100ms DC pulse at soma (2) 1.0 nA
time series 2.0 nA

2.2(3.2) Di↵erence in distribution of Dendrites 3000-ms DC pulse at soma (5) 0.5 nA
steady-state membrane potentials 1.0 nA

2.3(3.3) Di↵erence in distribution of Apical 3000-ms DC pulse at soma (5) 0.5 nA
steady-state intracellular [Ca2+ ] dendrite 1.0 nA

2.4(3.4) Di↵erence in distribution of peak Dendrites EPSP-like current injection at the (5) 0.5 nA
membrane potential apical dendrite 620 µm from soma 1.0 nA

2.5(3.5) Di↵erence in distribution of peak Apical EPSP-like current injection at the (5) 0.5 nA
intracellular [Ca2+ ] dendrite apical dendrite 620 µm from soma 1.0 nA

3.1(4.1) Di↵erence in membrane potential Soma 100-ms DC pulse at soma (4) 0.25 nA
time series and numbers of spikes 0.5 nA

3.2(4.2) Di↵erence in membrane potential Soma 5-ms DC at soma (4) 1.9 nA
time series and numbers of spikes

3.3(4.3) Di↵erence in membrane potential Soma 5-ms DC at soma and (4) 1.9 nA (soma) +
time series and numbers of spikes EPSP-like current at apical dendrite 0.5 nA (apical)

3.4(4.4) Di↵erence in numbers of spikes Soma 3000-ms DC at soma (3) 0.78 nA
1.0 nA
1.9 nA
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Figure S22: First step in the fitting of the model with reconstructed morphology. In the morphology of the fitted
model in panel A, the dendritic branches along which the membrane potentials and Ca2+ concentrations were recorded
are highlighted, while other dendritic branches are plotted with dim colors. See Table S9 for the corresponding objective
functions and Figures 1 and 2 for the corresponding plots in the default four-step scheme for reduced morphology.

Figure S23: Second step in the fitting of the model with reconstructed morphology. See Figure 3 for the
corresponding plots in the default four-step scheme for reduced morphology.
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Figure S24: Third step in the fitting of the model with reconstructed morphology. See Figure 4 for the corre-
sponding plots in the default four-step scheme for reduced morphology.
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Table S10: Parameter values obtained from the multi-objective optimizations of Figures S22–S24. In these fitting
tasks, the apical dendrite was divided into three sections, denoted as follows: “prox” (when the midpoint of the segment was
0–500 µm from soma), “apic” (500–800 µm), and “tuft” (further than 800 µm). See Table 3 for the corresponding parameter
values obtained from the default four-stage optimization of the four-compartment model.

STEP 1
Variable Value
Rsoma

a 284
Rbasal

a 88.9
Rprox

a 207
Rapic

a 63
Rtuft

a 190
Raxon

a 533
csoma
m 1.8
cbasalm 1.76
cproxm 1.45
capicm 3.96
ctuftm 0.851
caxonm 1.88
gsoma
l 2.36e-05
gbasall 6.22e-05
gproxl 2.64e-05
gapicl 8.35e-05
gtuftl 5.44e-05
gaxonl 5.74e-05
Eh -40.1

gsoma
h 0.000374
gbasalh 0.000133
gproxh 0.00056
gapich 0.00542
gtufth 0.00615

STEP 2
Variable Value
gsoma
CaHVA 0.000953
gsoma
CaLVA 0.00172
�soma 0.0005

⌧decaysoma 403
gsoma
SK 0.065

gproxCaHVA 8.6e-05
gproxCaLVA 0.0026
�prox 0.00358

⌧decayprox 45.1
gproxSK 0

gapicCaHVA 0.00931
gapicCaLVA 0.016
�apic 0.0138

⌧decayapic 33.9
gapicSK 0.00371

gtuftCaHVA 0.00382
gtuftCaLVA 0
�tuft 0.0358

⌧decaytuft 152
gtuftSK 0.00291

STEP 3
Variable Value
gsoma
Nat 2.43
gsoma
Nap 0.00593
gsoma
Kt 0.0369
gsoma
Kp 0

gsoma
Kv3.1 0.859
gproxm 0.000207
gproxNat 0.0188
gproxKv3.1 0
gapicm 0.000363
gapicNat 0.0155
gapicKv3.1 0.0147
gtuftm 0
gtuftNat 0
gtuftKv3.1 0.0109

S10 Division of each compartment into five segments gives an acceptable

accuracy

The reduced-morphology neuron model fitting (Figures 1–4) was carried out using a dense compartmentalization, namely
20 segments per compartment. In this section, we studied the e↵ect of numbers of segments on the accuracy of the spiking
behavior. Figure S25 shows that using five segments was enough for producing the correct numbers of spikes and membrane
activation statistics as responses to di↵erent stimuli, including the BAC-firing protocol. By contrast, using fewer segments
gave less accurate results: With three to four segments, the validation also failed for BAC-firing inter-spike interval length
(panel I), and with one to two segments, the whole BAC-firing was abolished and the neuron responded with only one spike
to the applied combination of stimuli (data not shown).

