Supplemental Information

CRISPR/Cas9-mediated genome editing in naïve human embryonic stem cells

Eva Z. Jacobs¹, Sharat Warrier², Pieter-Jan Volders¹, Eva D'haene¹, Eva Van Lombergen¹, Lies Vantomme¹, Margot Van der Jeught², Björn Heindryckx², Björn Menten¹, Sarah Vergult^{1*}

Figure legends Supplemental Figures and Tables

Supplemental Figure 1: **Similar editing efficiencies for HEK-293T cells and naïve hESCs** Editing efficiencies for *TUNA*, *EMX1* and *MEG3* after transfecting pX335, pX330-sgRNA1 and pX330-sgRNA2 plasmids in HEK-293T cells. As a control, mock-treated HEK-293T cells (no plasmid) are used. Grey dots represent two biological replicates, the asterisk indicates the average of both replicates.

Supplemental Figure 2: Same predominant indels are present in naïve hESCs and HEK-293T cells

Distance of the start position of each indel to the theoretical cleavage site (= 3 bp upstream of the PAM sequence) is presented on the x-axis, while the relative frequency of the indel is presented on the y-axis for **a**) nuclease – sgRNA1 and **b**) nuclease – sgRNA2. Length of indels is represented by the different colors. Predominant indels are indicated with an arrow. Only one replicate is shown.

Supplemental Figure 3: Majority of indels is present between both cleavage sites after editing with Cas9 nickase

Distance of the start position of each indel to the theoretical cleavage site (= 3 bp upstream of the PAM sequence) is presented on the x-axis, while the relative frequency of the indel is presented on the y-axis after editing with the Cas9 nickase. Length of indels is represented by the different colors. Only one replicate is shown.

Similar as for the naïve hESCs, in the HEK-293T cells the majority of indels is present between the two theoretical cleavage sites (indicated by the black lines at position 0 (sgRNA1) and at positions 44 (*TUNA*), 25 (*EMX1*) and 38 bp (*MEG3*). Percentages of indels 1) within or spanning both the two cleavage sites and 2) indels spanning at least one of the two sites are shown below the graph.

Supplemental Figure 4: Off-targets detected with Cas9 nuclease, not with Cas9 nickase

After analysis with BATCH-GE and visualization of the sequencing reads in IGV (chr10:94603018-94603100 (hg19)), indels were detected at an intron of *EXOC6* (one of the off-target sites of sgRNA2 of *EMX1*) after transfection with the Cas9 nuclease (editing efficiency of 12%). No indels were observed after transfection of the Cas9 nickase.

Supplemental Figure 5: Successful generation of monoclonal genome-edited TUNA colonies

Sequencing reads are visualized in IGV (region: chr14:96,389,236-96,389,314 (hg19)) after monoclonal isolation. The region of interest in a wildtype sample is shown in **a**), while **b**) and **c**) respectively show the compound heterozygous deletions and the homozygous deletion. Positions of sgRNA1 and sgRNA2 are indicated with respectively a dark grey and light grey line.

Supplemental Figure 6: Naïve human embryonic stem cells maintain the naïve state after genome-editing

a) *DNMT3B* shows increased expression in the primed hESCs, compared to both naïve genome-edited hESCs and wildtype naïve hESCs. For *KLF2* and *TCL1B*, a trend of increased expression in the naïve hESCs is observed. *NANOG* shows similar expression in naïve and primed hESCs. Expression of each biological replicate (CNRQ) is represented by a dot (n=3 (primed), n=4 (naïve cells with homozygous deletion), n=5 (naïve wildtype and naïve cells with compound heterozygous deletion). Average CNRQ expression is shown as a horizontal line for each group.

b) No differences in morphology were observed between both genome-edited (top) and wildtype naive hESCs (bottom, left). Next to this, the domed-shaped naïve colonies can be distinguished from the flattened primed colonies (bottom, right). Scale bar represents 1000 um.

Supplemental Figure 7: Generated indels in conserved region of *TUNA* don't cause a significant effect on pluripotency and neural differentiation

Expression of pluripotency markers (*OCT3/4* and *REX1*) and neural progenitor markers (*NESTIN*, *PAX6*, *SOX1* and *NEUROD1*) in the wildtype and both *TUNA* genome-edited hESCs during neural differentiation. Average standardized (according Willems et al. ³⁴) CNRQ values \pm 95% confidence interval (CI) are shown for 10 biological replicates of each genotype. RNA was collected from the naïve hESCs (day 0) and at day 6 of neural induction. Significant p-values are indicated with an asterisk (Wilcoxon rank sum test with BH correction, FDR= 0.05).

