Supporting Information

Direct characterization of the native structure and mechanics of cyanobacterial carboxysomes

Matthew Faulkner,^a Jorge Rodriguez-Ramos,^a Gregory F. Dykes,^a Sian V. Owen,^a Selene Casella,^a Deborah M. Simpson,^a Robert J. Beynon^a and Lu-Ning Liu^{a,*}

^oInstitute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom. E-mail: luning.liu@liverpool.ac.uk.

Table S1 Proteomic results of isolated β -carboxysomes from Syn7942. The column of Normalized amount displays the amount of each of the carboxysomal proteins detected in isolated β -carboxysomes using mass spectroscopy, normalized against the amount of the least abundant protein CcmL.

Protein	Normalized amount (fmol)		
RbcL	4530.8 ± 432.8		
RbcS	1744.5 ± 765.1		
CcmM	1567.1 ± 412.8		
CcmK2	116.6 ± 22.0		
CcaA	81.8 ± 12.6		
CcmK4	18.7 ± 0.4		
CcmL	1		

Table S2 Comparison of the dimensions of isolated carboxysomes from different species using TEM.

Туре	Species	Diameter (nm)	Range (nm)	Reference
α-carboxysome	Halothiobacillus neapolitanus	117.3 ± 6.9	97 – 132	1
α-carboxysome	Halothiobacillus neapolitanus	100	88 - 108	2
α-carboxysome	Halothiobacillus neapolitanus	134 ± 8	116 – 169	3
α-carboxysome	Synechococcus WH8102	123 ± 5	114 – 137	4
α-carboxysome	Prochlorococcus marinus MED4	90	70 - 100	5
β-carboxysome	Synechococcus elongatus PCC7942	149.90 ± 13.78	100 - 200	This study

Fig. S1 Immunoblotting analysis of different β -carboxysome fractions using anti-RbcL antibody. Immunoblotting assays were carried out on the SDS-PAGE gel shown in Fig. 1C. RbcL (~50 kDa) was detected in all sucrose fractions and was most abundant in the 40 % sucrose fraction.

Fig. S2 TEM images of partial $\beta\text{-}carboxysome$ fragments in the 20 and 30% sucrose fractions.

Fig. S3 TEM images of intact β -carboxysomes in the 40% sucrose fraction. (A) TEM images of individual intact β -carboxysomes. The dashed arrows represent the vertex-to-vertex measurements for determining the β -carboxysome diameter as described in Fig. 4B. (B) TEM images of β -carboxysome aggregations (Fig. 4C). Scale bar: 100 nm.

Fig. S4 Combined confocal and AFM imaging of β -carboxysomes fused with GFP. (A) A merged image of the transmitted and GFP channels captured using a hybrid JPK AFM-Zeiss 880 confocal microscope. The white dashed square represents a 10 × 10 µm field of view of AFM after the engage. (B) Fluorescence image of a single β -carboxysome in the view highlighted by the white square in panel A. (C) AFM topograph of the same β -carboxysome captured simultaneously with the fluorescence image (B). The combination of AFM-confocal fluorescence imaging ensures the identification of β -carboxysomes on AFM substrate.

Fig. S5 AFM images of intact β -carboxysomes. (A) AFM topograph of single β -carboxysome with a vertex and three facet boundaries resolved, indicated by the green dashed lines. (B) AFM topographs of aggregated β -carboxysomes, reminiscent of EM results (Fig. 4C, Fig. S3B).

Fig. S6 Statistical analysis of the nanomechanical properties of β -carboxysomes. (A) Histogram of the β -carboxysome stiffness (k_{CB} , n = 25, Equation 1). (B) Histogram of Young's moduli of β -carboxysomes (E_H , n = 20) using the Hertzian model (Equation 3). (C) There is no correlation between Young's moduli and the carboxysome diameter (y = -0.0039x + 1.1, $R^2 = 0.2278$). (D) Histogram of Young's moduli of β -carboxysomes (E_S , n = 25) using the thin shell model (Equation 2).

Fig. S7 Characterization of P22 particles. (A) TEM images of isolated P22 bacteriophage. (B) AFM topograph of a single P22 bacteriophage. The average height is 65.1 ± 5.9 nm (n = 20), in good agreement with previous AFM data.⁶ (C) Force-indentation curves of individual P22 particles. (D) The force-indentation curves of a single β -carboxysome (circle), a single P22 particle (square) and simulated force-indentation curves (colored dash lines) using a Hertz contact model in a sample with Young's moduli of 0.5, 1 and 10 MPa. The height of P22 particles is 65.1 ± 5.9 nm (n = 20) and the spring constant of P22 is approximately 192.38 ± 63.77 pN/nm (n = 8). Young's moduli of P22 fitted to the linear model and the Hertzian model are 101.04 ± 32.29 MPa and 11.06 ± 8.77 respectively (n = 8). Young's modulus of β -carboxysomes obtained using the Hertzian model ($E_{\rm H} = 0.59 \pm 0.34$ MPa, n = 20) is significantly lower than those of P22, demonstrating the mechanical softness of β -carboxysome structures compared with P22.

Supporting References

- 1. Y. A. Holthuijzen, J. F. L. van Breemen, W. N. Konings and E. F. J. van Bruggen, Archives of Microbiology, 1986, 144, 258-262.
- 2. M. F. Schmid, A. M. Paredes, H. A. Khant, F. Soyer, H. C. Aldrich, W. Chiu and J. M. Shively, J Mol Biol, 2006, 364, 526-535.
- 3. C. V. Iancu, D. M. Morris, Z. Dou, S. Heinhorst, G. C. Cannon and G. J. Jensen, J Mol Biol, 2010, 396, 105-117.
- 4. C. V. Iancu, H. J. Ding, D. M. Morris, D. P. Dias, A. D. Gonzales, A. Martino and G. J. Jensen, J Mol Biol, 2007, 372, 764-773.
- 5. E. W. Roberts, F. Cai, C. A. Kerfeld, G. C. Cannon and S. Heinhorst, J Bacteriol, 2012, 194, 787-795.
- A. Llauro, D. Luque, E. Edwards, B. L. Trus, J. Avera, D. Reguera, T. Douglas, P. J. Pablo and J. R. Caston, Nanoscale, 2016, 8, 9328-9336.