
Supplementary Information

Supplementary Figures

Supplementary Figure 1: Temperature dependence of the electrical resistivity at 0 T and
2 T. Electrical resistivity of Bi0.35Sr0.18Ca0.47MnO3 (BSCMO) as a function of temperature and
thermal cycling. As shown in the inset, a resistivity anomaly associated with charge-ordering
occurs just above room temperature (315K) and has thermal cycling dependence (color indi-
cates heating or cooling). Instead of a sharp phase transition, we observe a broad and grad-
ual transition. The charge-ordering critical temperature is seen more clearly in the d(log ρ)

dt
plot.

Measurements were repeated in the absence and presence of a∼2 T applied magnetic field com-
parable to that of the objective lens at the position of the specimen. The critical temperature and
functional form of the resistivity anomaly associated with charge-ordering are unchanged at 0
T and∼2 T, suggesting that the charge-ordered phase is intrinsic to the crystal and robust to the
applied field. Note that resistivity measurements are performed on single crystals (∼0.5 × 0.5
mm) with multiple orthorhombic twin domains (typical size ∼100µm). The nominal critical
temperature was determined by finding the minima of the four d(log ρ)

dt
curves following a mild

Gaussian smoothing, yielding Tc = 315± 0.5K.
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Supplementary Figure 2: Temperature dependence of the magnetic susceptibility. Mag-
netic susceptibility (left axis, filled symbols) and its temperature derivative (right axis, open
symbols) of Bi0.35Sr0.18Ca0.47MnO3 as a function of temperature. A phase transition is appar-
ent as a peak in the derivative curve at Tc ∼ 318 K, which is comparable to that indicated by
resistivity measurements.
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Supplementary Figure 3: Linear polarized optical microscopy of BSCMO twin domains.
Linear polarized optical microscopy shows orthorhombic twin domains of ∼100 µm extent in
the crystals under study. Left and right images are taken under different analyzer angles (A) with
fixed light polarization direction (P). In contrast, the electron diffraction data shown corresponds
to a∼1 µm diameter selected area, and the HAADF-STEM data has a∼30 nm field of view. No
evidence of twinning exists in any diffraction patterns of the regions examined, indicating the
area of study did not include twins of the a/b or b/c axes. Moreover, the STEM data presented
here is representative of many datasets acquired over an area of ∼2 µm extent, suggesting that
the phenomena we observe cannot be the result of imaging along a twin boundary.
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Supplementary Figure 4: Electron diffraction of BSCMO. Electron diffraction pattern over
1µm area indexed in the Pnma space group. Satellite peaks corresponding to modulations
along orthogonal directions are marked by blue and red arrows. Transverse, displacive lattice
modulations are indicated.
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Supplementary Figure 5: Longitudinal vs. transverse periodic lattice displacements
(PLDs) in Fourier space. (A,B) Reciprocal space structure of a square lattice modulated
by a longitudinal, displacive modulation along x and y, respectively. (C,D) Reciprocal space
structure of a square lattice modulated by a transverse, displacive modulation along x and y,
respectively. STEM Fourier transforms and diffraction of BSCMO indicate transverse PLDs.
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Supplementary Figure 6: Spectroscopic mapping shows minimal Mn valence changes.
Loudon et al (13) placed an upper bound of ±0.04 on any valence changes in the Mn ions
in a compositional variant of BSCMO (x = 0.5, y = 0.1) using electron energy loss spec-
troscopy (EELS). Here, we performed aberration-corrected spectroscopic mapping, collecting
a full EELS spectrum at each scanned beam position with a pixel dwell time of 0.05 s and and
energy dispersion of 0.25 eV. (A) A simultaneously recorded HAADF image shows atomic res-
olution and little sample drift. Background subtracted EELS spectra integrated along the (B)
horizontal and (C) vertical directions show two peaks at ∼640 eV corresponding to the Mn L3

