Supporting information

Semisynthetic bioluminescent sensor proteins for direct detection of antibodies and small molecules in solution

Remco Arts, Susann K.J. Ludwig, Benice C.B. van Gerven, Eva Magdalena Estirado, Lech-Gustav Milroy and Maarten Merkx*

Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.

Figure S1: DNA and amino acid sequence of TAG-LUMABS	S2
Supplementary methods	S 3
Scheme S1: Synthesis of DBCO-PEG-DNP	S 3
Scheme S2: Synthesis of DBCO-creatinine	S4
Figure S2: LC/MS of DNP-DBCO	S 6
Figure S3: LC/MS of creatinine ester (2)	S 7
Figure S4: LC/MS of DBCO-creatinine (3)	S 8
NMR analysis of creatinine ester (2)	S 8
Figure S5: ¹ H NMR of creatinine ester (2)	S9
Figure S6: ¹³ C NMR of creatinine ester (2)	S 9
Figure S7: COSY NMR of creatinine ester (2)	S10
Figure S8: HSQC NMR of creatinine ester (2)	S10
Figure S9: HMBC NMR of creatinine ester (2)	S11
Table S1: Assignment of Compound 2 protons and their correlations in 2D NMR.	S11
References	S12

Figure S1: DNA and amino acid sequence of TAG-LUMABS. Areas of interest are indicated as follows: SH3 domain (yellow), mNeonGreen (green), TAG codons (cyan), NanoLuc (blue), proline-rich peptide (red).

Supplementary methods

Synthesis of DBCO-functionalized small molecules

General

All used solvents were obtained from Biosolve BV and used without further purification. Water was purified using a Millipore purification train. LC-MS was performed on a C4, Jupiter SuC4300A, 150x2.00 mm column using H₂O with 0.1 % formic acid and acetonitrile with 0.1% formic acid using a gradient of 5% to 100% acetonitrile in 10 min and a flow rate of 0.2 mL/min. Preparative HPLC was performed on a Gemini S4 110A 150x21.20 mm column using H₂O with 0.1% F.A. and acetonitrile with 0.1% F.A, with gradients as indicated per synthesis. NMR spectroscopy data was recorded with a Bruker Advance-III 400 MHz using a BBFO probe from Bruker (400 MHz for ¹H and 100 MHz for ¹³C). Chemical shifts are reported in parts per million (ppm) referenced to an internal standard of residual [D]chloroform ($\delta = 7.26$ ppm for ¹H and $\delta = 77$ ppm for ¹³C, relative to tetramethylsilane as an internal standard).

DNP-DBCO

Scheme S1: Synthesis of DBCO-PEG-DNP.

2 mg (7 μ mol) DBCO-NH2 (Sigma-Aldrich, 761540-10MG) was coupled to DNP-dPEG4-NHS ester (Quanta Biodesign, 10347, 1.5 equivalents) in a 30 minute reaction in PBS (pH = 7.2) in a total volume of 2.25 mL at room temperature. This product was purified using preparative HP-LC (60-80% ACN/H₂O gradient). Product purity was confirmed using LC-MS (MW_{calc} = 689.72, MW_{obs} = 690.42).

Scheme S2: Synthesis of DBCO-creatinine

DBCO-NH₂ was coupled to creatinine in a three-step synthesis based on the protocol reported by Binkert *et al.* (see Scheme S2).¹ 8 mmol of creatinine (Sigma-Aldrich; C4255) was dissolved in 5 mL dimethylformamide (DMF) in a round-bottomed flask fitted with a magnetic stirring bar and heated with stirring (in an oil bath) until completely dissolved. 1.25 equivalent of 5-ethyl-bromovalerate (Sigma-Aldrich; cat no. 14660-52-7) was added to the reaction mixture and left to react for 16 hours. The product (**2**) was obtained via precipitation in ethylacetate and isolated by filtration. The reaction mixture was further purified by silica gel (40-63 μ m) column purification (1:9 MeOH:CHCl₃). The isolated creatinine ester (**2**) was characterized by LC-MS (Figure S3) and NMR spectroscopy (Figure S5-9). To obtain the creatinine-acid (3), the creatinine ester (2) produced in the previous was dissolved in 3 mL of H_2O , treated with 1.1 equivalent NaOH, and the reaction heated overnight under reflux. After cooling to room temperature the pH of the reaction mixture was adjusted to pH = 3 through the addition of 0.2 M aq. HCl. The creatinine acid was treated with 1 equivalent of diisopropylcarbodiimide (DIC), to activate the carboxylic acid, and left to stir at room temperature for 20 minutes. 1 equivalent hydroxybenzotriazole (HOBt) was then added, and the reaction stirred for an additional 20 minutes. Finally, 0.2 equivalent DBCO-amine was added and the reaction monitored with LC/MS (Figure S4). The final product, DBCO-creatinine (4), was purified using preparative LC-MS (23-55% ACN/H₂O gradient) and characterized by LC-MS: MW_{calc} = 471.56, MW_{obs} = 472.17 (Figure S4).

