
 
Supplementary Figure 1: Information processing pipeline  



 



 
 



 
Supplementary Figure 2: Assembled contigs and scaffolds for medaka chromosomes of Hd-rR, 

HNI and HSOK. The orange boxes are scaffolds for Hd-rR, and the other blue and green boxes are 

contigs of HNI and HSOK. Most of contigs are oriented, but light-colored boxes remain 

non-oriented in chromosomes because they have only single markers, or sets of genetic markers at 

the same genetic distance. Pink bars below contigs display centromeric repeats identified (see 

general statistics in Supplementary Table 12, and positions in Supplementary Table 13 ). The gray 

lines connecting contig boxes reflect the correspondence between genetic markers anchored on 

contigs. In chr. 2, 8, 11, 12, 18-20, 22, and 23 in which centromeric repeats were sequenced, 

centromeric repeats were located at identical genetic loci between multiple strains, and these genetic 

loci are denoted by black solid circles on Hd-rR orange boxes. In chr. 1, 3, 5, 9, 10, 13-17, only a 

single strain had a centromeric repeat region, and we put a black circle on the generic locus in the 

Hd-rR chromosome. Chr. 4, 6, 7, 21, and 24 are exceptional. Chromosome 4 had one ~10Kbp region 

at a Hd-rR acrocentric position and another ~305Kbp region at a HSOK metacentric region, and the 

latter longer region is labeled with a black circle. Chromosome 6 is an acrocentric chromosome, and 

intriguingly Hd-rR and HSOK have centromeric repeats at the same genetic loci, while HNI has 

repeats at the opposite end, and we therefore put a black circle at the acrocentric position in Hd-rR. 

Chromosome 7 of both HNI and HSOK is acrocentric, but those regions are not at an identical 

generic locus. Chromosome 21 had two centromeric repeat regions at Hd-rR acrocentric and 

metacentric positions, and respective loci are denoted by 21a and 21m. No centromeric repeats were 

found in chromosome 24 in any of the three strains.   





  



Supplementary Figure 3: Diversity of centromeric monomers in Hd-rR chromosomes: a. A 

hierarchical clustering of monomers in all chromosomes of the three strains by using DNACLUST. 

Each leaf has a cluster with >10 monomers; for example, the top leaf labeled with “HSOK chr23 2 

15” indicates the 2nd largest cluster among all clusters in HSOK chromosome 23 with 15 monomers,. 

The second top leaf with “Hd-rR chr2 2 137” has 137 monomers and is the 2nd largest cluster in 

Hd-rR chromosome 2. We partitioned all clusters into four groups named SF1-4 enclosed in boxes 

according to the hierarchical clustering, where SF denotes Supra-chromosomal Family. b. From each 

of the four groups, we selected a representative (Methods). To highlight the difference, we generated 

a multiple sequence alignment of the representatives using CLUSTAL 2.1. c. The four boxplots 

illustrate the distribution of sequence identity between each representative of SF1-4 and all 

monomers in individual chromosomes that had centromeric repeats in its genomic sequence 

(Supplementary Table 12). The x-axis shows chromosome numbers with approximate genomic 

positions (metacentric, submetacentric, acrocentric, or subtelocentric) of their centromeres in 

parentheses, and the y-axis displays sequence identity (in percentage). d. Fluorescence in situ 

hybridization (FISH) images. We used the four representative sequences in Figure b as 

centromere-specific DNA probes. DNA was strained blue with DAPI (left), probes green (middle), 

and two images were overlaid (right). For example, the representative probe for SF2 matches 

acrocentric chromosomes with high identities (Figure c), and indeed, green probes are observed at 

acrocentric positions. Similarly, the respective probes for SF3 and SF4 are seen at submetacentric 

and metacentric positions. The probe for SF1 that matches submetacentric and acrocentric 

chromosomes, and hence green probes are found at both submetacentric and acrocentric positions. 

 

  



 
Supplementary Figure 4: Three examples of genomic regions where CpG methylation states by 

PacBio sequencing and bisulfite sequencing are almost consistent. We display tracks for regional 

methylation prediction from PacBio reads (+, methylated; -, unmethylated), CpG-wise methylation 

from bisulfite reads, coverage of PacBio reads, and coverage of bisulfite reads in the Hd-rR genome. 