and L2 edges (D). (E) Integrating over both L2,3 peaks yields a map of the Mn distribution.
Following Loudon et al., we calculated the white line ratio, the ratio of the integrated intensities
of L3 to L2 (gray regions, D), which tracks valence change. (F) Mapping the white line ratio
shows no structure or periodicity above the noise level, consistent with prior work. Note that
for (F) the EELS map has been rebinned to the lattice periodicity to improve the SNR.
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Supplementary Figure 7: Electron diffraction at 0 T and 2 T. Electron diffraction in the
presence of an applied magnetic field of (A) ∼0 T and (B) ∼2 T. The latter measurement is
representative of the sample conditions during STEM imaging, during which the objective lens
of the electron microscope induces a strong magnetic field perpendicular to the sample plane.
The former measurement was performed with the objective lens turned off, under an estimated
magnetic field of < 3 mT. Note that the slight bending of the diffraction pattern in (A) results
from the imperfect electron optics in field-free conditions. The two diffraction patterns are
otherwise comparable, further indicating that the PLDs under study are robust to the object
lens’ magnetic field.
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Supplementary Figure 8: PLD map data processing. PLD maps are generated beginning
with a single high resolution STEM image, obtained by cross correlating and averaging∼20-30
fast scanned images (C). A Fourier transform is calculated (A), and all satellite peaks corre-
sponding to a modulation wavevector of interest are extracted (upper inset). These satellite
peaks are damped to the background level (B, upper inset) while the phase is left unchanged
(A,B, lower insets). Taking an inverse Fourier transform yields a reference lattice (D). The dif-
ference between the original and reference image qualitatively depict the PLD structure (H). All
atomic lattice positions are extracted using 2D Gaussian fits for both the original and calculated
reference lattice (E,F). The difference between the fit positions at each lattice site yields the
PLD displacements (I). The complete data flow is summarized in (G).
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Supplementary Figure 9: Comparison to PLD measurement without Fourier damping.
Line profiles (A-C) of the transverse component of the displacements are calculated using both
the modulation damping approach (red) and by defining a local reference line in real space,
without any Fourier space modifications (black). Circles and error bars represent the mean and
standard deviations, respectively, of the transverse displacement measurements across a single
row of 8-12 lattice sites in three well-ordered regions (D-F). The two approaches yield consis-
tent results. We believe the larger error bars of the real-space approach primarily reflect that,
unlike the modulation damping approach, this method does not account for image distortions,
as well as the relative imprecision of using locally defined lines as reference positions.
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Supplementary Figure 10: Effect of abrupt PLD features. Simulated data with antiphase
domains in the PLD phase were generated with varying domain boundary width, by blurring
a step function phase field with Gaussian kernels given by σ = 0.25λ, σ = 0.5λ, σ = λ, and
σ = 2λ (A-D). Line profiles (E) of the transverse displacement components are plotted for the
simulated (black) and calculated (color) PLDs (A-D, above), along with their corresponding
residuals (A-D, below). Dark/light gray boxes in A-D indicate ±σ/ ± 2σ about the domain
boundary. Dark/light regions in E indicate PLD phase values of 0/π, with the σ = 2λ case
shown here. The PLDs are accurately captured everywhere for σ = 2λ. The remaining cases
all capture the PLDs accurately far from the domain boundaries. For σ = λ the phase jump
is correctly captured qualitatively, but incorrectly damps the displacement amplitudes near the
boundary. For σ = 0.25λ and σ = 0.5λ the method fails at the atomic sites on the boundary.
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Supplementary Figure 11: Effect of varying mask size on real data. (A-F) Typical Fourier
peaks with reciprocal space mask diameter varying from (5.2 nm)−1 to (1.7 nm)−1 and their
respective PLD maps. When the mask size is too small (A), the amplitude of the PLD is dimin-
ished since the mask does not reflect the total intensity of the satellite peak. Once the peak is
fully captured by the mask, the mapping is insensitive to increasing mask size.

