1 Penultimate deglacial warming across the Mediterranean Sea revealed by

- 2 clumped isotope in foraminifera
- 3
- L. Rodríguez-Sanz^{1*}, S. M. Bernasconi², G. Marino¹, D. Heslop¹, I. A. Müller², A. Fernandez²,
 K. M. Grant¹ & E.J. Rohling^{1,3}
- 7
- ⁸ ¹Research School of Earth Sciences, The Australian National University, Canberra, Australian
- 9 Capital Territory 2601, Australia.
- ²Geological Institute, ETH Zurich, Sonneggstr. 5, 8092 Zurich, Switzerland.
- ¹¹ ³Ocean and Earth Science, University of Southampton, National Oceanography Centre,
- 12 Southampton S014 3ZH, UK
- 13 *Correspondence to <u>laura.rodriguez@anu.edu.au</u>
- 14
- 14
- 15
- 16
- 17
- 18

19 SUPPLEMENTARY INFORMATION

20 Supplementary information

Supplementary Figures 1-4 are called in the main text and methods to further clarify and support
our conclusions. Supplementary Figures 5-11 are discussed in the text below.

23

24 Validation of the non-traditional Δ_{47} data-analysis approach

Data smoothing. The Δ_{47} -based time series is a mixed signal between the ambient seawater 25 26 temperature recorded in the foraminiferal calcite, instrument shot-noise limit, measurement error, sample preparation artefacts, and other unidentified sources of uncertainty¹. In order to 27 28 reduce the high variability that these inflict on the Δ_{47} -data and highlight the main trends, we 29 apply a Moving Gaussian Window (MGW) filter. We use this smoothing method because it 30 allocates weights for averaging the Δ_{47} -replicates based on the size of the Gaussian window. 31 This allows one of the key advancements of our data processing approach, i.e., it does not rely 32 on any *a-priori* knowledge to obtain the final Δ_{47} -temperature records, as opposed to the traditional binning method. That is, for the traditional Δ_{47} -small method it is necessary to define 33 the boundaries for averaging Δ_{47} - $\delta^{18}O_{C}$ replicates (binning) from neighbour samples. 34 Unfortunately, that requires *a-priori* information that is not always available. Although the 35 simultaneously generated and higher-temporal-resolution $\delta^{18}O_{\rm C}$ record can be used to define the 36 binning boundaries, this relies on the assumption that temperature and $\delta^{18}O_{C}$ co-vary, which is 37 not always the case. In the wMed, for instance, temperature and $\delta^{18}O_{C}$ records across HS11 are 38 markedly asynchronous^{2,3} (Fig. 4b-c). The approach we propose in this study only requires 39 defining the size of the MGW, which here is referred to in terms of the 99.7 % coverage $(\pm 3\sigma)$ 40 41 of a Gaussian distribution in kyr. In general, the larger the size of the window, the smaller the 42 estimated error of the reconstructed parameter, and the smoother the record. In our case we use a 43 ~5 kyr window ($\pm 1\sigma = 0.8$ kyr) because it provides a reasonable compromise between associated 44 uncertainties and the length of the climate events we are investigating. Additionally, the

45 frequency response of the 5 kyr MGW filter applied to an evenly spaced white noise signal that 46 spans the same time interval of our data (Supplementary Fig. 5) shows that it satisfies the goal of 47 reducing the high frequencies in the record. That is, the 5 kyr MGW should minimize the noise 48 and highlight the main trend of the Δ_{47} -data.