  















































 

  



Supplementary Figure 5. Validation of centromeric repeat regions and their CpG methylation 

states. We show regions with centromeric repeats on chromosomes of the Hd-rR and HSOK 

genomes. (Top) Dot plot of centromeric regions, where each dot represents 30- or 40-mer sequence 

match (indicated at the top left in each figure). Red and green dots indicate forward and reverse 

matches, respectively. Red blocks indicate contigs gaps. We can observe multiple patterns of higher 

order repeats that are represented by lines parallel to the diagonal in most of chromosomes (Hd-rR 

chr. 1, 3, 6, 8, 9, 12, 13, 14, 18, 19, 20, 21, 22, HSOK chr.2, 4, 7, 8, 11, 12, 15, 20, 23), uncovering 

broad divergence in higher order repeats. (Bottom) Snapshots of genome browser in centromeric 

regions. The yellow bars represent Hd-rR contigs, green bars HSOK contigs, and red bars 

centromeric repeats. Below the track for centromeric repeats, we display tracks for regional 

methylation prediction from PacBio reads (+, methylated; -, unmethylated), CpG-wise methylation 

from bisulfite reads, coverage of PacBio reads, coverage of bisulfite reads, and PacBio subreads 

alignments (red, forward; blue, reverse) by using BLASR. As bisulfite data are unavailable for the 

HSOK genome, we generated two tracks for the methylation status calculated from PacBio subreads 

and for PacBio subread coverage at each CpG site. On chromosomes 12, 18, and 20 in the Hd-rR 

genome, we could not make methylation calls on centromeric repeats from PacBio subreads, and we 

labelled these regions with “No methylation calls” to distinguish them from unmethylated regions.  

 We observed hypomethylated centromeric repeats in six Hd-rR chromosomes (chr. 1, 2, 6, 12, 13, 

and 22) and three HSOK chromosomes (chr. 2, 4, and 23). The bottom track shows PacBio subreads 

mapped to the centromeric regions, where respective red and blue lines show alignments in the 

forward and backward strands, and light colored boxes are soft-clipped parts in reads that fail to be 

aligned to the genome. The coverage of PacBio subreads could be larger than the number of aligned 

subreads because we used a stringent condition on the alignment of PacBio subreads to the contigs 

(see Methods). The dot plots and genome browser snapshots are equally scaled. During the course of 

our analysis, we used two versions of genome assembly, version 2.2.3 and 2.2.4. Precisely, in 

version 2.2.4, we added 11 contigs to the Hd-rR genome, revised the orientations of 12, 13, and 2 

contigs, and reordered 6, 14, and 2 contigs in the respective Hd-rR, HNI, and HSOK genomes. 

Finally we adjusted all analytical results to the genomic positions in version 2.2.4. 

 

 

  



 
  



Supplementary Figure 6: Performance of k-mer SVM to classify hypo-methylated domains 

(HMD) and methylated sequences on HSOK centromeric regions (chr2, 4, and 23).   

a. An SVM with k-mers was trained using HMDs and methylated sequences in non-centromeric 

regions of Hd-rR, and HSOK centromeric sequences were used as the test data (Methods). The area 

under the ROC curve (ROCauc) shown in the graph is low, implying that relevant k-mers enriched in 

non-centromeres do not characterize HMDs in centromeric repeats.  

b. To illustrate the property observed in the above figure (a), we show a dot plot between two 

syntenic centromeric repeat regions with unmethylated subregions in chromosome 2 of Hd-rR and 

HSOK (see the correspondence between genetic markers in Figure 1b). The identity ratio between 

the representative monomers of the centromeric repeats in the Hd-rR and HSOK chromosome 2 was 

85.7% (Supplementary Table 21). The dot plot illustrates the difficulty in distinguishing the 

underlying sequence compositions of hypermethylated and hypomethylated centromeric regions. 

c,d. We evaluated the classification by a five-fold cross validation. The data set was randomly 

partitioned into five subsets, and one subset was used as the test data and the rest were used as the 

training data. We set k=6 (c) and k=3 (d) for comparison because setting k=6 slightly overfitted the 

training data. Each curve colored differently represents one classification of five cross validation 

tests. An average ROCauc of five cross validation shown in the graph implies the presence of 

HMD-specific k-mers within centromeric repeats in the three HSOK chromosomes. The top 10 

sequence motifs of length k=6 and k=3 are put into individual graphs (c and d).  

e,f. The evaluation of the classification by using different chromosomes for the test and training data. 