11



Supplementary Figure 12: Effect of varying mask size on mapping of a topological defect.
(A-F) Typical Fourier peaks with reciprocal space mask diameter varying from (5.2 nm)−1 to
(1.7 nm)−1 and the respective PLD maps of a topological defect. The topological defect is
missing in A because the mask does not fully capture the satellite peak. For mask sizes that
fully capture by the satellite peaks, the mapping is insensitive to increasing mask size.
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Supplementary Figure 13: Effect of varying mask size on simulated data. Simulated data
with a Heavyside function antiphase domain boundary in the PLD phase was generated, and the
PLD reconstructed using 7 different mask sizes. Line profiles of the transverse displacement
components are plotted for the simulated (black) and calculated (color) PLDs (A), along with
their corresponding residuals (B), for the sites indicated in the PLD map (C). The horizontal bars
in A (gray) and B (colors) indicate±2 pm. All mask sizes accurately capture the displacements
far from the interface, and fail to capture the true displacements of the two sites at the atomically
sharp antiphase interface. Very small Fourier space masks (red, brown) result in artifacts in the
residuals several lattice spacings or more from the interface. For large Fourier space masks
(light blue, dark blue, purple) the residuals are on the order of the ±2 pm error bars 2 lattice
spacings from the interface. The typical mask size used on experimental data is bolded (light
blue, (1.7 nm)−1.
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Supplementary Figure 14: PLD mapping in STO vs BSCMO The Fourier transform of
SrTiO3 (STO) data does not contain satellite peaks about the Bragg peaks (A), while the Fourier
transform of BSCMO data does (D). The damping procedure was performed on both STO data
(B) and BSCMO data (E) at comparable positions in Fourier space. The resulting PLD map for
STO data shows displacement vectors with a mean magnitude of 0.390 pm and no clear periodic
structure (C), in stark contrast to the strong PLD structure observed for BSCMO PLD map (F).
The image and displacement vector size scales are identical for (C) and (F).
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Supplementary Figure 15: Precision of atomic position fits (A) A histogram of distances
between neighboring Sr sites in STO data (B) is used to estimate the precision of the atomic
positions extracted via 2D Gaussian fits. A 1D Gaussian fit to the resulting histogram has
σ = 2.157 pm and FWHM= 5.078 pm. Identical analysis for the lower signal-to-noise ratio Ti
sites yields σ = 2.415 pm and FWHM= 5.687 pm.
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Supplementary Figure 16: A and B sublattice amplitudes (A) Histograms of the displace-
ment magnitudes at the PLD maxima in well-ordered regions on the A-sublattice (blue) and
B-sublattice (red). The mean magnitudes at these sites is 6.2 pm / 8.2 pm on the A- / B-
sublattices, respectively (dashed lines). (B) Scatterplots of the PLD displacement magnitude
versus polarization angle φ for the A- and B-sublattices. The dashed lines again show the mean
displacements at the sites analyzed. (C,D) Sample sites used in analyzing the displacement
magnitudes on the A- and B-sublattice are shown in C and D, respectively. To extract meaning-
ful values we examined only sites corresponding to local PLD maxima.
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Supplementary Figure 17: HAADF lattice image of BSCMO. (A) Original, unrotated
HAADF image corresponding to results in main text. (B) Raw data corresponding to the re-
gion containing the shear deformation shown in Figs. 4A-C in the main text. (C) Raw data
corresponding to the region containing the dislocation shown in Figs. 4D-F in the main text.
No dislocations are observed in the underlying lattice, supporting that observed PLD defects in
main text are intrinsic to the modulations. HAADF data are unprocessed except for registra-
tion and alignment of image series (see Methods in the main text). The A-sites exhibit varying
intensities indicating quenched impurity disorder due to Bi/Sr/Ca doping.
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Supplementary Figure 18: Energy Dispersive X-ray Spectroscopy The sample com-
position was determined using energy dispersive X-ray spectroscopy. We determined the
Bi1−xSrx−yCayMnO3 composition to be approximately x = 0.65 and y = 0.47. We observed
negligible variations in the composition across the sample.
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Supplementary Notes

Supplementary Note 1: Periodic Lattice Displacement Mapping Method

Overview

Extracting local atomic positions with picometer precision is a well established and powerful
tool for analysis of high resolution scanning transmission electron microscopy (STEM) data,
and has been used to great effect in describing, for example, local polarization in ferroelectrics,
interfacial coupling in oxide heterostructures, and tunable octahedral rotations (1–8). However,
the ability to measure the positions of atomic nuclei is a necessary but not sufficient condition
to locally map periodic lattice displacements. The key challenge is defining a reference lattice:
in order to calculate the atomic displacements, each atomic position measured in the raw data
must be compared to some suitable reference position. In ferroelectrics, defining a reference is
comparatively straightforward, for example by measuring the displacements of a central B-site
atom with respect to a surrounding A-site cage or an oxygen cage in a unit cell of ABO3 (1–5).
Here, in contrast, there exists no simple reference against which to measure the displacement
of a given atomic site, further exacerbated by the possibility of disorder, distinct sublattice
behavior, and multiple modulation wavevectors.

The method used in this report defines a reference lattice against which the displacements
of interest can be measured by leveraging the convenient decoupling of the periodic lattice
displacement (PLD) from its underlying unmodulated lattice in Fourier space: the unmodulated
lattice appears in Fourier space as the usual Bragg peaks, and the PLD as satellite peaks decorat-
ing each Bragg peak. By carefully damping the satellite peaks in Fourier space, the contribution
of the PLD only is removed, and a reference lattice can be extracted. In addition to making local
PLD mapping tenable in the first place, this approach has two notable advantages: first, multiple
independent modulations can be individually extracted and mapped because they are decoupled
in Fourier space; and second, local distortions from the imaging process are naturally accounted
for because they are present in both the original and reference images.

Below, the details of the method are described. First, the data processing procedure itself
is presented. Next, the validity of the approach is confirmed by comparison to lattice displace-
ments calculated using a coarser approach which involves only real space measurements from
the raw data. The limits and regime of validity of the approach are then discussed and illustrated
using a variety of simulated datasets, and rigorous interpretation of the extracted displacements
is addressed. The importance of judiciously choosing an appropriate Fourier space mask is then
discussed. Finally, we discuss important analytical details of our approach relating PLDs in real
space and Fourier space.

