SUPPLEMENTAL DATA

A significant role for tumor necrosis factor in *NIrp3* inflammasomopathies

Matthew D. McGeough, Alexander Wree, Maria E. Inzaugarat, Ariela Haimovich, Casey D. Johnson, Carla A. Peña, Raphaela Goldbach-Mansky, Lori Broderick, Ariel E. Feldstein, and Hal M. Hoffman

Gene	Species	Sequence				
Arg1	mouse	FWD	5'-CTC CAA GCC AAA GTC CTT AGA G-3'			
		REV	5'-AGG AGC TGT CAT TAG GGA CAT C-3'			
ASC	mouse	FWD	5'-CTT GTC AGG GGATGA ACT CAA AA-3			
		REV	5'-GCC ATA CGA CTC CAG ATA GTA GC-3'			
pro-Caspase 1	mouse	FWD	5'-ACA AGG CAC GGG ACC TAT G-3'			
		REV	5'-TCC CAG TCA GTC CTG GAA ATG-3'			
CXCL1	mouse	FWD	5'-CTG GGA TTC ACC TCA AGA ACA TC-3'			
		REV	5'- CAG GGT CAA GGC AAG CCT C-3'			
CXCL2	mouse	FWD	5'-CCA ACC ACC AGG CTA CAG G-3'			
		REV	5'- GCG TCA CAC TCA AGC TCT G-3'			
F4/80	mouse	FWD	5'-TGA CTC ACC TTG TGG TCC TAA-3'			
		REV	5'-CTT CCC AGA ATC CAG TCT TTC C-3'			
iNOS	mouse	FWD	5'-GTT CTC AGC CCA ACA ATA CAA GA-3'			
		REV	5'-GTG GAC GGG TCG ATG TCA C-3'			
Ly6c	mouse	FWD	5'-GCA GTG CTA CGA GTG CTA TGG-3'			
		REV	5'-ACT GAC GGG TCT TTA GTT TCC TT-3'			
MPO	mouse	FWD	5'-AGT TGT GCT GAG CTG TAT GGA-3'			
		REV	5'-CGG CTG CTT GAA GTA AAA CAG G-3'			
NLRP3	mouse	FWD	5'- ATT ACC CGC CCG AGA AAG G-3'			
		REV	5'- TCG CAG CAA AGA TCC ACA CAG-3'			
pro-IL-1β	mouse	FWD	5'-GAA ATG CCA CCT TTT GAC AGT G-3'			
		REV	5'-CTG GAT GCT CTC ATC AGG ACA-3'			
pro-IL-18	human	FWD	5'-TCT TCA TTG ACC AAG GAA ATC GG-3'			
		REV	5'-TCC GGG GTG CAT TAT CTC TAC-3'			

Supplemental Table 1. Sequences of primers used for quantitative PCR

#	Visit	Age (yrs)	M / F	Race	Remission	CRP (mg/dl)	Joint disease	Eye disease	Hearing loss	Developmental delay	Aseptic Meningitis
1	Baseline	3.4	м	Asian	n/a	7.24	No	Conjunctivitis	Mild	No	Yes
	Follow- up	6.4			Yes	0.11					
2	Baseline	1.8	М	Caucasian	n/a	5.62	Patellar overgrowth, mild contractures	Conjunctivitis	No	No	Yes
	Follow- up	5.2			Yes	0.03					
3	Baseline	7.0	F	Caucasian	n/a	3.90	No	Conjunctivitis	Mild- moderate	No	Yes
	Follow- up	8.5			Yes	0.44					
4	Baseline	5.6	М	Asian	n/a	3.19	Bony overgrowth	Conjunctivitis	Severe	No	Yes
	Follow- up	9.7			Yes	1.66					
5	Baseline	15.9	F	Hispanic/ White	n/a	4.81	Patellar overgrowth	Conjunctivitis blindness	Severe	Yes (s/p stroke)	Yes
	Follow- up	16.4			No	2.32					
6	Baseline	8.5	м	Hispanic/ White	n/a	4.90	No	Conjunctivitis h/o transient uveitis	Severe	No	Yes
	Follow- up	16.1			Yes	0.27					