Supplemental Table 1: Cas9 nickase generates larger indels compared to wildtype Cas9 nuclease in naïve hESCs

Indel characteristics of Cas9 nickase (pX335 plasmid) and Cas9 nuclease (pX330 plasmid) in naïve hESCs: amount (n) and median size of deletions and insertions.

Supplemental Table 2: Cas9 nickase generates larger indels compared to wildtype Cas9 nuclease in HEK-293T cells

Indel characteristics of Cas9 nickase (pX335 plasmid) and Cas9 nuclease (pX330 plasmid) in HEKT-293 cells: amount (n) and median size of deletions and insertions.

Supplemental Table 3: sgRNA sequences for CRISPR plasmid design

sgRNAs for *TUNA* and *MEG3* are designed with crispr.mit.edu and for *EMX1*, sgRNA9 and sgRNA10 were used from Ran *et al*²⁴.

Supplemental Table 4: Primers used for amplification on- and off-targets (hg19)

Supplemental Table 5: **Primers used for qPCR** qPCR primers for *SOX2* and *FGF4* were purchased from Bio-Rad (respectively assay ID qHsaCED0036871 and qHsaCID0020331).

1.6% 2.2%

6.7%

8.3%

[average editing efficiency]

distance indel to theoretical cleave site sgRNA (bp)

distance indel to theoretical cleave site sgRNA (bp)

distance indel to theoretical cleave site sgRNA (bp)

a

	% indels between both cleavage site	% indels overlapping one of both cleavage sites		% indels between both cleavage site	% indels overlapping one of both cleavage sites		% indels between both cleavage site	% indels overlapping one of both cleavage sites
replicate 1	52	93	replicate 1	57	85	replicate 1	56	86
replicate 2	48	94	replicate 2	62	90	replicate 2	57	75

p152 p14 p13 p1231 p121 p122 p111 q11	94,603,050 bp	q22.1 q22 83 bp	3 q23.1 q23.31 q 94,603,070 bp	94,603,080 bp	q25.2 q26.11 94,603,090 bp	q26.2 94,603.
Cas9 nickase						
				- 	-	
Cas9 nuclease						
			= =			
CAGAGTGTGGCCACTTGGGGTCACCACAC	CAAAAAGGCAG	AAGCTGGAG	GAGGGCCCCT	G C G A C G G T G	GACATCTGA	AACGAG

96,309,349 bp 96,309,35 I I I	94,389,268 bp	96,389,278 bp	96,389,200 bp	96,389,290 bp	96,383,300 kp 96,3
		, 11			
	·				
		=			
		=!!			
		=			
	C C A T T C T G A A C C T	GATTGTGATCATA		A T A C A C C A C C	C T G T G A A T G G C C

a

b

c

genome-edited naïve hESCs

primed hESCs

OCT3/4

homozygous deletion

NESTIN

SOX1

PAX6

2

NEUROD1

Supplemental Table 1 *TUNA*

plagnid	raplicata	deletions			insertions			
plasillid	replicate	n	%	median	n	%	median	
nV225	1	432	72	21	166	28	13	
px333	2	450	73	17	164	27	12	
pX330	1	154	31	9	346	69	1	
sgRNA1	2	272	33	9,5	546	67	1	
pX330	1	66	27	6	178	73	1	
sgRNA2	2	90	38	2	146	62	1	
nono	1	10	83	1	2	17	1	
none	2	20	95	1	1	5	1	

EMX1

nlagmid	ranliaata	deletions			insertions			
plasifild	replicate	n	%	median	n	%	median	
nV225	1	70	73	7	26	27	4	
px333	2	76	88	3	10	12	14	
pX330	1	148	81	6	34	19	7	
sgRNA1	2	86	83	3	18	17	6	
pX330	1	108	86	8	18	14	1	
sgRNA2	2	146	87	3	22	13	3	
none	1	10	91	1	1	9	1	
	2	16	89	1	2	11	2,5	

MEG3

plasmid	roplicato	deletions				insertions		
plasillu	Tephcate	n	%	median	n	%	median	
mV225	1	34	77	15	10	23	25	
рл333	2	56	47	1	62	53	5	
pX330	1	10	71	1	4	29	1	
sgRNA1	2	14	54	1	12	46	1	
pX330	1	48	100	8	0	0	/	
sgRNA2	2	188	82	12	42	18	1	
	1	13	93	1	1	7	1	
none	2	17	100	1	0	/	/	

