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section S1. Finite-key estimates for the experiment 

The quantum key distribution (QKD) system described in the main text is based on the trans- 

mission of photonic wavepackets encoded in discrete time bins. The system uses the time basis 

(denoted by the label 𝑇 and chosen with probability 𝑝𝑇) for key generation and the phase basis 

(denoted by the label 𝐹 and chosen with probability 𝑝𝐹= 1 − 𝑝𝑇) for parameter estimation. In the 

time basis, a state corresponds to a sharply peaked wavepacket in one of the four temporal bins 

(also called time-bin states), where each time bin represents a distinct communication alphabet. 

In the phase basis, each wavepacket is randomly prepared in one of the four possible phase states 

with distinct phase coefficients given by the discrete Fourier transforms of the time states.  

To overcome the so-called photon-number splitting attacks, the QKD system uses the decoy-

state method to estimate how many of the detected wavepackets are due to single-photon trans- 

missions. Our decoy-state method uses a set of three intensity values 𝐾 ≔ {𝜇1, 𝜇2, 𝜇3} (chosen 

with probabilities 𝑝𝜇1
, 𝑝𝜇2

, and 𝑝𝜇3
:=1 −  𝑝𝜇1

− 𝑝𝜇2
, respectively), where 𝜇1 > 𝜇2 + 𝜇3 and 𝜇1 ≥ 

𝜇2 ≥ 𝜇3 ≥ 0. An important feature of the decoy-state method is that, from the perspective of the 

eavesdropper, the final prepared state (i.e., with the encoded bit value) appears the same to her 

regardless of the choice of intensity level (or equivalently, the average photon-number). 

Therefore, one can imagine an equivalent decoy-state protocol where Alice can send any 𝑛-

photon state and the choice of intensity is decided after the measurement phase. In the following, 

we provide the analysis for the 𝑇 basis; the same analysis applies to the 𝐹 basis.  

Consider the case whereby Alice encodes the states in the 𝑇 basis and let 𝑠𝑇,𝑛 be the number of 

detections observed by Bob given that Alice sent 𝑛-photon states. In this case, ∑ 𝑠𝑇,𝑛 =  𝑛𝑇
∞
𝑛=0  is 

the total number of detections conditioned on Alice choosing the 𝑇 basis. In the asymptotic limit, 

we expect 𝑛𝑇,𝑘 events from 𝑛𝑇 events to be assigned to the intensity 𝑘, that is,  

 

𝑛𝑇,𝑘 → 𝑛𝑇,𝑘
∗ = ∑ 𝑝𝑘|𝑛𝑠𝑇,𝑛,

∞

𝑛=0

 ∀𝑘 ∈ 𝐾 

 

Here, 𝑝𝑘|𝑛 is the conditional probability of choosing the intensity 𝑘 given that Alice prepared a 

𝑛-photon state. For finite sample sizes, using Hoeffding’s inequality for independent events, 𝑛𝑇,𝑘 

satisfies  



 

|𝑛𝑇,𝑘
∗ − 𝑛𝑇,𝑘| ≤ 𝛿(𝑛𝑇 , 𝛽) 

 

with probability of at least 1 − 2𝛽, where 𝛿(𝑛𝑇 , 𝛽) := √𝑛𝑇/2 log(1/𝛽). Note that the deviation 

term 𝛿(𝑛𝑇 , 𝛽) is the same for all values of 𝑘. These results allow us to establish relations 

between the asymptotic values and the observed decoy-state statistics (i.e., 𝑛𝑇,𝜇1
, 𝑛𝑇,𝜇2

and 

𝑛𝑇,𝜇3
). Moreover, the same relation can also be made for the expected number of errors and the 

observed number of errors. Let 𝑣𝑇,𝑛 be the number of errors associated with 𝑠𝑇,𝑛. In the 

asymptotic limit, we expect 𝑚𝑇,𝑘 errors from 𝑚𝑇 errors to be assigned to the intensity 𝑘, i.e.,  

 

𝑚𝑇,𝑘 → 𝑚𝑇,𝑘
∗ = ∑ 𝑝𝑘|𝑛𝑣𝑇,𝑛,

∞

𝑛=0

 ∀𝑘 ∈ 𝐾 

 

Likewise, we have  

 

|𝑚𝑇,𝑘
∗ − 𝑚𝑇,𝑘| ≤ 𝛿(𝑚𝑇 , 𝛽) 