S11 Simulations of pharmacological blockades reveal the contributors to the

network oscillations

In this section, we carried out the simulations of spontaneous network activity (see Figure 9A–C) such that one of the ion
channel types were completely blocked. Figure S26 shows the power spectrum of the population spike trains from these
simulations. Similarly as in Figure 9, Figure S26 shows that in most cases the power of delta-range frequencies was elevated
in comparison to corresponding Poisson process statistics. It can be observed that blocking the K+ current IKt or IKp had
little e↵ect on network firing. Blocking the fast non-inactivating K+ current IKv3.1 radically weakened the fast AHP of
the neuron, leading to widened spike shapes and accelerated activation of the slower K+ currents (mainly SK current; data
not shown), which led to overall decreased firing rates and smaller values of power components (note, however, that the
amplitude of the frequency component at approximately 1 Hz remained elevated although other frequency components were
dampened). Blocking the HCN current Ih or the persistent Na+ current INap reduced the overall network excitability and
blocking the low-voltage-activated Ca2+ current ICaLV A increased the excitability, but each of these blockades preserved the
overall shape of the power spectrum. The excitatory e↵ect of ICaLV A blockade was mediated by the SK current: Whenever
the Ca2+ currents were higher, the intracellular Ca2+ concentration became higher as well, and thus the SK currents as
well. This was most evident in blocking high-voltage-activated Ca2+ current ICaHV A, which had almost as radical e↵ect
as blocking the SK current: the network entered a high-activity regime, and the amplification of delta-range frequencies
with respect to corresponding Poisson processes vanished. Blocking the transient Na+ current INat completely abolished the
spiking behavior and is therefore not shown.
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Figure S25: Validation of the reduced model with lower-resolution spatial compartmentalization against data
from full model. Panels A–F show the reduced (blue) and full (green) model cell responses to a somatic DC. In the
simulation of the reduced model, each compartment was divided into five segments (see Figure 7 for comparison with
simulations using 20 segments). The bar represents the SD in the corresponding experimentally measured quantities. The
values shown correspond to three di↵erent simulations, where the DC amplitudes were 0.78, 1.0 and 1.9 nA. Panels G–L
show the responses to stimuli that induce BAC firing, i.e., a combination of a square pulse of duration 5 ms and amplitude
1.9 nA and an EPSP-like stimulus at the apical dendrite, separated by a 5-ms delay (somatic stimulus comes first). Panels
M–N show the membrane-potential responses to a tonic, somatic stimulus-induced spike at distant apical dendrite.
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Figure S26: Population spike train power spectra in simulations of complete blockade of di↵erent ion channels.
The yellow curves in the Panels A–I show the power spectra of the population spike train obtained from simulations of 1000
neurons, where one ion channel type is blocked in each panel (compare with Figure 9A–C, intra-network connection weight
0.21). The green dashed curves show the power spectra of the corresponding Poisson processes (the � term fitted to give the
same number of events as spikes in the network simulation). A: Persistent Na+ current blocked. B: HCN current blocked.
C: HVA Ca2+ current blocked. D: LVS Ca2+ current blocked. E: Ca2+-activated K+ current blocked. F: Kv3.1 current
blocked. G: Transient K+ current blocked. H: Persistent K+ current blocked. I: Control network — the same data were
shown in Figure 9C. J: The curves show the local maxima of the frequency spectra of the control network in panel I.
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S12 Network simulations with di↵erent connectivity patterns reveal but

small e↵ects on network responses to oscillations

We applied the Watts-Strogatz model [S8] of network connectivity to produce network topologies that lie on a continuum
between random (in the Erdős-Rényi sense) and locally connected networks. We first set the N = 150 nodes of the network
in a ring, and for each node, drew a connection from n nearest neighbors, where n was picked from a binomial distribution
Bin(N, p) with connection probability 0.125. This resulted in the same average connectivity as the procedure used in [S9]
and in the experiments of Figures 8 and 9. We also weighted each connection with an additional factor 1.24, which gave
the same average synaptic drive as the procedure of [S9] where unidirectional connections had a weight 1.0 and bidirectional
connections a weight 1.5. Then, each connection was rewired with a probability q such that the source node was randomly
picked among all nodes except the node itself. Afterwards, the network simulation was run using this connectivity pattern
in a similar fashion as the simulations of Figure 9D–G. The model parameters were kept the same, except for the intra-
network synaptic weights, which were set to 1.25 (i.e., 1.25⇥1.24 due to the abovementioned unification of unidirectional
and bidirectional connections) as in the experiments of Figure 8. Figure S27 shows the network responses to oscillations
of di↵erent frequencies in a similar manner as Figure 9G (i.e., the amplitude of the power component corresponding to the
frequency component of the input frequency plotted against the input frequency), now using Watts-Strogatz connectivity
with five di↵erent values of rewiring probability (q = 10�4, q = 10�3, q = 10�2, q = 0.1, q = 0.3, and q = 0.7). As expected,
the networks with largest rewiring probability (q = 0.3) were closest to the results of Figure 9G (shown with red dashes in
Figure S27), but also other networks show the same shape of response curve: The mean responses of the random networks
were in most cases within one SD of the responses of the Watts-Strogatz networks.

Figure S27: The model predicts amplified L5PC network responses to delta-range oscillations in Watts-
Strogatz networks. Power amplitude of the frequency component corresponding to the background input frequency,
plotted against the background input frequency. Five di↵erent values of rewiring probability were used, namely, q = 10�4

(top-left), q = 10�3 (top-right), q = 10�2 (middle-left), q = 0.1 (middle-right), and q = 0.3 (bottom). The dark gray lines
show the mean amplitude of the power component, while the light gray area shows the magnitude of the SD, sample size 5.
The red dashed line shows the data of Figure 9G. The insets show an example network connectivity of the Watts-Strogatz
network with the corresponding rewiring probability. See Figure 9D–G for details on network simulation.
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