Data Processing

The algorithm used to produce periodic lattice displacement maps is summarized in Supple-
mentary Figure 8, and begins with a single high resolution STEM image (Supplementary Fig-
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ure 8c). Let I(r) be the input STEM image, where r ∈ R2, letR be the set of all atomic column
positions R, and let δ(r) be the Dirac delta function. We write the image I(r) as

I(r) =
∑
R∈R

f (r−R) (1)

= f (r) ∗
∑
R∈R

δ (r−R) (2)

where ∗ indicates a convolution and f(r) is a form factor describing the STEM signal about
each atomic site, incorporating the scattering cross section of high energy electrons with the
projected potentials of the atomic columns, the finite point spread function of the electron beam,
and channeling effects. For simplicity we consider the case of a single atomic species here,
however, it is possible to include multiple form factors fi(r).

Atomic columns in STEM images are fit to two dimensional Gaussian functions and their
positions extracted (Supplementary Figure 8e). This process can be considered a transformation
which accepts an image I(r) of the form in Supplementary Equation (1) and outputs the set of
all atomic positions in the image,R. That is

G (I(r)) = G

(
f (r) ∗

∑
R∈R

δ (r−R)

)
≡ R (3)

Above, the set R is generic; let R{0} be the set of all lattice points in an unmodulated
lattice, which we here take for simplicity to be a Bravais lattice in two dimensions, R{0} ≡
{R{0}ij = ia1 + ja2 | i, j ∈ Z}. For a lattice with a single sinusoidal modulation given by a
modulation wavevector q1, we then write the set of all lattice points as R{q1}, for a lattice with
two coexisting modulations q1 and q2 we write R{q1,q2}, and for a general set of modulation
wavevectors Q ≡ {qi | i ∈ 1 . . . N}, we write RQ to indicate the set of all lattice points in the
lattice modulated by all q ∈ Q. Then RQ ≡ {RQij | i, j ∈ Z}, where modulated lattice sites
may now be written in terms of the unmodulated lattice sites as

Rq
ij = R

{0}
ij + A sin

(
q ·R{0}ij + φ

)
(4)

RQij = R
{0}
ij +

∑
q∈Q

Aq sin
(
q ·R{0}ij + φq

)
(5)

Here we focus on the case of sinusoidal modulations, but periodic modulations with more gen-
eral waveforms are implicitly included by allowing Q to include higher order Fourier compo-
nents.

The displacement of atomic column (i, j) for a lattice with a single modulation vector q1

can then be written as ∆q1

ij = Rq1

ij −R
{0}
ij . More generally, for a lattice with multiple coexist-

ing modulations Q, the displacement of each atomic column resulting solely from modulation
vector qp is

∆
qp

ij = RQij −R
Q\qp

ij (6)
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where Q\qp indicates the set Q with element qp removed. Thus, Supplementary Equation (6)
simply defines the displacement at each atomic column due to a single modulation as the differ-
ence between atomic positions with and without that modulation present.

Once the lattice positions RQij have been extracted by fitting Gaussians to each atomic site
from an experimental image I(r) = IQ(r), via G

(
IQ(r)

)
= RQ, all that remains is to find the

positions of a reference lattice in which the single modulation vector of interest qp has been
removed, RQ\qp . This may be obtained by fitting the atomic columns of an image IQ\qp(r)
in which qp has been removed (Supplementary Figure 8d), because G

(
IQ\qp(r)

)
= RQ\qp

(Supplementary Figure 8f). The task is therefore to obtain image IQ\qp(r) from an experimental
image IQ(r).

Removing the contribution of a single modulation is most naturally approached in Fourier
space. Let FI(k) =

∫
I(r)e−ik·rdr be the Fourier transform of an image I(r). For an im-

age IQ(r) defined according to Supplementary Equations (1,5), the Fourier transform may be
written as

FIQ(k) =Ff(k)

·
∞∑

αq1=−∞

· · ·
∞∑

αqN
=−∞

∑
b∈B{0}

δ

(
k−

(
b−

∑
q∈Q

αqq

))
·
∏
q∈Q

Mαq,q(k) (7)

where B{0} is the reciprocal lattice ofR{0}, and

Mαq,q(k) ≡ Jαq (k ·Aq) exp [iαqφq] (8)

where Jα(z) is the α’th Bessel function of the first kind. Derivation of Supplementary Equa-
tion 7 is found at the end of this section, and related calculations are found in (9, 10). Here,
the important observation is that for each of the Bragg peaks on the reciprocal lattice sites,
δ (k− b) for b ∈ B{0}, there are an additional set of satellite peaks offset from the Bragg peak
by the linear combinations of the modulation vectors q ∈ Q, which encode the PLD. The PLD
is thus effectively decoupled from the underlying lattice in Fourier space.