49

50 Outlier test. The outlier test is based on the box-plot approach, which is an intuitive and broadly recommended method for data analysis, e.g., in medical research^{4,5}. It has the advantage of 51 52 detecting outliers regardless of the distribution of the sample and for this reason we implemented it in the approach. The box-plot uses the 25th (O1), 50th (O2), and 75th (O3) percentiles of the 53 data to characterize the sample (see ref. ⁴ for a detailed explanation). Data points (Δ_{47} -replicates) 54 are considered outliers if they fall outside the Q3+W*(Q3-Q1) and Q1-W*(Q3-Q1) range. The 55 standard approach of Tukey⁶ uses W = 1.5. In the case of Gaussian distributed data, that value 56 57 would identify Δ_{47} -replicates outside a $\pm 2.698\sigma$ range (99.3 % coverage) as outliers. We 58 consider this range too large to detect outliers in our dataset and therefore we also tried a 59 conservative definition that would consider outliers Δ_{47} -replicates falling outside a $\pm 2\sigma$ (~95.5 % coverage) range in a normal distribution (W = 0.9826). Supplementary Figure 6 shows that the 60 61 final ODP975 record using W = 1.5 is not much different from those obtained using W = 0.982662 (main figures). The records only diverge where the density of the Δ_{47} -replicates is low at, e.g. 63 122-115 kyr in LC21. Yet, because (i) we focus our discussion on the interval between 140-122 64 kyr and (ii) the MGW filter is sensitive to outlying data, we favoured the conservative test, even if this implies that a few "potentially good" Δ_{47} -replicates might be wrongly removed from the 65 66 dataset.

67

68 *Monte Carlo simulations*. We tested the effect of the number of Monte Carlo simulations in the 69 final ODP975 Δ_{47} -temperature record. We run 4 different simulation ensembles: 500, 1,000, 5,000, and 10,000. We observe that, while there is no difference in the final Δ_{47} -temperature record, there is a slight effect on how smooth the confidence intervals appear. Fewer simulations result in a slightly less smoothed record (Supplementary Fig. 7). We selected N = 5,000 for our study because it offers a good compromise between the smoothness of the confidence intervals and the time that the simulations take.

75

76 Details on the non-traditional data-analysis MATLAB script. First, three files have to be

77 provided in the DATA INPUT section: data, Age_Model, and Sea_Level. Data contains

individual measurements of Δ_{47} (‰, CDES) and δ^{18} O (‰, VPDB) with its associated depth (in

79 cm). Age_Model has the tie points (i.e., depth (cm), age (ka BP), $\pm 1\sigma$ error age (kyr) for the age

80 model. *Sea_Level* has the SL reconstruction⁷ that will be used to correct for the ice volume

81 component of the δ^{18} O record (δ^{18} O_{SW}-ivc) using specific wMed and eMed δ^{18} O_{SW}-SL

82 relationships³. The MATLAB script calculates the $\delta^{18}O_{SW-IVC}$ for future applications. For our

83 discussion, there is no appreciable difference whether we use $\delta^{18}O_{SW}$ or $\delta^{18}O_{SW-IVC}$. Therefore,

84 we used $\delta^{18}O_{SW}$ for simplicity. *DATA INPUT* section is followed by the *PARAMETERS* section 85 where the number of Monte Carlo simulations, the size of the MGW, steps increments, and the 86 coefficients for the equations that best fit the dataset have to be specified. Calculation steps are 87 divided into three parts (see also Supplementary Fig. 8).

(*i*) Δ_{47} -*replicates outlier test and Age model:* Using the information in *Data* the outlier test is computed where more than 4 replicates (Δ_{47} -replicates>4) in the exact same sample were possible. The ages of the Δ_{47} -replicates deemed to not be outliers are then calculated using the tie points in *Age_Model*. Based on this, the MATLAB script generates a *dataset* containing the depth (cm), δ^{48} O (‰, VPDB), δ^{48} Oc ±1 σ std (0.08 ‰), Δ_{47} (‰), Δ_{47} ±1 σ std (0.03 ‰), age (kyr), and ±1 σ error age (kyr), which is used afterwards for the Monte

