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Table S1 Proteomic results of isolated β-carboxysomes from Syn7942. The column of Normalized amount displays the amount of 
each of the carboxysomal proteins detected in isolated β-carboxysomes using mass spectroscopy, normalized against the amount of 
the least abundant protein CcmL. 

 Table S2 Comparison of the dimensions of isolated carboxysomes from different species using TEM. 
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Protein Normalized amount (fmol)

RbcL 4530.8 ± 432.8

RbcS 1744.5 ± 765.1

CcmM 1567.1 ± 412.8

CcmK2 116.6 ± 22.0

CcaA 81.8 ± 12.6

CcmK4 18.7 ± 0.4

CcmL 1

Type Species Diameter (nm) Range (nm) Reference

α-carboxysome Halothiobacillus neapolitanus 117.3 ± 6.9 97 – 132 1

α-carboxysome Halothiobacillus neapolitanus 100 88 – 108 2

α-carboxysome Halothiobacillus neapolitanus 134 ± 8 116 – 169 3

α-carboxysome Synechococcus WH8102 123 ± 5 114 – 137 4

α-carboxysome Prochlorococcus marinus MED4 90 70 – 100 5

β-carboxysome Synechococcus elongatus PCC7942 149.90 ± 13.78 100 – 200 This study
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Fig. S1 Immunoblotting analysis of different β-carboxysome fractions using anti-RbcL antibody. Immunoblotting assays were carried 
out on the SDS-PAGE gel shown in Fig. 1C. RbcL (~50 kDa) was detected in all sucrose fractions and was most abundant in the 40 % 
sucrose fraction. 

Fig. S2 TEM images of partial β-carboxysome fragments in the 20 and 30% sucrose fractions. 
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Fig. S3 TEM images of intact β-carboxysomes in the 40% sucrose fraction. (A) TEM images of individual intact β-carboxysomes. The 
dashed arrows represent the vertex-to-vertex measurements for determining the β-carboxysome diameter as described in Fig. 4B. 
(B) TEM images of β-carboxysome aggregations (Fig. 4C). Scale bar: 100 nm.

Fig. S4 Combined confocal and AFM imaging of β-carboxysomes fused with GFP. (A) A merged image of the transmitted and GFP 
channels captured using a hybrid JPK AFM-Zeiss 880 confocal microscope. The white dashed square represents a 10 × 10 µm field of 
view of AFM after the engage. (B) Fluorescence image of a single β-carboxysome in the view highlighted by the white square in panel 
A. (C) AFM topograph of the same β-carboxysome captured simultaneously with the fluorescence image (B). The combination of 
AFM-confocal fluorescence imaging ensures the identification of β-carboxysomes on AFM substrate.
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Fig. S5 AFM images of intact β-carboxysomes. (A) AFM topograph of single β-carboxysome with a vertex and three facet boundaries 
resolved, indicated by the green dashed lines. (B) AFM topographs of aggregated β-carboxysomes, reminiscent of EM results (Fig. 4C, 
Fig. S3B). 

Fig. S6 Statistical analysis of the nanomechanical properties of β-carboxysomes. (A) Histogram of the β-carboxysome stiffness (kCB, n 
= 25, Equation 1). (B) Histogram of Young’s moduli of β-carboxysomes (EH, n = 20) using the Hertzian model (Equation 3). (C) There is 
no correlation between Young’s moduli and the carboxysome diameter (y = -0.0039x + 1.1, R2 = 0.2278). (D) Histogram of Young’s 
moduli of β-carboxysomes (ES, n = 25) using the thin shell model (Equation 2). 
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Fig. S7 Characterization of P22 particles. (A) TEM images of isolated P22 bacteriophage. (B) AFM topograph of a single P22 
bacteriophage. The average height is 65.1 ± 5.9 nm (n = 20), in good agreement with previous AFM data.6 (C) Force-indentation curves 
of individual P22 particles. (D) The force-indentation curves of a single β-carboxysome (circle), a single P22 particle (square) and 
simulated force-indentation curves (colored dash lines) using a Hertz contact model in a sample with Young’s moduli of 0.5, 1 and 10 
MPa. The height of P22 particles is 65.1 ± 5.9 nm (n = 20) and the spring constant of P22 is approximately 192.38 ± 63.77 pN/nm (n 
= 8). Young’s moduli of P22 fitted to the linear model and the Hertzian model are 101.04 ± 32.29 MPa and 11.06 ± 8.77 respectively 
(n = 8). Young’s modulus of β-carboxysomes obtained using the Hertzian model (EH = 0.59 ± 0.34 MPa, n = 20) is significantly lower 
than those of P22, demonstrating the mechanical softness of β-carboxysome structures compared with P22.
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