
Performance Enhancement of a Brain-Computer Interface using High-Density Multi-Distance NIRS

Jaeyoung Shin¹, Jinuk Kwon¹, Jongkwan Choi² and Chang-Hwan Im^{1*}
¹Department of Biomedical Engineering, Hanyang University, Seoul, Korea
²OBELAB, Seoul, Korea

Supplementary information

Figure S1 illustrates the low-density typical LA and locations of channels. All sources and detectors were used to implement the high-density SD separation (see Figure 1) while sources and detectors were used selectively to implement the low-density typical LA.

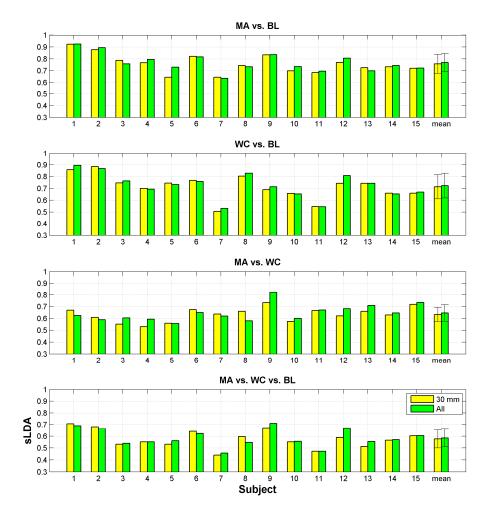


Figure S1. Low-density typical lattice SD arrangement (top) and corresponding NIRS channels (bottom). Red and blue circles are sources and detectors, respectively.

^{*}correspondence: <u>ich@hanyang.ac.kr</u>

Figure S2 illustrates the comparison between classification accuracies obtained using 30 mm SD separation and the combination of all four SD separations.

Figure S2. Comparison of classification accuracies for 30 mm SD separation and combination of all four multi-distance SD separations. An errorbar indicates the standard deviation.