Supplemental Figures

Figure S1. RNA sequencing and proteomic data of selected genes in E18.5 control and *Emc3* cKO EpCAM+ lung cells.

(A) RNA sequencing data of *Emc* genes were obtained in E18.5 control and *Emc3* cKO EpCAM+ lung cells. *Emc3* mRNA was decreased without changes in RNA transcripts encoding other EMC subunits in *Emc3* cKO mice.

(B) RNA sequencing data related to surfactant associated genes in E18.5 control and *Emc3* cKO EpCAM+ lung cells. No significant changes in Abca3 or surfactant associated protein mRNAs were observed in *Emc3* cKO mice.

(C) Proteomic analysis on E18.5 control and *Emc3* cKO EpCAM+ lung cells. EMC proteins and ABCA3 were decreased and surfactant proteins SP-A and SP-C were increased in EpCAM+ cells of *Emc3* cKO lung.

For RNA sequencing, EpCAM+ lung cells from two *Emc3* cKO and two control samples were analyzed. For proteomics, four samples of each genotype were analyzed. *P<0.05, ***P<0.001.

(A and B) Immunohistochemical staining for Podoplanin (PDPN) on lung sections of control and *Emc3* cKO embryos at E18.5.

(C-F) Immunofluorescence staining for AGER and HOPX on lung sections of control and *Emc3* cKO embryos at E18.5.

All AT1 cell markers, PDPN, AGER or HOPX demonstrate normal patterns of staining after deletion of *Emc3*. Scale bars: 100 µm.

Figure S3. Immunogold labeling of ABCA3, proSP-B, and proSP-C in E18.5 control and *Emc3* cKO embryos.

In control AT2 cells, ABCA3 labeling was present in limiting membranes of lamellar bodies; proSP-B and proSP-C were normally processed and did not accumulate intracellularly. In *Emc3* cKO AT2 cells, ABCA3 staining was markedly decreased; both proSP-B and proSP-C accumulated in the multivesicular bodies. ER: endoplasmic reticulum; G: Golgi apparatus; LB: lamellar body; MT: mitochondria; MVB: multivesicular body; NUC: nucleus. Scale bars: 250 nm.

Figure S4. Interaction between EMC3 and ABCA3 in MLE-15 cells.

(A) Staining of MLE-15 cells with EMC3 antibody shows colocalization of endogenous EMC3 with ER marker, PDI. Scale bar: 25μ m.

(B and C) MLE-15 cells were transfected with ABCA3-Flag alone and immunostained 48 hours later. ABCA3-Flag expression increased endogenous EMC3 levels and recruited EMC3 to LAMP-1 positive vesicles. Scale bars: 25µm.

(D) Equal numbers of MLE-15 cells were transfected with control vectors or Myc-Emc3 cDNA alone or ABCA3-Flag alone or both together. Cells were lysed 48 hours later and immunoprecipitated by beads conjugated with Myc antibody or Flag antibody. Samples were eluted and processed for immunoblotting. Three independent experiments were performed and representative results are shown. Antibodies used for immunoblotting are indicated on the left of the panels.

Figure S5. Lack of EMC3-ProSP-C interaction in MLE-15 cells.

(A) MLE-15 cells were transfected with Myc-Emc3 and immunostained 48 hours later. Scale bar: 25μ m.

(B) MLE-15 cells were co-transfected with *SFTPC* cDNA and Myc-Emc3 and immunostained 48 hours later. Scale bar: 25µm.

(C) Equal numbers of MLE-15 cells were transfected with Myc-Emc3 cDNA alone or together with cDNAs expressing *Abca3-Flag* or *SFTPC*. Cells were lysed 48 hours later and immuno-precipitated by beads conjugated with Myc antibody. Samples were eluted and processed for immunoblotting. Three independent experiments were performed and representative results are shown. Antibodies used for immunoblotting are indicated on the left of the panels.

Figure S6. Expression of human ABCA3 and SP-C variant proteins induced Bip, EMC3 and EMC4.

(A and B) MLE-15 cells were transfected with equal amount of empty vector or constructs encoding different ABCA3 (A) or SP-C (B) variants. Cells were harvested 60 hours after transfection. Lysates were subjected to immunoblotting using indicated antibodies.