In the experimental BSCMO STEM data here, only first order peaks for the two modulation
vectors q1, q2 are observed, due to the damping of the higher order harmonics according to
|Mα(k)| ≈ 1

α

(
1
2
k ·Aq

)α, where we’ve used the fact that the argument k · Aq � 1 (here,
|Aq| ≈ 10 pm and k ≤ (1Å)−1, thus k · Aq ≤ 0.1). Including only the experimentally
observable peaks reduces Supplementary Equation 7 to

FIq1,q2(k) = Ff(k)
∑

b∈B{0}
c0δ (k− b) + c−,1δ (k− (b− q1)) + c+,1δ (k− (b + q1))

+ c−,2δ (k− (b− q2)) + c+,2δ (k− (b + q2)) (9)
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for complex constants c.
We then define a transformationDqp which removes the contribution of modulation qp from

a Fourier transform. By definition

Dqp
(
FIQ(k)

)
≡ FIQ\qp(k) (10)

Specifically

Dq1 (FIq1,q2(k)) = Ff(k)
∑

b∈B{0}
c0δ (k− b)

+ c−,2δ (k− (b− q2)) + c+,2δ (k− (b + q2)) (11)

Dq2 (FIq1,q2(k)) = Ff(k)
∑

b∈B{0}
c0δ (k− b)

+ c−,1δ (k− (b− q1)) + c+,1δ (k− (b + q1)) (12)

Obtaining Dq1 and Dq2 thus requires carefully removing the relevant peaks from the ex-
perimental Fourier transform (Supplementary Figure 8a). Algorithmically, the positions of all
detectable satellite peaks corresponding to a single modulation wavevector q of interest are ex-
tracted (Supplementary Figure 8a, upper inset). A mask radius is chosen, and the background
level for each satellite peak is calculated by finding a 2D linear fit to the Fourier space ampli-
tude in an annulus about that mask. The amplitudes inside each masked region is then scaled
down to this background level (Supplementary Figure 8b, upper inset), while leaving the phase
information unaltered (Supplementary Figure 8a,b, lower insets), yielding Dqp .

An inverse Fourier transform is taken to obtain a q–damped reference image,

F−1
(
Dqp

(
F
(
IQ(r)

)))
= IQ\qp(r) (13)

where F−1 is the inverse Fourier transform (Supplementary Figure 8d). The positions of all
atomic sites in IQ\qp(r) are then extracted by fitting Gaussians to each site (Supplementary
Figure 8f), i.e.

G
(
F−1

(
Dqp

(
F
(
IQ(r)

))))
= RQ\qp (14)

With both sets of atomic positions RQ and RQ\qp in hand, ∆
qp

i,j(r) may then be directly
calculate via Supplementary Equation 6 (Supplementary Figure 8i). A qualitative picture of
the PLD structure may be obtained sans Gaussian fits by taking IQ(r) − IQ\qp(r), shown in
Supplementary Figure 8h. The complete data processing flow is summarized in Supplementary
Figure 8g.

As with any processing performed on raw data, in order to correctly interpret the results
of this approach it is necessary to carefully understand precisely its limits, regime of validity,
and any possible artifacts. The sections below discuss these points through a combination of
simulation, experimental control datasets, and theoretical considerations.
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Comparison with Direct, Real Space PLD Measurement

In order to confirm that the measured PLDs are not an artifact of the Fourier space damping
procedure, we calculated the displacement vectors directly from the data, unprocessed except
for cross correlation, in real space. In Supplementary Figure 9, the transverse component of the
displacement vectors obtained using the modulation damping approach (red) are compared to
the transverse distances of atomic centers from a line fit to the positions of all centers (black)
along a column in the q-vector direction (lines, D-F) spanning two PLD wavelengths. This real-
space approach useful for confirming the validity of the method, however, it is only possible
in well-ordered regions containing a single modulation. Three different well-ordered regions
of an experimental dataset, in which a single modulation dominates, are shown. Circles and
error bars in the line profiles (Supplementary Figure 9A-C) represent the mean and standard
deviations of the transverse displacements along a single row perpendicular to q.

The results are in good agreement on average, clearly indicating that the modulation damp-
ing approach is indeed reconstructing a displacement field present in the data. Notably, the
real space approach has significantly larger error bars than the Fourier damping approach. We
attribute this to three factors. First, the real space approach does not account for distortions
resulting from the imaging process, limiting its accuracy. Second, using a best-fit line as a ref-
erence position is a somewhat coarse approach, however, more systematic real-space methods
such as a global coordinate rotation were untenable, likely due precisely to image distortion.
Third, the reference lattice defined by the Fourier space method effectively represents a lo-
cally averaged reference structure, thus, sufficiently localized features in the displacement field
may be smoothed out. The following sections explore this last possibility in greater detail, and
demonstrate that all but the very sharpest features in the PLD field are well described by the
Fourier damping approach.