 

which holds with probability of at least 1 − 2𝛽. Putting everything together, we find that  

 

𝑛𝑇,𝑘
∗ ≤ 𝑛𝑇,𝑘 +  𝛿(𝑛𝑇 , 𝛽) = : 𝑛𝑇,𝑘

+  

 

𝑛𝑇,𝑘
∗ ≥ 𝑛𝑇,𝑘 −  𝛿(𝑛𝑇 , 𝛽) = : 𝑛𝑇,𝑘

−                                                     (1) 

 

and  

 

𝑚𝑇,𝑘
∗ ≤ 𝑚𝑇,𝑘 +  𝛿(𝑚𝑇 , 𝛽) = : 𝑚𝑇,𝑘

+  



 

𝑚𝑇,𝑘
∗ ≥ 𝑚𝑇,𝑘 −  𝛿(𝑚𝑇 , 𝛽) = : 𝑚𝑇,𝑘

−                                                  (2) 

 

for all values of 𝑘. For the moment, we keep these relations aside; they will be needed later when 

we derive the bound on the secret key length.  

To model the security of the QKD system, we consider a high dimensional (𝑑 = 4) QKD 

protocol with two mutually unbiased bases. Following standard security definitions (38), we say 

that the QKD protocol is 𝜀-secure if it is both 𝜀𝑠𝑒𝑐-secret and 𝜀𝑐𝑜𝑟-correct. For the first condition, 

the protocol is called 𝜀𝑠𝑒𝑐-secret if the joint state of the output secret key (say on Alice’s side) 

and the adversary’s total quantum information is statistically indistinguishable from the ideal 

output state1 except with some small probability 𝜀𝑠𝑒𝑐. For the second condition, the protocol is 

called 𝜀𝑐𝑜𝑟-correct if the output secret keys on Alice and Bob’s sides are identical except with 

some small probability 𝜀𝑐𝑜𝑟.  

The starting point of our security analysis is to ask how many secret bits can be extracted from 

Alice’s raw key 𝑋 given 𝐸 (Eve’s total information about the QKD system). To this end, we use 

the quantum leftover-hash lemma (39) to bound the secret key length (denoted by 𝑙), giving  

 

𝑙 =  max
𝛽∈(0,

𝜀𝑠𝑒𝑐
2

)
⌊𝐻

𝑚𝑖𝑛

𝜀𝑠𝑒𝑐
2

 − 𝛽
(𝑋|𝐸) + 4 log2 𝛽 − 2⌋                                             (3) 

 

where the left-hand term in the floor function is the smooth min-entropy of 𝑋 given 𝐸 (see Ref. 

(40) for more details). Then, by using the decomposition result for decoy-state method from Ref. 

(27) and the entropic uncertainty relations for qudits, the smooth min-entropy term is further 

bounded by  

 

𝐻
𝑚𝑖𝑛

𝜀𝑠𝑒𝑐
2

 − 𝛽
(𝑋|𝐸)  ≥ 2𝑠̃𝑇,0 + 𝑠̃𝑇,1[𝑐 − ℎ2(𝑄̃ + 𝜉) − (𝑄̃ + 𝜉) log2 3] − 𝑙𝑒𝑎𝑘𝐸𝐶 − log2

8

𝛽4𝜀𝑐𝑜𝑟
     (4) 

                                                      
1 The ideal output state is an output key which is uniformly random (in the key space) and 

completely independent of the adversary’s total information.  

 



 

where 𝑙𝑒𝑎𝑘𝐸𝐶 is the number of bits published in error correction, 𝑐 ≔  − log2 max
𝑖,𝑗

|⟨𝑓𝑖|𝑡𝑗⟩|2, and  

 

𝑄̃ =  
𝑣̃𝐹,1

𝑠̃𝐹,1
, 𝜉 ≔ √

(𝑠̃𝑇,1+𝑠̃𝐹,1)(𝑠̃𝐹,1+1)

𝑠̃𝑇,1(𝑠̃𝐹,1)2
log

2

𝛽
                                              (5) 

 

In the main text, we define 𝜆𝑈 ≔ 𝑄̃ + 𝜉 and it can be shown that 𝐻(𝜆𝑈) ≔ ℎ2(𝑄̃ + 𝜉) −

(𝑄̃ + 𝜉) log2 3. 
 