94 Carlo realizations.

95	(<i>ii</i>)	<i>Monte Carlo simulations</i> : First, 5,000 realizations of Age based on its $\pm 1\sigma$ chronological
96		uncertainties are performed using a random walk Monte Carlo routine that employs a
97		Metropolis–Hastings approach to reject steps in the random walk that will result in age
98		reversals. Then, 5,000 realizations of the dependent variable (e.g., Δ_{47} , δ^{18} O, and SL) are
99		performed by generating normally distributed values of each data point based on their
100		$\pm 1\sigma$ uncertainties. For each realization, the following steps are carried out: (a) the Δ_{47} -
101		data are converted into temperature using equation 3. (b) This temperature value is used
102		to correct the temperature component of the δ^{18} O record and to thus determine $\delta^{18}O_{SW}$.
103		The latter is done by using realizations of the Temperature- $\delta^{18}O_c$ relationship based on its
104		$\pm 1\sigma$ uncertainty (specified in <i>PARAMETERS</i>). (c) The SL component of the derived
105		$\delta^{18}O_{SW}$ is corrected for using realizations of the $\delta^{18}O_{SW}$ -SL relationship ³ for the wMed
106		(ODP975) or eMed (LC21, ODP967) (specified in <i>PARAMETERS</i>). (d) A 5 kyr MGW
107		(size specified in PARAMETERS), stepping in increments of 100 years, is applied to each
108		of the 5,000 times simulated datasets, i.e. Δ_{47} , Δ_{47} -temperature, δ^{18} O, δ^{18} O _{SW} , and
109		$\delta^{18}O_{SW-ivc}$.
110	(iii)	Final records and probability intervals: The 2.5 th , 16 th , 50 th , 84 th , and 97.5 th percentiles

- 111 of all the 5,000 MGW filtered Monte Carlo realizations of the Δ_{47} , Δ_{47} -temperature, $\delta^{18}O$, 112 $\delta^{18}O_{SW}$, and $\delta^{18}O_{SW-IVC}$ datasets are calculated.
- 113

114 *Efficiency of the approach in removing noise:* The residuals of a model that adequately

115 represents the data are (*a*) normally distributed, (*b*) independent (i.e., are not autocorrelated), and

- 116 (c) are homoscedastic (i.e., have constant variance)⁸. We checked the efficiency of the non-
- 117 traditional Δ_{47} data-analysis approach by analysing the residuals between the measured Δ_{47} -

replicates and the 50th percentile of the Δ_{47} MGW filtered Monte Carlo realizations (Supplementary Fig. 9-11).

(a) We checked that the residuals were normally distributed by applying the so-called
'Lilliefors Test'⁹ at the 0.05 significance level. The histogram and Quantile-Quantile plot of the
residuals are also shown, along with the residuals (Supplementary Fig. 9-11a-c), to visually
corroborate the results of the Lilliefors test.

125 (b) We tested that the residuals were not auto-correlated by estimating their persistence time 125 (τ) using a first-order autoregressive model (AR(1), ref. ¹⁰). We expect τ to be small when the

126 model residuals are independent. We first tried to estimate τ using the TAUEST software¹⁰. It

127 returned an error because our records are not only unevenly spaced but also some ages are

128 replicated. Hence, we extracted equations 2-3 from TAUEST (ref. ¹⁰) to estimate if fluctuations

129 in the residuals have a memory (if any) considerably smaller than the events of interest,

130 e.g., $\tau < 1000$ yrs. Equation 2 in ref. ¹⁰ defines the parameter *a* as a function of τ ; $a = \exp(-1/\tau)$,

131 and equation 3 in ref. ¹⁰ is the least-squares estimator, S(a), which is minimized to estimate *a*.

132 We calculated S(a) for the Δ_{47} residuals 5,000 times using the unique ages (i.e., no replicated

133 ages), with the option of randomly drawing a Δ_{47} residuals value when a sample has Δ_{47} -

134 replicates >1. We compare the results to that of a system that has no memory in it. For this, we

135 randomised (i.e., induced $\tau = 0$ yrs) each of the 5,000 Δ_{47} residual realizations and calculated

136 S(*a*). Supplementary Figures 9-11d shows the 97.5th, 50^{th} , 2.5^{th} percentiles for the 5,000

137 instances that S(a) was calculated before (blue) and after (red) residuals were randomised. For

138 all the cores the two systems have similar behaviours implying that τ , and in turn the

139 autocorrelation, in the residuals is very small. This is corroborated when looking at the kernel

140 density estimate of τ (Supplementary Fig. 9-11e), a rough estimate of the memory in the

141 residuals, which is always <1000years.