Method Limits, Regime of Validity, and Interpretation

For a perfect lattice modulated by a perfect sinusoidal displacement field, both the Bragg and
satellite peaks are delta functions. Local disorder in the PLD field causes the satellite peaks to
deviate from perfect impulses. The size scale of the local features in the PLD structure relate
to the degree of blurring observed in the satellite peaks, therefore the size of the damping mask
used (Supplementary Figure 8a,b upper insets) determines the sharpness of the PLD features the
method is able to reconstruct with good fidelity. To capture the highest frequency variations in
the PLD field possible, the largest mask size which does not interfere with other Fourier space
features should be chosen. In this work we used masks that extended halfway to the nearest
Bragg peaks. The mask radius is therefore approximately |1

2
q|, and we expect to correctly

capture any PLD disorder features of size & 2λPLD. For PLD disorder of size scales . 2λPLD,
our reconstructed displacements may deviate from the true displacement magnitudes somewhat.
The simulations discussed below demonstrate that this effect is only appreciable at atomically
sharp disorder in the PLD field, and we believe our reconstructed displacements are correct
everywhere, with the possible exception of the atomic sites located precisely at topological
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defect cores.
To carefully understand these effects and ensure correct interpretation of our results, we

simulated data with a single sinusoidal modulation, and an antiphase domain boundary sepa-
rating regions in which the PLD phase shifts by π. Four datasets were simulated, varying the
abruptness of the antiphase domain boundary by first generating a step function domain bound-
ary and then blurring with a Gaussian kernel with four different values of σ. Supplementary
Figure 10 A-D show the results for σ = 0.25λPLD, σ = 0.5λPLD, σ = λPLD, and σ = 2λPLD, re-
spectively. Each shows the simulated and calculated transverse displacement components along
the line profile shown in Supplementary Figure 10E, along with their residuals. In every case,
the residuals fall inside our estimated ∼ ±2 pm precision within a few lattice spacings of the
interface. Further, in every case the reconstructed displacements accurately capture the qualita-
tive structure of the antiphase boundary everywhere except for at the lattice sites precisely at the
center of the interface. Quantitatively, the reconstructed displacements accurately capture the
simulated data everywhere for the σ = 2λPLD case. For smaller σ, the residuals are somewhat
larger within ∼ λPLD about the interface, as expected. For very sharp interfaces (σ = 0.25λPLD

and σ = 0.5λPLD) the reconstructed displacements are incorrect at the center of the interface,
where the atomically sharp discontinuity in the simulated displacement field is averaged out in
the reconstruction to yield incorrectly small displacements.

We conclude that for local PLD disorder of size & 2λPLD, our approach is valid everywhere.
At smaller features, our approach correctly captures qualitative structure but tends to under-
estimate displacement amplitudes near the feature center. The approach fails entirely only at
atomically abrupt features in the PLD field. We contend that this approach therefore reasonably
reflects the PLD structure everywhere in the data presented, with the possible exception of the
topological defect cores. We believe the reconstructed displacements about defect cores are
likely correct, because of smoothing and amplitude damping of the total displacement vectors
near phase singularities, however, we cannot discount the possibility that we have averaged over
a sharp discontinuity at a defect core. In this scenario, the reconstructed displacements would
only be incorrect at the sites directly adjacent to the core, and the amplitudes at these sites may
be considered a lower bound on their true displacement amplitudes. Note that we cannot exper-
imentally discount atomically sharp disorder elsewhere in the PLD field, however, we believe
such features to be unlikely on energetic grounds.

Effect of Fourier Mask Size

We tested the effect of varying the mask size on experimental data, in both a well ordered region
and a disordered region containing a topological defect, shown in Figs. 11 and Supplementary
Figure 12, respectively. In both cases, a very small mask does not damp the full intensity of the
satellite peak. In ordered regions, this leads to artificially reduced PLD amplitude relative to the
other PLD maps of the same data (Figs. 11A and 12A). A very large mask begins to introduce
greater noise, observable at the modulation minima, and likely resulting from beginning to damp
some of the Fourier space intensity in the tails of the nearby Bragg peak. In the intermediate
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range of mask sizes which cover the entire satellite peak but remain far from the Bragg peak,
the reconstructed PLD is insensitive to mask size variation. We additionally tested the effect of
introducing noise into the Fourier space damping level comparable to the noise observed nearby
in Fourier space, with negligible effect.