(C) Quantification of western blots shown in (A) and (B) from three independent experiments. Means and \pm SEM; *P<0.05, **P<0.01 using unpaired, 2-tailed Student's t test.

Figure S7. Enrichment of AT2 cells after EpCAM sorting.

EpCAM+ epithelial cells were isolated from control and *Emc3* cKO fetal lungs (E18.5) using magnetic beads.

(A and B) Immunostaining of cytospins of sorted cells with NKX2.1/proSP-C and with DAPI. Representative immunofluorescence images are shown. Scale bars, 100 µm.

(C) Quantification of the ratios of epithelial cells (NKX2.1+) and AT2 cells (proSP-C+) in DAPI+ cells from the staining shown in (A) and (B). Means \pm SEM are shown. n=4/group.

Supplemental Tables

Genes	Fold change in Abca3 cKO	Fold change in Emc3 cKO	Correlation
Aqp3	-7.09	3.15	Opposite
Sftpa1	-3.95	1.11	Opposite
Gjb6	-3.64	-2.30	Same
Aqp5	-3.20	-1.21	Same
Lipg	-2.45	1.27	Opposite
Pnliprp1	-2.16	-26.67	Same
Lpcat1	-2.11	1.01	Opposite
Rab27a	-1.90	-1.23	Same
Pnpla2	-1.59	-1.23	Same
Sc5d	1.71	1.30	Same

Table S1. Comparison of differentially expressed genes in *Abca3* cKO and *Emc3* cKO lungs.

Changes in mRNAs in whole lung from E18.5 ABCA3 gene deleted embryos (*SP-C-rtTA*^{tg/wt};*TetO-Cre*^{tg/wt};*Abca3*^{flox/flox} deleted doxycycline administration to the dam from E6.5 to E14.5) (1) were compared with whole lung RNA sequencing data. Transcriptional changes in E18.5 *Emc3* cKO lungs were assessed by RNA sequencing of whole lung mRNA.

Α		
Lipid enzymes	P value	Fold change
BDH2	0.0025	-10.36
GDPD2	0.0048	-7.59
MGST2	0.0043	-7.56
CES1D	0.0015	-5.80
SCD1	0.0033	-5.13
LPL	0.0044	-4.78
ACSS2	0.0150	-4.40
ACOXL	0.0101	-4.31
ACSS1	0.0134	-3.83
ISYNA1	0.0173	-3.77
TAMM41	0.0485	-3.75
MCEE	0.0352	-3.47
PAFAH2	0.0296	-3.24
ACSL1	0.0392	-3.04
GPX1	0.0487	-2.87
SCD2	0.0033*	-2.28

В

GPX1

ACSL5

ACAT1 PRDX6

GCDH

ACACA

ATG7

CPT2

ANXA1

GDPD2

SCD1

MCEE

0.0097

0.0019

0.0046

0.0082

0.0165

0.0471

0.0483

0.0033

0.0019

0.0000

0.0451

0.0000

-1.28

-1.26

-1.25

-1.24

-1.23

-1.22

-1.22

-1.20

1.43

†Absent

†Absent

†Absent

Other lipid genes	P value	Fold change
PON1	0.0049	-26.72
ABCA1	0.00003	-11.20
FABP12	0.0003	-8.58
APOC1	0.0024	-7.81
APOE	0.0475	-5.54
FABP5	0.0041	-4.81
TECRL	0.0087	-4.34
SCP2	0.0096	-4.05
MID1IP1	0.0131	-3.88
PDP2	0.0190	-3.79
CERS4	0.0235	-3.46
INSIG1	0.0372	-3.19
FDX1	0.0470	-3.10
NR2F2	0.0408	-3.08
SLC16A1	0.0367	-3.05
NSMAF	0.0432	-2.95

UPR Genes	P value	Fold change
CREB3L1	0.0194*	-2.08
ATF4	0.0178*	1.54
DDIT3	0.0084*	1.70
BHLHA15	0.0030*	1.72
HSPA5	0.0036*	1.77
MAP3K5	0.0430*	1.86
TRIB3	0.0377*	1.88
PDIA5	0.0041*	2.00
DNAJB9	0.0376*	2.15
KDELR3	0.0057*	2.16
ASNS	0.0341*	2.25
ATF3	0.0190	4.20
THBS1	0.0027	5.40