The decoy-state estimates for the 𝑇 basis (replace the statistical quantities accordingly for the 𝐹 

basis) are found in Ref. (27) and are given by 

 

𝑠̃Τ,0 ≔ max {⌊
𝜏0

𝜇2 − 𝜇3
(

𝜇2𝑒𝜇3𝑛Τ,𝜇3

−

𝑝𝜇3

−
𝜇3𝑒𝜇2𝑛Τ,𝜇2

+

𝑝𝜇2

)⌋ , 0},      𝜏𝑛 ≔ ∑ 𝑒−𝑘
𝑘𝑛𝑝𝑘

𝑛!
𝑘𝜖𝐾

                 (6) 

 

𝑠̃Τ,1 ≔ max {
𝜇1𝜏1

𝜇1(𝜇2 − 𝜇3) − (𝜇2
2 − 𝜇3

2)
[
𝑒𝜇2𝑛Τ,𝜇2

−

𝑝𝜇2

−
𝑒𝜇3𝑛Τ,𝜇3

+

𝑝𝜇3

+
𝜇2

2 − 𝜇3
2

𝜇1
2 (

𝑠̃Τ,0

𝜏0
−

𝑒𝜇1𝑛Τ,𝜇1

+

𝑝𝜇1

)] , 0} 

 

(7) 

and 

 

𝑣̃F,1 =
𝜏1

𝜇2 − 𝜇3
(

𝑒𝜇2𝑚F,𝜇2

+

𝑝𝜇2

−
𝑒𝜇3𝑚F,𝜇3

−

𝑝𝜇3

)                                             (8) 

 

Inserting Eq. (4) into Eq. (3), the protocol is able generate an 𝜀𝑠𝑒𝑐-secret key of length satisfying 

 

𝑙 =  max
𝛽∈(0,

𝜀𝑠𝑒𝑐
22

)
⌊2𝑠̃Τ,0 + 𝑠̃Τ,1[𝑐 − ℎ2(𝑄̃ + 𝜉) − (𝑄̃ + 𝜉) log2 3] − 𝑙𝑒𝑎𝑘𝐸𝐶 − log2

32

𝛽8𝜀𝑐𝑜𝑟
⌋  

 

section S2. Secret key rate simulation 

To simulate the secret key rate, we assume that the quantum channel is described by a loss 𝜂𝑐ℎ 

and that that all detectors used for temporal and phase measurements have an input photon rate-

dependent efficiency 𝜂𝑑. The efficiency of the detectors increases as the photon flux decreases. 

This is discussed in detail in the next section. Thus, the overall system transmittance can be 

written as 𝜂 =  𝜂𝑐ℎ𝜂𝑑 . 



 

The total number of detection events observed in Bob’s temporal basis for a given 𝜇𝑘 can be 

written as  

 

𝑛𝑇,𝑘 = 𝑝𝜇𝑘
𝑝𝑇

2𝑁(1 − 𝑒−𝜂𝜇𝑘 +  𝑃𝑑)                                              (10) 

 

where 𝑁 is the total number of signals transmitted by Alice during a secure communication 

session, and 𝑃𝑑 is the probability of observing a dark count. Similarly, the number of detection 

events in the phase basis is given by  

 

𝑚𝐹,𝑘 = 𝑝𝜇𝑘
𝑝𝐹

2𝑁(1 − 𝑒−𝜂𝜂𝑖𝜇𝑘 +  0.75𝑃𝑑)                                         (11) 

 

where 𝜂𝑖 represents the reduced transmittance due to the insertion loss of the interferometers.  

The error events in the temporal basis is given by  

 

𝑚𝑇,𝑘 = 𝑝𝜇𝑘
𝑝𝑇

2𝑁(𝑒𝑑(1 − 𝑒−𝜂𝜇𝑘) +  0.75𝑃𝑑)                                     (12)  

 

where 𝑒𝑑 is error due to the misalignment, and can be mostly attributed to the finite extinction 

ratio of the intensity modulator. The coefficient of  𝑃𝑑  is set to 3/4 because 75% of the dark count 

events will result in an incorrect alphabet. The corresponding error in the phase basis is given by  

 

𝑚𝐹,𝑘 = 𝑝𝜇𝑘
𝑝𝐹

2𝑁(𝑒𝑑(1 − 𝑒−𝜂𝜂𝑖𝜇𝑘) +  0.75𝑃𝑑)                                     (13)  

 

Using Eqs. 10-13, we determine 𝑠̃𝑇,0 𝑠̃𝐹,0, 𝑠̃𝑇,1 , 𝑠̃𝐹,1, 𝜉 and 𝑄̃ and use them to determine 𝑙. In all 

our simulation presented in the main text, we assume 𝛽 = 1.72 × 10−10, 𝜀𝑐𝑜𝑟 = 10−12, 𝑃𝑑 =

10−8, 𝑁 = 6.25 × 1010.  