In order to further understand the effect of the Fourier mask size, we varied the mask size
used to reconstruct a simulated dataset containing an antiphase domain boundary in the PLD
phase. To test how our PLD reconstruction approach behaves in the worst case scenario, in
this simulated data the 0 to π transition in the PLD phase is given by a perfect step function.
Supplementary Figure 13 shows the results for 7 mask sizes, corresponding to real space di-
ameters of 1.3 nm, 1.5 nm, 1.7 nm, 2.1 nm, 2.7 nm, 3.8 nm, and 6.4 nm. In Supplementary
Figure 13 A, the transverse components of the simulated displacements (black) agree well with
their reconstructed counterparts far from the boundary. The single atomic sites directly adjacent
to either side of the boundary are incorrect in all cases, as expected for an atomically sharp fea-
ture and discussed in the previous section. The fidelity of the reconstruction in the intermediate
region is evident in the residuals, Supplementary Figure 13 B. The vertical scale is indicated
by the colored horizontal bars, which correspond to the gray horizontal bar in Supplementary
Figure 13 A and represent the±2 pm error bars. The smallest Fourier space mask (red, 6.4 nm)
displays damped periodic ringing in the residuals reminiscent of a sinc function. This artifact
is gradually reduced as the mask size is increased (and its corresponding real space distance is
decreased), with residuals for the largest masks falling inside the ±2 pm error bars within 2-3
lattice spacings of the interface. The typical mask size used on experimental data, correspond-
ing to 1.7 nm in real space, is highlighted (bold, light blue), and captures the true displacements
well everywhere except at the atomic sites directly adjacent to the boundary. We re-iterate that
while a simulated step-function π phase slip is useful to evaluate the effectiveness of our ap-
proach, energetically we would not expect such high frequency features in experimental PLDs,
with the exception of topological defect cores.

Method Comparison with SrTiO3

To ensure our Fourier damping approaching was not introducing artificial periodic structure
or other artifacts in the lattice displacements, we performed our method on STEM data of cu-
bic SrTiO3 (STO). The results are shown with identical analysis of comparable BSCMO data
in Supplementary Figure 14. A single Bragg peak from the Fourier transform of the STO
data (Supplementary Figure 14A) shows no satellite peaks, while a single Bragg peak from
the Fourier transform of the BSCMO data has two satellite peaks (Supplementary Figure 14D)
corresponding to a single PLD modulation in this dataset. After finding the q-vector for the
BSCMO data, an equivalent vector scaled to the STO reciprocal lattice was calculated. The
peak damping procedure was then performed for both the STO and BSCMO data (Supplemen-
tary Figure 14B,E), and PLD maps were generated (Supplementary Figure 14C,F). The scalebar
and displacement vector scales are identical for the two PLD maps. The BSCMO data shows
periodic stripes of ∼10 pm transverse displacements. In the STO data the mean displacement
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magnitude is 0.390 pm, 90% of the displacement magnitudes are ≤ 0.83 pm, 99% of the dis-
placements magnitudes are ≤ 2.08 pm, and no clear periodicity is observed.

Atomic fit precision with STO

In order to determine the precision of our atomic fitting, we fit the positions of all atomic sites
in STO data, and calculated distances between neighboring atomic sites. A histogram of the
distances between the fit positions of nearest neighbor Sr atoms and the data used are shown in
Supplementary Figure 15A,B. A Gaussian fit to the histogram (Supplementary Figure 15A) has
a standard deviation of σ = 2.157 pm and a full width at half maximum of 5.1 pm. Identical
analysis of the dimmer, lower signal-to-noise ratio Ti sites yields values of σ = 2.4 pm and a
FWHM of 5.7 pm. While our precision is comparable to that obtained by others, notably it is
significantly worse than the 0.6 pm precision obtained in (11). We attribute our lower precision
to image acquisition which has been optimized for different purposes. Here, we aimed to obtain
high precision atomic fits, large fields of view, and optimal Fourier space sampling for satellite
peak damping.

Derivation of Supplementary Equation 7

Taking the Fourier transform of an image given by Supplementary Equation 1 with modulated
lattice sites defined in Supplementary Equation 5, we find

FIQ(k) = F

(
f(r) ∗

∑
R∈RQ

δ (r−R)

)
(15)

= F (f(r))F

( ∑
R∈RQ

δ (r−R)

)
(16)

= Ff(k)
∑

R∈RQ

(F (δ (r−R))) (17)

= Ff(k)
∑

R∈RQ

(
eik·R

)
(18)

Using Supplementary Equation (5),

∑
R∈RQ

(
eik·R

)
=

∑
R∈R{0}

exp

[
ik ·

(
R +

∑
q∈Q

Aq sin (q ·R + φq)

)]
(19)

=
∑

R∈R{0}

exp [ik ·R] exp

[
ik ·

∑
q∈Q

Aq sin (q ·R + φq)

]
(20)