* P value from Altanalyze analysis

Lipid enzymes	P value	Fold change	Other lipid protein	s P value	Fold change	UPR proteins	P value	Fold change
SOAT1	0.0009	-5.21	GOLM1	0.0237	-2.90	ASNA1	0.0060	-1.65
MCCC1	0.0019	-2.31	FABP5	0.0024	-2.62	ATP6V0D1	0.0478	-1.59
GALC	0.0071	-2.11	NPC2	0.0136	-2.60	SEC61A1	0.0044	-1.36
GDE1	0.0002	-2.02	SCPEP1	0.0001	-2.05	UBA5	0.0393	1.21
CES1D	0.0008	-1.95	ABCA3	0.0004	-2.03	SEC31A	0.0082	1.21
PCCA	0.0018	-1.82	SFTPB	0.0011	-2.02	GFPT1	0.0075	1.23
CAT	0.0003	-1.81	ATP1A1	0.0000	-1.92	FAM129A	0.0018	1.26
IVD	0.0011	-1.64	ABCD3	0.0016	-1.77	LMNA	0.0065	1.27
MCCC2	0.0012	-1.58	SCP2	0.0019	-1.68	TMEM33	0.0271	1.33
PCCB	0.0068	-1.56	SORL1	0.0075	-1.68	PDIA5	0.0162	1.33
NAGA	0.0194	-1.48	ERLIN1	0.0031	-1.58	ERP44	0.0369	1.38
PIGU	0.0077	-1.46	PC	0.0029	-1.39	MANF	0.0042	1.43
NSDHL	0.0486	-1.41	STOML2	0.0377	-1.26	GOSR2	0.0380	2.48
ACLY	0.0013	-1.38	PON1	0.0494	†Absent	THBS1	0.0423	Induced in KO only
HMGCS1	0.0248	-1.38	SLC44A1	0.0000	†Absent			
ECI2	0.0081	-1.38	AGK	0.0000	†Absent	Cathepsins	P value	Fold change
ASAH1	0.0010	-1.37	EIF6	0.0411	1.24	CTSZ	0.0012	-3.71
ACAA2	0.0029	-1.36	LAMTOR1	0.0024	1.26	CTSC	0.0004	-3.00
ACSL1	0.0360	-1.34	AKT1	0.0130	1.34	CTSB	0.0039	-1.88
HACD3	0.0107	-1.33	PSAP	0.0108	1.73	CTSH	0.0036	-1.58
MUT	0.0014	-1.33	C3	0.0373	1.90	*NAPSA	0.0650	-1.28
ADH5	0.0171	-1.32						
ACOT2	0.0018	-1.31				* P value >0.0	5	
ECHS1	0.0104	-1.31				†Absent: not o	detectable	in the KO but present
ACAT2	0.0340	-1.30						
ECI1	0.0083	-1.30						

Table S2. Changes of mRNAs (A) and proteins (B) in EpCAM+ cells sorted from *Emc3* cKO fetal lungs (E18.5). Results were obtained by RNA sequencing and proteomic analysis from control and *Emc3* cKO AT2 cells as described in Methods.