(c) The heteroscedasticity was evaluated by checking that the squared residuals¹¹ were not
autocorrelated, following the same procedure explained in (b). Supplementary Figs. 9-11f-g
show that, for all three sediment cores, the squared residuals show no autocorrelation.

References

147		
148	1	Zaarur, S., Affek, H. P. & Brandon, M. T. A revised calibration of the clumped isotope
149		thermometer. Earth and Planetary Science Letters 382 , 47-57,
150		DOI:10.1016/j.epsl.2013.07.026 (2013).
151	2	Martrat, B., Jimenez-Amat, P., Zahn, R. & Grimalt, J. O. Similarities and dissimilarities
152		between the last two deglaciations and interglaciations in the North Atlantic region.
153		Quaternary Science Reviews 99, 122-134, DOI:10.1016/j.quascirev.2014.06.016 (2014).
154	3	Marino, G. et al. Bipolar seesaw control on last interglacial sea level. Nature 522, 197-
155		201, DOI:10.1038/nature14499 (2015).
156	4	Krzywinski, M. & Altman, N. Points of Significance: Visualizing samples with box
157		plots. Nat Meth 11, 119-120, DOI:10.1038/nmeth.2813 (2014).
158	5	Spitzer, M., Wildenhain, J., Rappsilber, J. & Tyers, M. BoxPlotR: a web tool for
159		generation of box plots. Nat Meth 11, 121-122, DOI:10.1038/nmeth.2811 (2014).
160	6	Tukey, J. (Addison-Wesley, 1977).
161	7	Grant, K. M. et al. Rapid coupling between ice volume and polar temperature over the
162		past 150,000years. Nature 491, 744-747, DOI:10.1038/nature11593 (2012).
163	8	Jarque, C. M. & Bera, A. K. Efficient tests for normality, homoscedasticity and serial
164		independence of regression residuals. Economics Letters 6, 255-259, DOI:10.1016/0165-
165		1765(80)90024-5 (1980).
166	9	Lilliefors, H. W. On the Kolmogorov-Smirnov Test for Normality with Mean and
167		Variance Unknown. Journal of the American Statistical Association 62, 399-402,
168		DOI:10.2307/2283970 (1967).
169	10	Mudelsee, M. TAUEST: a computer program for estimating persistence in unevenly
170		spaced weather/climate time series. Computers & Geosciences 28, 69-72 (2002).
171	11	Li, W. K. & Mak, T. K. ON THE SQUARED RESIDUAL AUTOCORRELATIONS IN
172		NON-LINEAR TIME SERIES WITH CONDITIONAL HETEROSKEDASTICITY.
173		Journal of Time Series Analysis 15, 627-636, DOI:10.1111/j.1467-9892.1994.tb00217.x
174		(1994).
175	12	Grant, K. M. et al. The timing of Mediterranean sapropel deposition relative to
176		insolation, sea-level and African monsoon changes. Quaternary Science Reviews 140,
177		125-141, DOI:10.1016/j.quascirev.2016.03.026 (2016).
178	13	Grant, K. M. et al. A 3 million year index for North African humidity/aridity and the
179		implication of potential pan-African Humid periods. Quaternary Science Reviews 171,
180		100-118, DOI:10.1016/j.quascirev.2017.07.005 (2017).
181	14	Rohling, E. J., Marino, G. & Grant, K. M. Mediterranean climate and oceanography, and
182		the periodic development of anoxic events (sapropels). <i>Earth-Science Reviews</i> 143, 62-
183		97, DOI:10.1016/j.earscirev.2015.01.008 (2015).
184	15	Rohling, E. J. et al. Reconstructing past planktic foraminiferal habitats using stable
185		isotope data: a case history for Mediterranean sapropel S5. Marine Micropaleontology
186		50 , 89-123, DOI:10.1016/S0377-8398(03)00068-9 (2004).
187	16	Berger, A. Long-Term Variations of Daily Insolation and Quaternary Climatic Changes.
188		Journal of the Atmospheric Sciences 35, 2362-2367, DOI:10.1175/1520-
189		0469(1978)035<2362:ltvodi>2.0.co;2 (1978).
190		