Supplemental Table 2. NOMID patient characteristics and clinical symptoms

n/a, not applicable

Supplemental Figure 1. Pro-inflammatory cytokines are not significantly elevated in *NIrp3^{L351P} II1b^{-/-} II18^{-/-}* mice following stimulation with LPS. Serum IL-6 (A), IL-1 alpha (B), IL-17 (C) and KC (D) showed no significant differences in *NIrp3^{L351P} II1b^{-/-} II18^{-/-}* mice at both 2 and 6 hours post LPS (5 µg/g) as compared to *NIrp3^{L351P} Casp1/11^{-/-}* mice. Each point is representative of an individual mouse, mean is represented by horizontal bar. Kruskal-Wallis test and Dunn's Multiple Comparison Test was used to determine statistical significance. Data represent mean ± SEM.

Supplemental Figure 2. Knockout of TNF reduces mRNA expression of inflammatory macrophages and neutrophil markers in skin. Expression of *F4/80 and iNos* was significantly raised in *NIrp3*^{A350V} mice as compared to littermate controls and was attenuated in *NIrp3*^{A350V} *Tnf* ^{-/-} mice, while a similar trend was seen for *Ly6c*. No significant differences were seen in expression of *Arg1* (A). *Cxcl1* and *Cxcl2* expression is similarly elevated in *NIrp3*^{A350V} mice and significantly reduced in *NIrp3*^{A350V} *Tnf* ^{-/-} animals (B) (n=12 for control, *NIrp3*^{A350V} and *NIrp3*^{A350V} *Tnf* ^{-/-} mice and n=8 for *NIrp3*^{A350V} *Tnf* ^{+/-} and *Tnf* ^{-/-} animals for each marker). Kruskal-Wallis test and Dunn's Multiple Comparison Test was used to determine statistical significance. Data represent mean ± SEM.

В

Supplemental Figure 3. No significant differences in ASC specking or mature IL-1 β with or without addition of LPS comparing *NIrp3*^{A350V}*CreT* and *NIrp3*^{A350V}*Tnf*^{-/-} BMDCs. Inflammasome activation, quantified by ASC specking revealed no significant difference in the percentage of ASC specks/nuclei in *NIrp3*^{A350V}*Tnf*^{-/-} and *NIrp3*^{A350V}*CreT* cells (A) (n=3 mice per group with 6 images taken per well at 10X magnification). Mature IL-1 β was not significantly reduced in supernatants from *NIrp3*^{A350V}*Tnf*^{-/-} and *NIrp3*^{A350V}*CreT* cells (B) (n=8 mice per group). Likewise, addition of 1ng/ml LPS revealed no significant difference in the percentage of ASC specks/nuclei (C) (n=3 mice per group with 6 images taken per well at 10X magnification). IL-1 β had similar values in supernatants from *NIrp3*^{A350V}*Tnf*^{-/-} and *NIrp3*^{A350V}*CreT* cells (D) (n=8 mice per group). Student's unpaired t-test (2 tailed) was utilized for statistical analysis. Data represent mean ± SEM.

Supplemental Figure 4. Visualization of ASC specks in BMDC's from *NIrp3*^{A350V}*CreT and NIrp3*^{A350V}*Tnf^{/-}* **cells.** ASC specks were stained and represented as green specks as indicated by the white arrows above. Stimulation with LPS (1ng/ml) similarly increased the number of ASC specks in *NIrp3*^{A350V}*CreT and NIrp3*^{A350V}*Tnf^{/-}* cells. Images are representative of three mice per group with 6 images taken per well at 10x magnification. Scale bar represents length of 250um.