Among chr 2, 4, and 23, two chromosomes were used as the training data and the remaining one was 

used as the test data. k=6 (b) and k=3 (c) were used for comparison. For each curve, the chromosome 

used as the test data is labelled in the graph legend. An average ROCauc of three classifications is 

indicated within the graph. Both of true positive and false positive rates are low, implying that the 

sequence compositions of HMDs differ in individual chromosomes.  

g. The table shows all 3-mers with their weights that were used for the prediction in the graphs (d 

and f). To highlight the difference in the weights, high, medium, and low weights are colored red, 

white, and green, respectively. 

  



 

  



Supplementary Figure 7: Examples of large-scale structural variants.  

We categorized mid-sized structural variants (SVs) into three classes:  

a. Non-homologous end-joining (NHEJ) (including insertions and deletions);  

b. Non-allelic homologous recombination (NAHR) such as duplications; and  

c. Inversions.  

d. Breakdown of mid-sized SVs that were identified between medaka Hd-rR and HNI strains. 

96.9% if SVs were NHEJ events.  

e. An extremely large inversion (>15 Mbp) in chromosome 11 was evident when Hd-rR and HNI 

were compared. The presence of the inversion was suggested by the Sanger-sequence genome 

assembly; however, the contigs assigned to chromosomes were not of sufficient length to 

reveal the boundaries of the inversion. In the present study, when we anchored contigs onto 

HNI and HSOK chromosome 11, we identified two pairs of contigs that had two sets of distal 

genetic markers that were separated by ~16Mb while we found no such pairs in Hd-rR, 

indicating that the inversion had occurred in the Hd-rR lineage. Contigs surrounding the 

breakpoints of the inversion are associated with their contig identifiers (e.g., 83F and 481F). In 

the HNI genome, the two breakpoints are located at 7F and 143F, whereas in the Hd-rR 

genome, one breakpoint lies between 83F and 481F, and the other is between 240F and 138F. 

This is partly because the breakpoints lie in the long repetitive regions shown in Figure f.  

f. We determined the inversion breakpoints in focal HNI and HSOK contigs by aligning these 

contigs with the corresponding region of Hd-rR. Dot plots comparing the four pairs of Hd-rR 

and HNI regions that contain the two breakpoints of the inversion. The inversion was 

surrounded by highly repetitive regions of ~200 kb and ~10 kb in size, which were difficult to 

detect using short read sequencing technology. 

 

  



 
 

Supplementary Figure 8: Contact frequency distribution between paired-end Hi-C reads. 

 

  



 
 

Supplementary Figure 9: Checking whether an insertion or a deletion occurred. 

a. We used HSOK as an outgroup of Hd-rR and HNI determine whether a given event was an 

insertion into, or a deletion from, the focal genome. We mapped (to HSOK) the two 2,500-bp 

regions upstream and downstream from the positions in HNI (or Hd-rR, respectively) where 

the insertion/deletion events had occurred in Hd-rR (HNI). We measured the distance between 

the alignments of the two 2,500-bp regions in the HSOK genome.  

b. The histogram shows the frequency distribution of these distances, and exhibits two peaks 

around 0 and >1000. As the two peaks were thus clearly separated, we classified events using 

the heuristic whereby events in the peak around 0 were insertions, and those around the other 

peak were deletions. The peak around 0 is broad because the three strains collected mutations 

during evolution.  

c. The frequency distribution of lengths of insertions. 

