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S1. Distribution of variants across genes

For each gene, only rare coding variants derived from dbSNPv138 and EVS
(including short insertions/deletions, i.e. indels) within the longest coding
transcript that results in amino acid change were considered. Polymorphic alleles
were excluded based on the same allelic frequency criteria as described above. The
location of the affected amino acid was derived from annotation by SNPeff[1]
software (as described above). For indels, only the first affected amino acid location
was considered, such that if an indel affected multiple amino acids, we only
considered the location of the first one. To achieve meaningful statistical
evaluations, any gene with < 20 remaining variants was not included in this part of
the analysis. For each gene with 2 20 remaining variants, the same number of
variants was randomly selected uniformly across the gene using Python version 2.7
random.randrange function. Mann-Whitney two-sided test was conducted between
the locations of the observed mutations versus the locations from randomly selected
ones using SciPy’s[2] mannwhitneyu function. The p-value from this test was
recorded, and the procedure repeated 20,000 times. Treating the p-value as a score,
the p-value from this list corresponding to 99% statistical confidence was
determined, reflecting how likely is the distribution of the observed variants to
deviate from the uniform distribution. A Bonferroni multiple testing correction was
applied when interpreting the significance of each p-value.



S2. RVIS

Next, we analyzed the genic tolerance of the FLAGS gene set to variants. We
expected FLAGS to be predicted to be more tolerant to variations and thus less likely
to be impacted by pathogenic variants resulting in rare human diseases. To
investigate this, we used a method published by Petrovski et al. (2013)[3] to assess
the residual variation intolerance score (RVIS) for each gene based on their
published supplementary dataset. This intolerance scoring system was developed
by surveying whether a gene has relatively more or less functional genetic variation
compared to the expected value based on neutral variations found in the same gene
within the exomes from EVS. We chose this measurement because to our knowledge
this is the only reliable published scoring system that is gene-centric rather than
variant-centric. For each FLAGS gene, we extracted the relative rank based on the
published intolerance score (the lower rank, the more intolerant the gene to
variations), and we find that these FLAGS genes have a higher median score of 76
compared to OMIM, HGMD and Background which have medians of 42, 41 and 50
respectively (Supplementary figure 1). However, Mann-Whitney U one-tailed tests
revealed no significant differences (p-value between 0.05 and 0.1), likely
attributable to the bimodal distribution of the ranks within the FLAGS, as there are
genes within the FLAGS that have low RVIS ranks (n=32 with rank < 20). While this
supports our findings that majority of the genes in FLAGS are ranked as more
tolerant to variations, there are FLAGS that are predicted not to tolerate variation
well. We found that these genes tend to have greater proportion of rare functional
mutations over polymorphic functional mutations, which may explain why they
receive RVIS ranks of <20. Namely, RVIS methodology does not consider rare
functional variations, it ranks those genes as intolerant to genetic variation, despite
the presence of numerous rare functional variants. We believe this may be a
limitation on RVIS, because if a gene is observed to be frequently mutated with rare
functional mutations yet is highly ranked as pathogenic in RVIS system, then by
expectation that gene should not be highly ranked.
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Supplementary Figure 1. Distribution of gene ranking across gene sets. The Y-axis

plots the boxplot distribution of gene rank based on RVIS score.
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S3. In-house bioinformatics pipeline

In this section we discussed briefly the bioinformatics pipeline that we have setup
in-house to process clinical exome data from TIDE-BC project. Because the project
spans across multiple years, the software and genome versions have undergone
various updates, so we will only provide the name of the software used but not the
actual version.

The pipeline starts with pair-end 100bp Illumina reads in FASTQ format. The
coverage of each exome or whole-genome ranges from as low as 30X to as high as
150X. Reference genome is hg19. Reads are aligned with Bowtie2 aligner under
default parameter settings in a cluster server maintained in-house with 13 compute
nodes, each with 16 CPUs and 32Gb RAM available per node. Aligned reads are
sorted and merged into BAM using Samtools. Reads with < 20 mapping quality score
are discarded. Picard adds the read group and library information to the BAM file.
GATK performs local re-alignment on the BAM file. BCF file is called from the re-
aligned BAM using Samtools. VCF is generated using vcfutils.pl varFilter with
mapping quality score 20 and a minimum of 2 alternative bases. Variants from VCF
with less than 20 SNP quality score are further filtered out. Variant annotation is
done by SNPeff with parameter -SpliceSiteSize 7 using always the latest available
genomic annotation available at the time. Custom perl scripts are used to filter
variants by Mendelian inheritance models (de novo dominant, homozygous
recessive from either one or both parents, compound heterozygous), and filtering
against dbSNP database (downloaded from UCSC Genome Browser) and ESP6500
downloaded from Exome variant server, and against the in-house already processed
VCFs. Genomic coverage is analyzed using GATK on all the known exons
downloaded from Ensembl Biomart. Candidate variants selected for further follow-
ups are first manually screened on IGV for quality inspection before Sanger
confirmation.