- 191 192
- 192

194 Supplementary Figure 1. TII and last interglacial temperature gradient with respect to 195 late-Holocene in the wMed and eMed (individual records). Gradients were calculated by 196 subtracting the late-Holocene Δ_{47} -temperature average values (~17±2 °C for wMed and ~22±2 197 °C for eMed records) from each of the 5,000 simulations of **a**, (in red) ODP975; **b**, LC21; and **c**, ODP967 Δ_{47} -temperature records, respectively. In **a** and **c** we also show the U^K₂₇-temperature 198 record from ODP976 normalized (blue) to the late-Holocene temperature value obtained from 199 200 ref.². Light and dark shadings correspond to the 95 % and 68 % CI of the temperature gradients. Dashed grey and black boxes highlight the last interglacial S5 interval⁷ (~128.3-121.5 ka) and 201 HS11 (135-130 ka, ref. 3), respectively. Gaps in the final Δ_{47} -records correspond to intervals 202 203 where the age uncertainties of the Δ_{47} -replicates do not overlap.

206

207 Supplementary Figure 2. Temperature error across the ODP975 G. bulloides record. a, Δ_{47} -208 replicates. b, Upper and lower limits of the 68 % CI (thick lines) and 95 % CI (dashed lines) 209 subtracted from the median in the Δ_{47} -temperature ODP975 record shown in c. Grey boxes 210 highlight the gaps in the Δ_{47} -replicates data and the effect in the errors. Notice that our dataprocessing approach accounts for intervals of low Δ_{47} -replicates density that result from low-211 212 foraminifera abundances. The confidence intervals become larger (smaller) during periods of 213 low (high) Δ_{47} -replicates density. Gaps in the final Δ_{47} -record correspond to intervals where the 214 age uncertainties of the Δ_{47} -replicates do not overlap.

Supplementary Figure 3. Temperature and $\delta^{48}O_{SW}$ contrast across the Mediterranean Sea during HS11. Thick lines correspond to the median of 5,000 Monte Carlo simulations of the Δ_{47} -replicates and ages within their (1 σ) uncertainties. Light and dark shadings correspond to the 95 % and 68 % CI of the records. Light green box highlights the HS11 (135-130 ka, ref. ³). Gaps in the final Δ_{47} -records correspond to intervals where the age uncertainties of the Δ_{47} -replicates do not overlap. In panel b we only shoe the 95 % CI of the $\delta^{48}O_{SW}$ records.

Supplementary Figure 4. ODP967 age model. a, XRF-Ba counts from LC21 (ref. 12) (black) and ODP967 (ref.^{13,14}) (orange). b, Bulk δ^{18} O records from LC21 (black) and ODP967 (orange). Blue diamonds in b are the tie points used to tune the ODP967 to LC21 record from (ref.⁷). Comparison of a high temporal resolution *G. ruber* δ^{18} O_C c, and δ^{13} C_C d, record from LC21 (ref. ⁷) and ODP967 on the LC21 chronology. Yellow boxes highlight the gaps in ODP967 *G. ruber* δ^{18} O record that complicated the synchronisation across TII.

236 Supplementary Figure 5. Frequency response of a 5 kyr Moving Gaussian Window

(MGW) filter. a, random (white) noise time series before (red) and after (blue) applying the 5
kyr MGW filter. b, frequencies in the random (white) noise time series before (red) and after
(blue) applying the 5 kyr MGW filter. Observe how the high frequencies are attenuated after
applying the filter.

244 Supplementary Figure 6. Δ_{47} -temperature records when outlier test uses W = 1.5. a,

ODP975. **b**, LC21 and **c**, ODP967. Light and dark shadings correspond to the 95 % and 68 % CI

of the records. For comparison, we show in green the median of each record using the

- 247 conservative outlier test (same records shown in the main figures). Gaps in the final Δ_{47} -records
- 248 correspond to intervals where the age uncertainties of the Δ_{47} -replicates do not overlap.