Supplemental Table 2 *TUNA*

nlaamid	raplicate	deletions			insertions			
plasmu	Teplicate	n	%	median	n	%	median	
nV225	1	368	93	29	28	7	13	
px333	2	580	92	32	50	8	7	
pX330	1	330	29	10	802	71	1	
sgRNA1	2	800	29	10	1922	71	1	
pX330	1	194	42	12	272	58	1	
sgRNA2	2	448	37	12	750	63	1	
none	1	48	96	1	2	4	1	
	2	54	82	1	12	18	1	

EMX1

plasmid	roplicato	deletions			insertions			
plasifid	Teplicate	n	%	median	n	%	median	
nV225	1	94	87	16	14	13	4	
рдзээ	2	84	84	12	16	16	4	
pX330	1	84	98	8	2	2	3	
sgRNA1	2	64	91	3.5	6	9	1	
pX330	1	114	92	4	10	8	1	
sgRNA2	2	136	87	9	20	13	3	
none	1	8	100	2	0	0	/	
	2	4	100	1	0	0	/	

MEG3

plasmid	replicate	deletions			insertions			
plasifid	Tepheate	n	%	median	n	%	median	
n¥335	1	526	83	17	110	17	10	
рдэээ	2	628	84	10	124	16	10,5	
pX330	1	146	64	1	82	36	1	
sgRNA1	2	38	79	1	10	21	1	
pX330	1	1794	90	6	194	10	1	
sgRNA2	2	532	83	5	108	17	1	
none	1	34	71	1	14	29	1	
	2	24	100	1	0	0	/	

Supplemental Table 3

Gene	sgRNA sequence 1 + PAM	Strand	Target sequence	Distance
ID	sgRNA sequence 2 + PAM			
EMXI	GCCGTTTGTACTTTGTCCTCCGG	Antisense	GAGGACAAAGTA <u>CAAACGGC</u> AGAAGCTGGAGG	8 bp
	CAAACGGCAGAAGCTGGAGGAGG	Sense		overlap
TUNA	GATCACAATCAGGTTCAGAATGG	Antisense	TTCTGAACCTGATTGTGATCATATTTGTCTACATATA	11 bp
	CATATACACCACCCTGTGAATGG	Sense	CACCACCCTGTGAA	spacer
MEG3	GCTTTTTCCCTGCGTGAGCCCGG	Antisense	GGCTCACGCAGGGAAAAAGCACCCGCGACCACAG	4 bp
	GCGACCACAGGGTGTTGGTCATGG	Sense	GGTGTTGGTCA	spacer

Supplemental Table 4

On-targets	
TUNA	F: AGGCTCCTCTCTGTACCA
10101	R: TGAATTTCTGCACCCATCCG
FMX1	F: CCATCCCCTTCTGTGAATGT
	R: GGAGATTGGAGACACGGAGA
MEG3	F: GAGCTCTGTCTCCCATGTCA
MEGS	R: CAGCAGGACCCAGGATCAG

Off-tar	gets		
	sgRNA1-	chr2:83402789-	F: TAGCACTGCCATCATCACCT
	OFF1	83402811	R: CAAGAAGCCTTGCACTTTCA
		chr20:22528567-	F: GAAAACCATTGCTCTCTGGAA
	OFF2	22528589	R: TCTGGAATTTTCCCTGGAATC
	sgRNA1-	chr6:21103031-	F: TGTTTTCATCTTGCACCTCTTG
	OFF3	21103053	R: TCGTGGTAAGAAGCCAAAAGA
	sgRNA1-	chr6:127212429-	F:TGAAGATAAACAGAGATTGCTGATG
	OFF4	127212451	R: CCCATGTTGCAGGAGTTACA
TUNA	sgRNA2-	chr6:127212429-	F: GGGAACAACTGGTCCAGAAA
	OFF1	127212451	R: TGACAGACATGCTTCCCTTAGA
	soRNA2.	chr5.6902400-	F: CCACTTGGAAAGGCTGAAAA
	OFF2	6902422	R: TGCTTCTAGTTGTGGTGTCTCTG
	sgRNA2-	chr10:67239041-	F: TTTTGGAAGCAGTGTGAGAGA
	OFF3	67239063	R: CTGGAGCAAATTGTGGTCTG
	sgRNA2-	chr17:42467779-	F: GCTGTTCAGTTGAAGGTAGGC
	OFF4	42467801	R: TTCCGCTTACCGAGAGAAAA
	soPNA1	chr9:104480740-	F: GGAGCACAGGGTTTGGTCTA
	OFF1	104480762	R:
			AAGTTTCTCACTATGTGATTCAGTGTT
	sgRNA1-	chr11:40321937-	F: GAAAGGGGAGGTGCTACTGA
	OFF2	40321959	R: GCATCCTCAGATTTTGCAGTC
FMX1	soRNA1-	chr12:2024617-	F: CCCTCCTCCTTGTCCCTAAA
	OFF3	2024639	R: GCCTACACAGAGGGTGAGGT
	soRNA1-	chr3:2639019-	F: AAGACCAGGTCACCCAAACTT
	OFF4	2639041	R: GGGAACAGCTGGGTTACAGA
	sgRNA2-	chr10:119307611-	F: TTCTGTTCCACCACGCACTA
	OFF1	119307633	R: CGATTCCCTCTCCCTTTCTC