S4. TIDE-BC (http://www.tidebc.org)

Tide BC is a new collaborative care & research initiative with a focus on prevention
and treatment of Intellectual disability (ID). We have shown that the ID seen in some
children is due to treatable genetic conditions known as inborn errors of
metabolism (IEM). Many of these [EM’s can be treated with diet or drugs. Presently,
health care policy and institutional culture is still operating under the old premise
that all ID is incurable and thus, many children born with treatable ID are at risk of
not being treated. At BC Children’s Hospital (BCCH) in Vancouver, Canada, 1500
patients with ID are seen for diagnostic assessment per year by various services,
such as neurology, medical genetics, biochemical diseases, developmental pediatrics
and child psychiatry. With the local expertise of all these specialists, existing
diagnostic laboratory methods, and the major advances in diagnostic and
therapeutic technologies, BCCH is the ideal academic location to implement our
evidence-based protocol to identify treatable causes of ID. TIDEX was designed by
TIDE-BC investigators to take advantage of new technologies to help crack the code
for those families who have undergone the million dollar workup and are still
unable to receive a diagnosis for their child’s debilitating condition. These
technological advances, coupled with TIDE-BCs already proven approach, has every
promise in providing much needed answers to help those families.

In order to provide those answers, TIDE-BC investigators are presently looking for
those undiagnosed patients who have some evidence of an interrupted metabolic
pathway or enzyme deficiency. This may be abnormal chemicals in body fluids such
as blood or urine or test results that provide a clue that a biochemical pathway may
be altered. Then by comparing the protein coding regions or “whole exome” of DNA
they hope to find the cause. As sequencing cost continues to decrease, the project
now shifts more and more towards whole-genome sequencing, rather than only
restricted to exomes. The additional sequencing of one or more healthy family
members helps them to eliminate sequence variations that do not contribute to the
disorder. The informatics team, based within Dr. Wyeth Wasserman lab, uses a new,
CFI-funded computational system. It features high-capacity storage (~0.3
petabytes), a set of high-performance servers supporting virtualized computing, a
computing cluster with ~100 computing cores, and a tape system for long-term
genome data archiving. The system is interconnected with 10 gigabyte channels for
efficiency. Once the genetic cause is found, this group of metabolic disorders are
often amenable to simple and successful treatments, sometimes only involving
dietary changes or dietary supplementation.




S5. HPO and MeSH terms normalized to GeneRIF

To adjust for the potential bias that genes with more articles are likely to have more
MeSH and HPO terms attached, we repeated the analysis by normalizing the MeSH
and HPO terms to the number of publications in GeneRIF. Supplementary figure 2A
and 2B show the violin distribution of HPO and MeSH terms per gene after
normalization.
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Supplementary Figure 2A. The Y-axis plots the number of HPO disease terms per
gene after normalizing to the number of entries from GeneRIF for the same given
gene. FLAGS have significantly fewer terms than OMIM, HGMD and significantly
more terms than Background (each p-value << 0.00001; Mann-Whitney 1-tailed

test).
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Supplementary Figure 2B. The Y-axis plots the number of MeSH disease terms per
gene from MeSHOP after normalizing to the number of entries from GeneRIF for the
same given gene. There are no significant differences observed between FLAGS and
OMIM and HGMD, but FLAGS have significantly more terms than Background (p-
value << 0.00001; Mann-Whitney 1-tailed test)
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S6. Application in in-house WES /WGS database

To further demonstrate the utility of this study, we evaluated how frequently FLAGS
appear as gene candidates in an in-house collection of 150 exomes and 13 whole
genomes - comprising of 53 independent families suffering from distinct rare
inborn errors of metabolism (IEM) (http://www.tidebc.org). These cases represent
a collection of exome and whole genomes collected over a period of 3 years to study
rare intellectual disorders exhibiting metabolic defects. Each family displayed a
unique undiagnosed IEM, and the family structures range from singleton case (i.e.
proband only) to paired (mother-proband; proband-affected sibling) to trio (father-
mother-proband) to quartet (father-mother-proband-sibling) [for more details on
exact breakdown of family structure, see Supplemental table 7]. In each family, rare
functional variants falling into Mendelian inheritance patterns were extracted by an
in-house pipeline (Supplemental text S3), which we then overlapped against FLAGS.
When focusing only on the top 100 frequently mutated genes from FLAGS, on
average across all 53 families, we see ~3 genes from the recessive models
overlapping with the FLAGS per family, which is around ~8% of the recessive
candidates per family. From the de novo dominant model, on average ~4 genes
overlapped with FLAGS, which is around ~3% of the de novo candidates per family.
This demonstrates that many top genes in FLAGS do indeed show up at a relatively
frequent rate across exome families despite after applying rigorous canonical
filtering at the variant level. While these results are drawn from data processed by
an in-house pipeline based on a specific class of disorder, our processing
methodology is built on popular tools setup in a workflow as recommended by
Broad Institute (http://www.broadinstitute.org/gatk/guide/best-practices) using
standard parameters and common filtering strategies! such that they should be
reproducible in other labs using a similar approach in studying other classes of rare
Mendelian disorders.
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