Phosphatidylcholine Species	Fold change	Phosphatidylglycerol Species	Fold change Triglyceride Species		Fold change	
PC(O-38:5)	1.858	PG(14:0/15:0)	-1.374	TG(16:0/16:0/16:0)	3.396	
PC(15:0/16:0)	1.506	PG(16:0/16:0)	-1.376	TG(18:0/18:1/20:4)	2.431	
PC(16:0/22:4)	1.263	PG(16:0/22:4)_B	-1.455	TG(16:0/16:0/18:1)	2.309	
PC(16:0/20:3)	-1.252	PG(14:0/16:0)	-1.480	TG(14:0/14:0/16:0)	2.271	
PC(16:0/16:1)	-1.253	PG(18:1/18:2)_A	-1.486	TG(16:0/16:0/22:6)	2.262	
PC(18:0/18:1)	-1.285	PG(16:1/20:4)_A	-1.579	TG(18:1/18:1/22:3)	2.243	
PC(15:0/22:6)	-1.339	PG(22:6/0:0)	-1.607	TG(49:1)	2.208	
PC(20:3/20:4)	-1.366	PG(16:1/0:0)	-1.666	TG(54:5)	2.197	
PC(14:0/22:6)	-1.378	PG(14:0/18:1);PG(16:0/16:1)	-1.785	TG(18:1/22:4/22:4)	2.130	
PC(20:4/20:4);PC(18:2/22:6)	-1.474	PG(16:0/18:1)_A	-1.843	TG(18:1/22:1/22:6)	2.068	
PC(22:6/22:6)	-1.561	PG(16:1/18:2)_A	-1.850	TG(16:0/16:0/16:1);TG(14:0/16:0/18:1)	2.060	
PC(18:1/20:1)	-1.579	PG(16:0/22:6)_B	-1.916	TG(18:1/18:1/20:4);TG(16:0/18:1/22:5)	2.041	
PC(20:4/22:6)	-1.636	PG(18:1/20:4)_B	-1.956	TG(18:1/20:1/22:3)	2.032	
PC(16:0/20:5)	-1.644	PG(18:1/18:1)	-2.104	TG(16:0/18:1/18:1)	1.942	
PC(18:2/22:5)	-1.657	PG(18:1/22:6)_B	-2.109	TG(18:2/18:2/20:4)	1.932	
PC(14:0/16:1)	-1.934	PG(16:2/16:0)	-2.157	TG(54:1)	1.928	
PC(16:1/20:4)	-1.945	PG(18:1/22:6)_C	-2.266	TG(16:0/16:0/18:0)	1.906	
PC(16:1/22:6)	-2.053	PG(14:0/14:0)	-2.370	TG(58:4)	1.898	
PC(16:1/0:0)	-2.069	PG(16:1/18:3)_B	-2.400	TG(51:2)	1.880	
PC(16:1/18:2)	-2.248	PG(18:1/0:0)_D	-2.446	TG(16:0/18:1/22:6)	1.874	
PC(16:1/16:1)	-2.764	PG(18:1/18:2)_B	-2.529	TG(53:2)	1.866	
PC(16:1/20:5)	-3.296	PG(15:0/16:1)	-2.533	TG(52:3)	1.866	
		PG(16:0/20:5)	-2.557	TG(18:0/20:4/22:6)	1.830	
		PG(16:1/18:1)_B	-2.752	TG(16:0/16:0/18:2);TG(16:0/16:1/18:1)	1.809	
		PG(18:2/22:6) B	-2.903	TG(14:0/22:6/22:6)	1.804	
		PG(14:1/16:0);PG(14:0/16:1)	-3.153	TG(49:2)	1.776	
		PG(16:0/18:3) A	-3.356	TG(16:0/18:1/24:0)	1.760	
		PG(17:1/18:2)	-3.446	TG(18:2/20:4/20:4);TG(16:0/20:4/22:6)	1.751	
		PG(16:0/18:2)_A	-3.481	TG(18:1/22:4/22:6);TG(18:1/22:4/22:6)	1.723	
		PG(16:3/16:0)	-3.847	TG(14:0/16:0/16:1)	1.698	
		PG(16:1/22:6) B	-4.043	TG(56:1)	1.691	
		PG(16:1/18:2) B	-4.516	TG(18:2/20:4/22:6)	1.684	
		PG(16:1/20:4) B	-4.578	TG(20:4/20:4/22:6)	1.683	
		PG(16:0/18:3) B	-4.918	TG(52:5)	1.592	
		PG(16:1/17:1)	-5.484	TG(18:1/18:1/22:1);TG(18:1/20:1/20:1)	1.591	
		PG(16:1/16:1)	-5.854	TG(14:0/20:4/22:6)	1.545	
		PG(16:1/20:5)	-6.608	TG(50:3)	1.538	

Table S3. Changes in the concentrations of lipid species in EpCAM+ cells sorted from Emc3 cKO fetal lungs (E18.5).

TG(18:1/22:6/22:6)

1.433

Results were obtained by lipidomics analysis as described in Methods. Fold changes of significantly changed lipid species are shown, P < 0.05 using two-tailed, homoscedastic t-tests. n = 4/group.

Reference

Phospha

1. Besnard V, Matsuzaki Y, Clark J, Xu Y, Wert SE, Ikegami M, Stahlman MT, Weaver TE, Hunt AN, Postle AD, et al. Conditional deletion of Abca3 in alveolar type II cells alters surfactant homeostasis in newborn and adult mice. Am J Physiol Lung Cell Mol Physiol. 2010;298(5):L646-59.