Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2015

Supplementary Information

Systematic re-evaluation of the bis(2-hydroxyethyl)disulfide (HEDS) assay reveals an alternative mechanism and activity of glutaredoxins

Patricia Begas, Verena Staudacher, and Marcel Deponte*

Department of Parasitology, Ruprecht-Karls University, D-69120 Heidelberg, Germany

Figure S1:

Alternative evaluation of the HEDS assay kinetics for ScGrx7 (this file)

Figure S2:

Comparison of the HEDS and GSSEtOH assay for PfGrx (this file)

Table S1:

Apparent kinetic parameters of ScGrx7 with GSH and GSSEtOH (this file)

Table S2:

Estimated initial reaction velocities for non-enzymatic reaction 1 (Excel file)

Table S3:

Estimated time-dependent concentration of GSH and GSSEtOH (Excel file)

Table S4:

Comparison of measured reaction velocities in the HEDS and GSSEtOH assay (Excel file)

Figure S1. Alternative evaluation of the steady-state kinetics obtained for ScGrx7 in the HEDS assay at three different HEDS and variable GSH concentrations. In both panels, direct and Lineweaver-Burk plots are shown in the upper and lower row, respectively. (A) The concentration of GSH plotted on the x-axis was adjusted assuming a conversion of different amounts of HEDS in reaction 1 before the assay was started by the addition of ScGrx7. [GSH]_i and [HEDS]_i indicate the initial concentrations before pre-incubation. Representative plots for a putative conversion of 0, 10, 50 or 75% HEDS are shown from left to right. (B) The concentration of GSH was calculated using equation 1 based on hypothetical equilibrium constants. Representative plots for K^{app} values of 100, 10, 0.1 or 0.01 are shown from left to right. Values for each data point in panels A and B were averaged from two independent experiments.

Figure S2. Comparison of the HEDS and GSSEtOH assay for PfGrx. (A) GSH-dependent steady-state kinetics for PfGrx at variable HEDS concentrations. (B) GSH-dependent steady-state kinetics for PfGrx at variable GSSEtOH concentrations. Data points were averaged from replicate measurements of a single protein purification and fitted according to Michaelis-Menten and Lineweaver-Burk theory in the left and right panels, respectively.

[GSH]	[GSSEtOH]	k_{cat}^{app}	K _m ^{app}	$k_{cat}^{app}/K_{m}^{app}$
(µM)	(µM)	(s ⁻¹)	(μM)	($\mu M^{-1}s^{-1}$)
variable	25	$\begin{array}{c} 4.7 \pm 0.1 \\ 10.2 \pm 0.2 \\ 19.4 \pm 0.3 \\ 28.0 \pm 0.5 \end{array}$	11.8 ± 1.0^{a}	0.40 ^a
variable	50		33.1 ± 4.9 ^a	0.31 ^a
variable	100		53.2 ± 4.6 ^a	0.37 ^a
variable	150		62.5 ± 5.1 ^a	0.45 ^a
50 100 200 300 500 1000	variable variable variable variable variable variable	$24.2 \pm 4.2 \\ 37.7 \pm 0.9 \\ 88.6 \pm 18 \\ 163 \pm 34 \\ 244 \pm 35 \\ 708 \pm 83$	136 ± 40^{b} 196 ± 7^{b} 467 ± 120^{b} 853 ± 221^{b} 1291 ± 211^{b} 3687 ± 466^{b}	0.18 ^b 0.19 ^b 0.19 ^b 0.19 ^b 0.19 ^b 0.19 ^b

Table S1. Apparent kinetic parameters of ScGrx7 with GSH and GSSEtOH.

^{**a**} $K_{\rm m}^{\rm app}_{\rm (GSH)}$ and $k_{\rm cat}^{\rm app}/K_{\rm m}^{\rm app}_{\rm (GSH)}$ ^{**b**} $K_{\rm m}^{\rm app}_{\rm (GSSEtOH)}$ and $k_{\rm cat}^{\rm app}/K_{\rm m}^{\rm app}_{\rm (GSSEtOH)}$