 

  



 
 

Supplementary Figure 10: Genesis of genes by mid-sized insertions into the regions upstream of 

transcription start sites (TSSs) 

a. Frequency distribution of distances from the 101 TSSs that had increased transcript levels, to 

insertion sites. 

b. The red and blue lines show the GC ratios around the TSSs with and without insertions, 

respectively.   

c. Breakdown of 101 insertions according to four characterized classes (LTR, LINE, DNA 

transposons, and simple repeats) identified by RepeatMasker 4.0.6, and four unclassified sets 

grouped by their frequencies in the genomes. 

  



 

 

Supplementary Figure 11. Telomere bouquet and its potential relevance to the rapid evolution 

in non-acrocentric centromeres.  

The schematic picture shows a telomere bouquet, a site on nuclear envelope where telomeres are 

clustered during meiotic prophase I. Centromeres of acrocentric chromosomes (blue) are brought into 

proximity, which may facilitate exchanges of centromeric repeats and preserve their sequence 

composition. By contrast, non-acrocentric centromeres (orange) are likely to be apart from each other, 

which may accelerate centromere evolution in individual chromosomes. 

 

 

 

  



 

Supplementary Notes 

 

Analysis of gaps in the assembled genomes 

Despite dramatic improvements in genome assembly methods, hundreds of gaps remain in the 

assembled chromosomes, and we recorded ~1000 unanchored contigs. We attempted to extend 

contigs to the telomeric regions of individual chromosomes; however, this was successful for only a 

few chromosomes of each of the three strains. We also approached to the problem of how to sequence 

centromeres (a challenging issue in vertebrate genomics) and we found a number of contigs bearing 

centromeric tandem repeats could be anchored to chromosomes. At the moment, some centromeric 

tandem repeats still remained in unanchored contigs. We tested BioNano optical mapping technology, 

but the mapping data were partial, and failed to cover most of the assembled genomes. Because many 

contigs anchored to chromosomes were not connected by BAC-end pairs, longer reads (> 200 kbp) are 

required to fill the remaining gaps and allow us to identify hitherto unknown long repetitive regions. 

 

Near-identical copies of the innate autonomous transposon Tol2 and the Y-specific region 

To demonstrate the comprehensive nature of our current sequences, we examined the distributions of 

Tol2 element insertions. Tol2 is an example of an early innate autonomous transposon in a vertebrate 

genome 1; Tol2 is 4682bp in length and is estimated to be present in ~20 near-identical copies in the 

medaka genome 2. Although no full Tol2 matches were found in the previous Sanger-sequence 

genome assembly (version 1), we identified 15, 5, and 16 full matches in the new Hd-rR, HNI and 

HSOK genomes (version 2.2.4); BLASTn showed that all were >99.8% identical to the reference 

Tol2 sequence, except for two with identities of 99.7% and 99.4%. Supplementary Table 6 shows the 

locations of all Tol2 sequences and their levels of identity. We also observed copies of a known Tol2 

variant with a 117-bp deletion (1793–1909bp) in an intron 3. We found one such copy in Hd-rR and 

eight copies in HNI; the latter fact is remarkable because the presence of this variant was thought to 

occur at low frequencies 3. In HSOK, we identified a novel variant with a 68-bp deletion (1487–

1554bp) in another intron. The identity levels of individual deletion variants were quite high (> 

99.7%). We confirmed, by manual inspection, that the three genomes bore Tol2 in different positions. 

This means that individual Tol2 copies have only recently been incorporated into each medaka 

lineage as a result of horizontal transfer after divergence of Hd-rR and HNI 2.  

 

As another example of the high quality of the new Hd-rR assembly, we examined the Y-specific 



region in the medaka linkage group 1 (LG1, 33.7 Mb), carrying DMY, the male determining gene, 

first non-mammalian equivalent of SRY 4. When LG1 carries an insertion of a 250-kb Y-specific 

region, it serves as the Y chromosome, whereas LG1 without the insert serves as the X chromosome. 

In the new assembly, we obtained a single contig bearing the male-determining gene, DMY, which 

had mapped to three scaffolds (with gaps) in the earlier Hd-rR genome (version 1) presumably 

because the Y-specific region carries a number of repetitive elements proximal to DMY 5. The 

Y-specific region of chromosome 1 is thought to be a duplicate of a region in chromosome 96. 