249

250 Supplementary Figure 7. Effect of the number of Monte Carlo simulations on the final 251 **ODP975** Δ_{47} -temperature record. a, 500; b, 1,000; c, 5,000; d,10,000 simulations . Light and 252 dark shadings correspond to the 95 % and 68 % CI of the records. Note that the shape of the 253 record is not affected, but the confidence intervals are less smooth as the number of simulations decrease. In grey we highlight the gaps in the Δ_{47} -records. Observe how the data processing 254 255 approach accounts for these gaps by increasing the confidence intervals. However, for avoiding 256 over-interpretation of the data we have removed from the main figures the intervals where the age uncertainties of the Δ_{47} -replicates do not overlap. 257

- 260 Supplementary Figure 8. Flow chart summarizing the steps of the non-traditional data-
- **analysis approach.**

Supplementary Figure 11. Residuals analysis for the Δ_{47} - record from ODP967. In the 287 288 upper panels (a-c) we check that residuals are normally distributed, in the middle panels (d-e) 289 we check that residuals are not auto-correlated (persistence time $\tau < 1,000$ year), and in the lower 290 panels (f-g) we check residuals for conditional heteroscedasticity. a, stem plot of the residuals between the measured Δ_{47} -replicates and the 50th percentile of the Δ_{47} MGW filtered Monte 291 292 Carlo realizations. b, histogram of the residuals. c, Quantile-quantile plot of the residuals. d, 293 variation of S(a) - the least-squares estimator that minimizes $a (a = \exp(-1/\tau))$ - when a varies 294 from 0.8 to 1 and we use the residuals (blue) or the randomised residuals (red). e, kernel density 295 estimate of τ . **f-g** are like **d-e**, respectively, but using the squared-residuals.

297 Supplementary Table 1. Insolation-induced extra warming in the summer mixed layer

298 during the onset of S5 with respect to late-Holocene. Summer mixed layer value at present is

299 ~50m and it is expected to shoal during sapropel periods¹⁵. Insolation was obtained from ref.¹⁶

300 using AnalySeries software. We averaged summer (June 21st) and winter insolation (December

- 301 21st) at 34°N during the late-Holocene (0-2 ka) and onset of the S5 (127-129 ka). We calculated
- 302 the resultant mixed layer heating for three scenarios: a) using late-Holocene insolation and
- 303 present mixed layer; b) onset of S5 insolation and present mixed layer; c) onset of S5 insolation
- and shallower mixed layer (35 m). Attenuation (a) in all cases was varied between 0.4-0.6 (20 %
- 305 of that in Athens).

			Surface water heating (°C)			S5-Holocene gradient (°C)			
	Insolation (W/m ²)	variability (W/m ²)	mixed layer (m)	a=0.4	a=0.5	a=0.6	a=0.4	a=0.5	a =0.6
a) Holocene	340	150	50	15.8	12.7	9.5	-	-	-
b) S5 onset	358	180	50	17.5	14.0	10.5	1.7	1.3	1.0
c) S5 onset	358	180	35	25.0	20.0	15.0	9.2	7.3	5.5

306

307 Supplementary Table 2. Tie points for the ODP967 age model based on the radiometrically

308 constrained chronology⁷ for LC21

ODP967 depth (m)	Age (ka) synchronized to LC21	$\pm 1\sigma$ error age	tie point from
5.50	107.80	0.54	XRF
7.50	121.50	1.71	XRF
7.61	125.48	1.36	δ^{18} O bulk
7.80	128.30	1.08	XRF
8.02	135.69	0.79	δ^{18} O bulk
9.72	175.63	1.00	XRF

309

310 Supplementary Table 3.Carbonate standards values for data processing

	δ^{13} C (‰, VPDB)	δ ¹⁸ Ο (‰, VPDB)	Δ_{47} (‰, CDES)
ETH-1	2.0	-2.17	0.265
ETH-2	-10.2	-18.59	0.267
ETH-3	1.67	-1.76	0.703
ETH-4	-10.22	-18.66	0.522