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Supplementary Figure S3. Comparison of B cell linear epitopes and human  
and murine MHC II binding patterns. 
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Figure S3. For each protein tested as a candidate vaccine antigen, the probability of 

participation in a B cell linear epitope and predicted MHC-II binding affinities of sequential 15-

mer peptides are shown in the five panels. Panels should be read from top to bottom. Panel 1 

shows the probability of linear B cell epitopes for both mice and humans. Panel 2 shows the 

permuted human MHC-II binding, smoothed across 16 DRB alleles. Panel 3 shows MHC-II 

binding for allele H-2-IAb (C57BL/6 mice). Panel 4 shows MHC-II binding for allele H-2-IAd 

(BALB/c mice). Panel 5 shows MHC-II binding for human allele DRB1-0401 found in transgenic 

mouse strain DR4. y-axis units are the inverted standard deviation of linear B cell epitope 

probability, and for MHC binding panels, they are standard deviation units below the mean of 

the natural log binding affinity (ln of the 50% inhibitory concentration [lnIC50]) for that protein. 

The vertical black line in each set of panels indicates the boundary between vector sequence 

that includes the His tag and each Cryptococcus protein sequence. The epitope predictions 

illustrated in panels A to F were generated using the ioGenetics’ EigenBio platform. The 

EigenBio algorithms are written on JMP (SAS Institute). The rationale underlying the predictions 

is further described in several publications by R. D. Bremel and E. J. Homan as cited in Text S1 

in the supplemental material. 

Text S1: Methods specific to Figure S3. To determine MHC binding, predictions of the natural 

logarithm of binding affinity (ln IC50) are produced by an ensemble of neural network (NN) 

equations. Equation sets are available for 28 class II human alleles (16 DRB, 6 DP, and 6 DQ) 

and 3 class II mouse alleles (IAb, IAd, Ag7). The sizes of the training sets of experimental 

peptide binding reactions used to train the NN ranges from a minimum of 100 to over 4000 

peptides per allele. Primary amino acid sequences of the peptides used for training as well as 

the sequences of the proteins analyzed are transformed into numerical vectors consisting of the 

first three principal components of amino acid physical properties (PCAA). The PCAA were 

derived from a number of different independent studies in the literature where a variety of 

different physical properties were characterized. The principal components are most obviously 

associated with polarity, size, and electronic character of amino acids (but are each abstract 

variables not identical to those parameters). Training of the NN to produce the equation 

ensembles was done by a bootstrap aggregation approach (known as “bagging”) and a 5K-fold 

cross validation procedure. The use of ensembles developed by the bagging approach means 

that both a mean and standard deviation of the ln IC50 estimates for each peptide can be 

computed. The MHC binding affinity predictions for any peptide are then based on the average 

probabilities of the ensembles. The standard deviations are different for each peptide and are 



related to the strength of training for a particular combinatorial group of amino acids and range 

from 0.5 – 1.2 natural log units, a level of variation quite comparable to experimental 

measurements of binding affinities. To remove scale effects, and to make valid statistical 

comparisons within and between alleles, the ln IC50 values are standardized within each protein 

molecule to zero mean and unit variance. In addition to removing any scale effects due to 

differences among alleles, this process also has the effect of ranking the peptides within a 

protein by their respective binding affinities. The standardization is done using a Johnson Sb 

distribution algorithm.  

Predictions of B-cell epitope (BEPI) contact points are produced by a binary classifier neural 

network using the PCAA of the primary amino acid sequence of the protein, as is described 

above. The classifier was trained with the same epitope training set used by web accessible 

classifier BEPI-pred (5) and shows a Pearson correlation coefficient with BEPI-pred of 0.93. The 

BEPI classifier produces a probability of an amino acid in the center of a 9-mer peptide of being 

bound by a B-cell receptor – effectively a B-cell contact point. It does not predict epitopes per 

se, but rather individual linear components of what might be a more complex 3-dimensional 

epitope. We have shown that the AROC (concordance) of prediction against X-ray 

crystallographically defined B-cell contact points to be 0.87. In addition, we have found the 

predictions to be highly correlated with / concordant to both crystallographic B-factors and 

amino acid side chain solvent accessibility.  

In the Supplemental Figures 3A-F, the top panel in each figure shows the predicted probability 

of each 9-mer peptide comprising a linear B cell epitope contact point. Each orange bar making 

up the display is scaled on a Y axis that shows the probability of binding as the inverse of the 

standard deviation below the mean for all peptides in the protein. The inverse is used to allow 

plotting alongside the MHC binding predictions. Thus, the longest orange bars indicate the 

highest probability that the peptide is part of a B cell linear epitope.  

The second panel shows the permuted average binding affinity predicted for all combinations of 

human DRB MHC II alleles at each sequential 15-mer peptide (with a single amino acid 

displacement) across the protein. The Y axis is in units of standard deviation below the mean 

predicted binding for all peptides in the protein. Thus, this provides an overview of the peptides 

in which highest or lowest MHC II binding occurs in the human population at large; where the 

lower figures indicate highest binding. Because it is the average of 16 DRB alleles it shows as a 

smoother curve than the individual peptides for the single mouse alleles below. 



In the lower three panels in each graphic, separate outputs were generated to identify the 

predicted binding of sequential 15-mer peptides across each protein for the murine MHC II 

alleles H2-I-Ab (C57BL/6 mouse) and H2-I-Ad (BALB/c mouse), as well as for the human allele 

DRB1:0401). Predicted binding affinity for each peptide is indicated by an individual bar where 

the Y axis is in standard deviation units below the mean as above. 
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