=
∑

R∈R{0}

exp [ik ·R]
∏
q∈Q

exp [ik · (Aq sin (q ·R + φq))] (21)

26



The Jacobi-Anger expansion may be written as

eiz sin θ =
∞∑

α=−∞

Jα(z)eiαθ (22)

where Jα(z) is the α’th Bessel function of the first kind. Then∑
R∈RQ

(
eik·R

)
=

∑
R∈R{0}

exp [ik ·R]

·
∏
q∈Q

∞∑
α=−∞

Jα (k ·Aq) exp [iαq ·R] exp [iαφq] (23)

Expanding the product over the N elements in Q,∑
R∈RQ
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)
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· · ·
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αqN
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(
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exp [iαqq ·R] exp [iαqφq]
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(24)
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=
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· · ·
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αqN
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δ
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(
b−
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q∈Q

αqq
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·
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Jαq (k ·Aq) exp [iαqφq]

))
(27)

where in the last step we’ve used the fact that
∑

R∈R{0} exp [ik ·R] =
∑

b∈B{0} δ (k− b),
where B{0} is the reciprocal lattice of Bravais latticeR{0}.

Defining
Mαq,q(k) ≡ Jαq (k ·Aq) exp [iαqφq] (28)

yields Supplementary Equation 7.
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Supplementary Note 2: Coarse Grained Phase Field Extraction

We next describe the Fourier space approach to extract the coarse-grained phase field, φ(r),
associated with the q1 modulation

∆q1 ∼ sin(q1 · r + φ(r)) (29)

We interpret the phase field as deviations of the q1 modulation from perfect periodicity (i.e.
where φ(r) = φ0 = const). We first Fourier filter regions near a q1 superlattice peak, typically
one near the 200 (002) Bragg peak, using a Gaussian filter with a width σ = L−1 where L is
the coarsening length scale in real space. We obtain a real space image where all periodicities
in the image, except for the one associated with the q1 modulation, are removed. Roughly, the
filtered image may be described by

Ĩ(r) ∼ sin(q1 · r + φ(r)) (30)

In order to extract φ(r), we use the phase lock-in technique described in (12), where we generate
two reference signals sin(q1 · r) and cos(q1 · r) with perfect q1 periodicity and multiply them
by Ĩ(r) to get X(r) and Y (r) where{

X(r) = sin(q1 · r) sin(q1 · r + φ(r))

Y (r) = cos(q1 · r) sin(q1 · r + φ(r))
(31)

{
X(r) = 1

2
(cosφ(r)− cos(2q1 · r + φ(r)))

Y (r) = 1
2

(sinφ(r) + sin(2q1 · r + φ(r)))
(32)

We subsequently low pass filter X(r) and Y (r) to get rid of the second high frequency terms
obtaining: {

X̃(r) ≈ cosφ(r)

Ỹ (r) ≈ sinφ(r)
(33)

The coarse-grained phase is thus given by

φ(r) = arctan[Ỹ (r)/X̃(r)] (34)

The coarsening length must be chosen judiciously in order to simultaneously optimize the
resolution and signal to noise ratio of the resulting coarse grained phase field.

Supplementary Note 3: Transverse vs. Longitudinal PLDs in Fourier Space

PLDs have several Fourier space features that are distinct from the Fourier space structure of
similar phenomena, including charge density waves and superlattices of atomic species. Dis-
tinguishing transverse from longitudinal PLDs is readily accomplished in Fourier space by ob-
serving the intensity pattern of the satellite peaks with varying k. For simplicity, consider Sup-
plementary Equation 9 describing the experimentally observed peaks. Using Supplementary
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Equation 8, the factors damping each satellite peak are given here by

c±,i = J1 (k ·Aqi
) exp (±iφqi

) (35)
|c±,i| ≈ k ·Aqi

(36)

For some modulation wavevector q, consider the satellite peaks about a Bragg peak b‖
parallel to the modulation q ‖ b‖. At the satellite positions k ≈ b‖ the damping factor is
then |c±,‖| ≈ b‖ · Aq. Thus |c±,‖| is maximal for a longitudinal PLD where q ‖ Aq, while
|c±,‖| ≈ 0 and the satellite peaks vanish for a transverse PLD where q ⊥ Aq. In contrast,
consider the satellite peaks about a Bragg peak b⊥, perpendicular to the modulation vector
q ⊥ b‖. Now |c±,⊥| is maximal for a transverse PLD where q ⊥ Aq, while |c±,⊥| ≈ 0 and
the satellite peaks vanish for a longitudinal PLD where q ‖ Aq. These cases are illustrated
schematically in Supplementary Figure 5. Both the STEM Fourier transforms and diffraction
patterns (Supplementary Figure 4) of BSCMO clearly indicate transverse PLDs in BSCMO.
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