Figure S2: LC/MS of DNP-DBCO. Top: total ion count. Middle: UV-trace. Bottom: Mass spectrum. Expected mass: $[M+H]^+ = 690.42$ Da.

Figure S3: LC/MS of creatinine ester **2**. Top: total ion count. Middle: UV-trace. Bottom: Mass spectrum. Expected mass: $[M+H]^+ = 242.08$ Da.

Figure S4: LC/MS of DBCO-creatinine **4**. Top: total ion count. Middle: UV-trace. Bottom: Mass spectrum. Expected mass: $[M+H]^+ = 472.17$ Da. Compound **4** was obtained with a purity of 85.7%.

NMR Spectra of creatinine ester (Compound 2)

Figure S5: ¹H NMR of Compound **2** (400 MHz, Chloroform-*d*) δ 4.16 (s, 2H), 4.10 (q, *J* = 7.2 Hz, 2H), 4.03 (t, *J* = 5.2 Hz, 1H), 3.51 (s, 3H), 2.36 (q, *J* = 5.0, 3.6 Hz, 2H), 1.73 (p, *J* = 3.6 Hz, 4H), 1.25 (t, *J* = 7.1 Hz, 3H).

¹³C NMR

Figure S6: ¹³C NMR of Compound **2** (101 MHz, Chloroform-*d*) δ 173.58, 168.44, 157.86, 60.64, 53.48, 41.04, 34.86, 34.37, 33.70, 27.48, 21.67, 14.36.

Figure S7: ¹H COSY of Compound **2**.

Figure S8: ¹H-¹³C HSQC of Compound 2.

Figure S9: ¹H-¹³C HMBC of compound 2.

Assignment	Shift	Range	H's	Integral	Class	J's	¹ H-COSY	¹ H- ¹³ C HMBC
16	1.25	1.28	3	3.00	t	7.12, 7.12	H16-H15	H16-C15
		1.22						C16-H15
10, 11	1.73	1.83	4	3.90	р	3.62,	H10/H11-H12	H11-C10
		1.69				3.62,	H10/H11-H9	H11-C11
						3.90, 3.90		C10-H9
								C10-H12
								C10-H10/H11
								C11-H9
								C11-H10/H11
								C11-H12
12	2.36	2.41	2	2.00	q	5.02,	H12-H10/H11	H12-C10
		2.31				5.02, 3.61		H12-C11
								H12-C13
19	3.51	3.53	3	2.56	s			H19-C1
		3.49						H19-C4
9	4.03	4.06	1	1.38	t	5.20, 5.20	H9-H10/H11	H9-C2
		4.00						H9-C4
								H9-C10
								H9-C11
15	4.10	4.14	2	1.89	q	7.18,	H15-H16	H15-C13
		4.07				7.18, 7.17		H15-C16
								C15-H16
1	4.16	4.18	2	1.82	s			H1-C2
		4.14						H1-C4
								C1-H19

Table S1. Assignment of Compound 2 protons and their correlations in ¹H-COSY and ¹H-¹³C HMBC.

The assignment of the proton and carbon peaks of Compound **2** was performed using ¹H NMR, ¹³C NMR, ¹H COSY and ¹H-¹³C HSQC. The peak appearing at 2.75 ppm in ¹H-NMR and at 34.86 ppm in the ¹³C NMR presumably corresponds to an impurity that could not be assigned. The regioselectivity of the reaction was confirmed using ¹H-¹³C HMBC.

References

1 A. Benkert, F. Scheller, W. Schössler, C. Hentschel, B. Micheel, O. Behrsing, G. Scharte, W. Stöcklein and A. Warsinke, Development of a creatinine ELISA and an amperometric antibodybased creatinine sensor with a detection limit in the nanomolar range *Anal. Chem.*, 2000, **72**, 916–921.