Step		Method	
Preparation			
Binding pocketCytoplasmic residues	F	Run ICMPocketFinder, select residues around pocket Define cytoplasmic domain by selecting Ballosteros-Weinstein (BW) residues	1.5 Å radius around po BW cytoplasmic residue
Independent replica			80 replicas
• Initialise			
 Minimise Starting structure 	(GROMACS with explicit waters	FFGMX forcefield, wate epsilon_r=1, default pdt steps.
	,		2 itorativo roundo
			o iterative rounus
 Directory 			20 directories
 Sample receptor Select receptor Sample binding Select binding Rebuild Minimise Dock Score 	tor main chain C or S g pocket side chains t pocket S / / / / / / / / / / / / / / / / / / /	CONCOORD generate conformations Select conformations under a maximum RMSD from the input CONCOORD generate conformations Select conformations that conserved % of binding pocket polar residues from input Add cytoplasm side chains with scoomp GROMACS with explicit waters CM docking, binding pocket refinement Score docked pose with ICM, receptor with OPUS_PSP	x30 conformations. Min cytoplasmic residues. U < 1.2 Å RMSD. x5 conformations. Samp 8/10 polar residues. Consider ligand in energ (Identical to minimisation Flexible ligand docking Select best scored conf
 Scoring 			
Select	E	Best ICM scored from complexes in this directory	
 Final scoring (quantitative and qualit 	ative) (OPUS-ICM rank all complexes and cluster by IFP	Up to 1,920,000 completer ranked by OPUS-ICM. The Analyse best scoring LE Jaccard distance.

References

- 1. Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983;22: 2577–2637.
- 2. Jorgensen WL, Tirado-Rives J. The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc. 1988;110: 1657-1666.

Parameters

ocket. es: 1.48, 2.51, 3.38, 4.51, 5.50, 6.43, 7.45

er model SPC, Electrostatics: PME and b2gmx residue charge, BFGS method, 5000

nput as reference. 10000 regularisation steps.

imum 200 distance definition for each atom. Fix Jse random seed.

ple binding pocket side chains only.

rgy calculations on above) to pre-calculated energy grid. Docking effort: 5. formation. Refine residues 2 Å around ligand.

exes generated and up to 640 LDM complexes The top 25 LDM complexes are clustered by IFP. OM complex from each cluster at cutoff ~0.7