 

section S3. Detector efficiency calibration 

The efficiency of the superconducting nanowire single photon detector (SNSPD) decreases once 

the photon detection rate exceeds ∼2 MHz. We characterize this change in efficiency using two 

methods. First, we use a continuous wave laser and attenuate the light to the single-photon level 

and measure the detection rate. From the detection rate and expected count rate, we calculate 

efficiency as a function of expected count rate. The blue line in fig. S1 shows the efficiency for 

one of the SNSPD pixels used in the experiment.  

Second, we measure the efficiency of the detector with a pulsed source identical to that used in 

the QKD experiment shown by the red line in fig. S1. It is seen that the two methods are in good 

agreement with each other and the detection efficiency drops sharply as the rate increases beyond 

a few MHz, resulting in decreased performance of our QKD system. This also explains why we 

use four detectors in parallel for measuring the time-basis state, whose rate is higher than the 

phase-basis measurement system because of the asymmetric basis choice probability.  

To account for the rate-dependent detection efficiency in our simulations, we fit the data shown 

in fig. S1 with a hyperbolic tangent function 𝑎 tanh 𝑥/𝑑 + 𝑐. We then use this function to 

determine 𝑛𝑇,𝑘 and 𝑛𝐹,𝑘. The expected rate is given by  

 

𝑅𝑒𝑥𝑝 = 625MHz ∑ 𝑝𝜇𝑘
(1 − 𝑒−𝜂𝑐ℎ𝜇𝑘)

3

𝑘=1

                                          (14) 

 

where the first term on the right-hand side is the state preparation rate.  

 

section S4. Numerically optimized secret key rate 

In the simulation presented in the main text, we use experimentally determined system 

parameters to calculate the expected secret key rate. Here, we show the secret key rates that can 

be achieved in an improved system where the intrinsic error rate in the time and phase bases are 

decreased to 1% and 2%, respectively, and the efficiency is increased to 80% for all detectors 

(their nominal efficiency at low count rates). We also optimize the secret key rate over the 

probability of sending of time and phase basis, and the signal and decoy intensities, {𝜇1, 𝜇2} and 

set 𝜇3 = 0.  



 

The optimized secret key rate for 𝑁 = 6.25 × 109 and 𝑁 = 6.25 × 1010 are shown in fig. S2A. 

As expected, we observe that a non-zero secret key can be generated at longer distances for 

larger 𝑁. In this case, for 𝑁 = 6.25 × 1010, the secret key rate drops at a loss greater than 35 dB, 

which corresponds to a 175 km in standard fiber with a loss coefficient 0.2 dB/km. Figure S2B 

shows the optimized parameters 𝑝𝑇, 𝜇1, 𝜇2 as a function of distance. For relatively short distance 

(< 20 dB), all the optimized quantities are relatively constant.  

 

section S5. Experimental parameters 

Based on the optimized parameters, we choose to randomly direct 90% of the incoming states to 

temporal basis and 10% to phase basis, and set 𝜇1 and 𝜇2 to 0.66 and 0.16, respectively, for all 

channel losses, except for a channel loss of 4 dB where we set it to 0.45 and 0.12, respectively. 

The reason for setting lower mean photon numbers at 4 dB is that there are spurious events due 

to ringing of the read-out electronics that occur between the detector pulses. These events cause 

errors when the event threshold is kept constant, and we minimize the effect of these events 

using a read-out voltage threshold equal to ∼90% of the peak voltage for all detectors. However, 

this method fails at the extremely high detection rates for the 4 dB channel loss, and therefore we 

lower 𝜇1 for this case. We also estimate that 𝜇3 = 0.002 for all losses, mainly due to finite 

extinction ratio of the intensity modulators.  

The experimentally determined sifted counts and the corresponding error rates for all channel 

losses observed during 100 seconds of data collection are presented in table SI, where we denote 

the error rates in time (phase) basis corresponding to mean photon number 𝜇𝑘 as 𝑒𝑇,𝑘 (𝑒𝐹,𝑘).  