Indeed, the DMY mRNA sequence from HNI mapped partially to chromosomes 9 of all three 

genomes (Supplementary Table 7).  

 

Centromere specification is epigenetic but not defined by the underlying DNA sequences.  

In non-centromeres, underlying sequence compositions were shown to largely determine 

hypomethylated domains (HMDs)7 by using a support vector machine (SVM) equipped with 

spectrum kernel8,9. SVM has been proven to be useful in predicting HMDs7 and in listing relevant 

k-mers (strings of length k) that underlie in HMDs (Methods). We hypothesized that relevant k-mers 

in HMDs of non-centromeres could also characterize HMDs in centromeric repeats, but this 

hypothesis did not hold true (Supplementary Fig. 6a,b). We then searched for HMD-specific k-mers 

within centromeric repeats using HSOK non-acrocentric chromosomes 2, 4, and 23, which had large 

hypo- and hyper-methylated domains. We indeed obtained such k-mers (Supplementary Fig. 6c-d), 

but each chromosome had a unique set of relevant k-mers that were unlikely to occur in the other 

two chromosomes (Supplementary Fig. 6e,f,g). This is consistent with centromeric repeats in 

non-acrocentric chromosomes evolving rapidly and independently of each other, as we have seen in 

the analysis of centromere evolution. We confirmed the speculation that centromere specification is 

primarily epigenetic but not defined by the underlying DNA sequences10. 

 

Telomere regions 

We also sought to characterize telomeres in the medaka genome contigs by using Tandem Repeats 

Finder (version 4.09) to detect telomeric repeats that were short tandem repeat expansions of the 

vertebrate telomeric sequence (TTAGGG). The Hd-rR and HNI genomes exhibited repeat telomeric 

repeat arrays at the ends of two chromosomes each (Supplementary Table 17; Methods). For 

example, a total of 1,265 telomeric repeats was found at the end of Hd-rR chromosome 23; this was 

the longest telomeric repeat in all contigs. Unanchored contigs of Hd-rR and HNI contained 

telomeric repeats were of 65,307 bp and 31,972 bp in total, suggesting that considerable numbers of 



telomeric sequences remain to be anchored. 

 

Categorization of mid-sized SVs into three categories 

We categorized SVs into groups according to three mechanisms of formation, non-homologous 

end-joining (NHEJ) (e.g., simple insertions and deletions of mobile elements); non-allelic 

homologous recombination (NAHR) (e.g., genome duplications); and inversion (Supplementary Fig. 

7a-c). The positions of NHEJ, NAHR, and inversion events in contigs are detailed in Supplementary 

Tables 14, 15, and 16, respectively. Supplementary Fig. 7d breaks down the numbers of each group 

and shows that the majority of mid-sized SVs (96.9%) was caused by NHEJ. This led us to focus on 

this class and determined whether each NHEJ event was an insertion into, or a deletion from, the 

Hd-rR and HNI genomes using the HSOK genome as an outgroup (Fig. 4a; Methods). 

  Figure 3c shows one illustrating example of gene conversion and NAHR. Orange and blue repeats 

are respectively prevalent in acrocentric and non-acrocentric chromosomes (Supplementary Fig. 5). 

A possible scenario for this centromere evolution is that the orange repeat jumped into the blue 

repeat by gene conversion to create a basic pattern, and the pattern was duplicated multiple times by 

unequal crossover.  

 

Transposable elements inserted into regions upstream of TSSs 

Transposable elements (TEs) could be responsible for variation in genome size and regulatory 

circuits11. We thus examined whether inserted fragments upstream of TSSs in medaka genomes were 

derived from TEs. Of these 101 insertions, only 25 matched LTR, LINE, or DNA transposons 

(Supplementary Fig. 10c; Methods). We then examined if 76 remaining insertions were repetitive by 

searching the genomes for their occurrences with >90% identity, and 73 were qualified. In spite of 

incomplete collection of repeats in RepBase, we identified 34 (46.6% of the remaining 73 insertions) 

as repeats with >10 occurrences. 
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