	$\alpha \sigma D N \Lambda 2$	chr10:94603048-	F: ACTGCGTAGGTCACACACCA
	OFF2	94603070	R: TCTCGATCTCTTGACCTTGTGA
	0112		
	soRNA2.	chr10:13752484-	F: ATGAAGAACCCCAGAGCAGA
	OFF3	13752506	R: TTTCGCAGAGACGGAGTTTT
	0115		
	sgRNA2-	chr6:69783156-	F: TGGATCTATGCCGTCTGTGA
	OFF4	69783178	R: AGCCAGCTAGCAGGACTCTG
	-	1 10 101 50 400 6	
MEG3	sgRNA1-	chr12:131524286-	F: TGCAGGGAGCTCTGACAAG
	OFF1	131524308	R: GCCCTTGGTGTCTGTTTTGT
	sgRNA1-	chr4:3250616-	F: CAGCCCCAGTTCAGAAGG
	OFF2	3250638	R: TGATGTCACGTTTCCATAGCA
	sgRNA1-	chr17:46201158-	F: ACAGCAGGAGCCATTCAAAG
	OFF3	46201180	R: TCAGTCATCCTGGGTAATGGA
	sgRNA1-	chr17:67323433-	F: GTTGACTCAGTGCGGGTGA
	OFF4	67323455	R: AGAAAGAGCGTGGCGAGAT
	sgRNA2-	chr2:124430470-	F: GGCCATGGCTGAAATAAATC
	OFF1	124430492	R: TTTTGGCAAACTCTTTAAAGCTAC
	sgRNA2-	chr6:136127143-	F: TGAAGAAGCAGGAAGAAGAAATG
	OFF2	136127165	R: AGTGAGCTGTGATTGCACCA
	sgRNA2-	chr5:136390866-	F: GACCACAGAGACCACAATGG
	OFF3	136390888	R: GCTTAAAACAATACCCCCAGA
	sgRNA2-	chr18:76477199-	F: GCACCTATCTAAAAGGCAGACA
	OFF4	76477221	R: AACTGCGGGGGTCAGTCAT

Supplemental Table 5

TUNA	F: CCTCCGGATGCGCTTCTC
101111	R: CGATAATCCCCAGCATTGCC
OCT3/4	F: GACAGGGGGAGGGGGGGGGGGGGGGGGGGGGGGGGGGG
0010/1	R: CTTCCCTCCAACCAGTTGCCCCAAAC
REX1	F: CAGATCCTAAACAGCTCGCAGAAT
	R: ATGAATGAGGAGATGCTTTCTCAGG
NANOG	F: GATTTGTGGGCCTGAAGAAAACT
1111100	R: AGGAGAGACAGTCTCCGTGTGAG
PAX6	F: CATTTGGCCCTTCGATTAGA
1 /1/10	R: AATTGAGGCCCTGGAGAAA
NESTIN	F: CGCACCTCAAGATGTCCCTC
1120111	R: CAGCTTGGGGTCCTGAAAGC
NEURODI	F: AAGACGCAGAAGCTGTCCAA
NECRODI	R: AGCGTCTGAACGAAGGAGAC
SOXI	F: AACACTTGAAGCCCAGATGGA
BOAT	R: GCAGGCTGAATTCGGTTCTC