 

section S6. Generation of the phase states 

The phase states used in this experiment, illustrated in fig. S3, have a repeated pattern, which 

simplifies their generation. The phase between successive peaks of |𝑓1⟩ increases in steps of π/2. 

Similarly, the phase difference between successive peaks in |𝑓2⟩ and |𝑓3⟩ are π and 3π/2, 

respectively.  

To create these phases, we combine three independent, equal-amplitude signals from the FPGA 

as shown in fig. S4A. As an example, to create the state |𝑓1⟩ the signal going into amplifier 1 

(Amp1) is set to ‘on’ (high) between time bins 2 and 4. Similarly, the signal going into Amp2 is 

set to ‘on’ between time bins 3 and 4, and the signal going into Amp.3 is ‘on’ only during time 

bin 4. The combined signal at the output of the 3x1 combiner is a step-like function, where each 



 

step corresponds to a π/2 phase shift. When this signal temporally overlaps with the four-peaked 

wavepacket from the intensity modulator, it creates the phase state |𝑓1⟩. The states |𝑓2⟩ and |𝑓3⟩ 

are generated in a similar way as shown in fig. S4B. Conveniently, the step-like signal required 

to create |𝑓3⟩ is just the inverse of the signal required to create |𝑓1⟩.  

In principle, the setup can be simplified and only one amplifier can be placed after the combiner. 

However, we find that most variable-gain amplifiers cannot take the combined power of the 

signals and saturates.  

 

 

 

table S1. Length of sifted data. Number of sifted events observed during 100 seconds of 

data collection, and the corresponding error rates for both time and phase states as a 

function of loss.  

Loss (dB) 4 8 10 14 16.6 

𝑛𝑇,𝜇1
 

𝑛𝑇,𝜇2
 

𝑛𝑇,𝜇3
 

𝑛𝐹,𝜇1
 

𝑛𝐹,𝜇2
 

𝑛𝐹,𝜇3
 

3.13 × 109 

1.22 × 108 

1.58 × 107 

7.26 × 106 

4.97 × 105 

1.44 × 104 

1.98 × 109 

7.61 × 107 

7.15 × 106 

5.48 × 106 

3.69 × 105 

8.17 × 103 

1.21 × 109 

4.66 × 107 

4.46 × 106 

3.66 × 106 

2.45 × 105 

4.75 × 103 

 

5.63 × 108 

2.16 × 107 

1.67 × 106 

1.63 × 106 

1.10 × 105 

1.62 × 103 

 

2.49 × 108 

9.54 × 106 

5.83 × 105 

1.05 × 106 

4.58 × 104 

6.61 × 102 

 

𝑒𝑇,1 

𝑒𝑇,2 

𝑒𝐹,1 

𝑒𝐹,2 

0.0447 

0.0664 

0.0478 

0.0607 

0.0383 

0.0521 

0.0435 

0.0498 

0.0373 

0.0510 

0.0402 

0.0446 

0.0355 

0.0450 

0.0369 

0.0488 

0.0336 

0.0430 

0.0485 

0.0555 

 



 

 

 

fig. S1. Efficiency of single-photon detectors. Experimentally determined efficiencies 

of a superconducting nanowire single-photon detector as a function of input count rate for 

a pulsed source (red) and a continuous-wave source (blue) at a wavelength of 1550 nm.  

 



 

 
 

fig. S2. Numerical simulation. (A), Optimized secret key rate as a function of loss 

corresponding to 𝑁 = 6.25 × 109 (red) and 𝑁 = 6.25 × 1010 (blue). (B), The optimized 

parameters 𝑝𝑇  , 𝜇1 , and 𝜇2 for 𝑁 = 6.25 × 1010 plotted as a function of quantum channel 

loss.  

 

 

 



 

fig. S3. Graphical illustration of all phase states in d = 4. The phase values between 

successive time bins in the state |𝑓1⟩ increases in steps of 𝜋/2. Correspondingly, the phase 

values between successive time bins in |𝑓2⟩ (|𝑓3⟩) increases in steps of 𝜋 (3𝜋/2). 
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fig. S4. Generation of phase states. (A), Experimental setup used to create the phase states. 

(B), A detailed illustration of how the signals are combined to create the phase state 

|𝑓1⟩, |𝑓2⟩, and |𝑓3⟩.  
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