	LGMD2A	LGMD2B	LGMD2C	LGMD2D	LGMD2L
	(n=1)	(n=4)	(n=z)	(n=z)	(n=z)
Age (years)					
Mean	44,0	34,9	11,2	16,0	39,6
Range	-	24,2 - 50,1	8,6 - 13,8	12,1 - 20,0	21,3 - 57,9
Gender					
Female	-	3	1	1	-
Male	1	1	1	1	2
Age of onset (years)					
Mean	40,0	30,0	4,5	8,0	55,0
Range	-	25 - 35	4 - 5	6 - 10	-

Supplementary table 1 : Characteristics of LGMD's biopsies

Gene symbol	Accession n°	Name	5' 3'	Amplicon length	
Acth	NIM 007202 5	b-actin_F	CTGGCTCCTAGCACCATGAA	123	
Acto	10101_007595.5	b-actin_R	CTGCTTGCTGATCCACATCT		
Activin A		Activin A -F	CACACTTCTGCACGCTCCAC	- 92	
	10101_006560.2	Activin A -R	TTTGCCGAGTCAGGCACAG		
Tubb5		b-tubulin_F	CCTTCATTGGAAACAGCACA	222	
	101010000.5	b-tubulin_R	CCTCCTCTCCGAAATCCTCT		
Gapdh	NINA 001290726 1	Gapdh_F	TTGTGATGGGTGTGAACCAC	283	
	NIN_001289720.1	Gapdh_R	TTCAGCTCTGGGATGACCTT		
Gdf11	NINA 010272	Gdf11 - F	ATCAGCCGGGAGGTAGTGAA	159	
	101010272	Gdf11 - R	CTGGGCCATGCTTATGACCGT		
Hprt		Hprt1_F	GCAAACTTTGCTTTCCCTGG	- 85	
	NIVI_015550.2	Hprt1_R	ACTTCGAGAGGTCCTTTTCACC		
Pala		PO_F	CTCCAAGCAGATGCAGCAGA	- 87	
κριρυ	10101_007475.5	PO_R	ATAGCCTTGCGCATCATGG		
Acvr2b	NNA 007207 2	ActrIIB_F	GCTCAGCTCATGAACGACT	- 68	
	10101_007397.3	ActrIIB_R	CTCTGCCACGACTGCTTGT		
Fst	NNA 001201272 1	Fstn_F	CTCTTCAAGTGGATGATTTTC	- 345	
	NIM_001301373.1	Fstn_R	ACAGTAGGCATTATTGGTCTG		
Mstn	NINA 010024 2	Mstn_F	GCACTGGTATTTGGCAGAGTA	345	
	NIVI_010834.3	Mstn_R	CACACTCTCCTGAGCAGTAAT		
ACTIVIN A	ENET0000242208 4	F-ACTIVIN A	TTATGGAGCAGACCTCGGAG	- 75	
	EINS10000242208.4	R-ACTIVIN A	AAATCTCGAAGTGCAGCGTC		
B2M		F_B2M	CTCTCTTTCTGGCCTGGAGG	67	
	11101_004046	R_B2M	TGCTGGATGACGTGAGTAAACC		
GAPDH	ENCT000000000000000000000000000000000000	F-GAPDH2	AAGGTGAAGGTCGGAGTCAACGG	199	
	EINS10000229239	R-GAPDH2	TGACAAGCTTCCCGTTCTCAGCC		
GUS		F-GUS	CTCATTTGGAATTTTGCCGATT	81	
	EINS100000304895	R-GUS	CCGAGTGAAGATCCCCTTTTTA		
	ENSC00000001E7	F-P0	TCCAGGCTTTAGGTATCACCAC	94	
KPLPU	EIN200000089121	R-P0	GCTCCCACTTTGTCTCCAGTC		
PPIA		F-PPIA	CCTAAAGCATACGGGTCCTG	133	
	EINS10000355968	R-PPIA	TTTCACTTTGCCAAACACCA		
ACVR2B	ENCT00000252544	F52-AcvRIIb	CTCCTCTGGGGATCGCTGT	- 84	
	ENS10000352511	R135-AcvRIIb	CTCCCAGTTGGCGTTGTAGT		
FSTL		F1-FSTL	CGGCTGAGCACCTCGTG	155	
	ENS10000256759	R1-FSTL	TTCTTGTTCATTCGGCATTT		
GDF11	ENCT00000257000 0	F-GDF11	ATTGGCAGAGCATCGACTTC	- 182	
	EINS10000257868.9	R-GDF11	TTTTGTGTTCTCTAGGACTCG		
MSTN		F-972	TTTTACCCAAAGCTCCTCCA	- 258	
	NIVI_005259	R-3017	GAGTCTCGACGGGTCTCAAA		
MYL1		F-MYL1	GCAATGAAGAGCTGAATGCCA	126	
	ENS10000352451	R-MYL1	TGTCAAAGACACGCAGACCCT		

Supplementary table 2: Oligonucleotides used in this study

Supplementary figure 1: mRNA levels of either *MSTN (A), FSTN (B), or ACVRIIB (C)* were measured by RT-qPCR in in healthy controls (Ctrl, N=9), FSHD1 (N=8), FSHD2 (N=5) patients. Horizontal lines are medians, the extremities of the boxes are delimitated by the first and third quartile, and the whiskers correspond to the 10th and 90th percentile. A one-way ANOVA, followed by the Fisher's Least Significant Difference multiple comparison test was performed.

Supplementary figure 2: mRNA levels of either *MSTN (A), FSTN (B), ACVRIIB (C), GDF11 (D)* and *ACTIVIN A (E)* were measured by RT-qPCR and normalized by the expression of the MLC-3fast myosin heavy chain (*MYL1*), in healthy controls (Ctrl, N=9), BMD (N=6), DMD (N=17), IBM (N=17), FSHD (N=13) and LGMD (N=11) patients. All graphs represent mean ± SD. A one-way ANOVA, followed by the Fisher's Least Significant Difference multiple comparison test was performed. p *< 0.05; **<0.01; ***<0.001

Supplementary figure 3: weigth and mRNA levels of either *Mstn, Fstn, AcvrIlb* were measured by RT-qPCR in the quadriceps (A) or the soleus (B) of either 21, 30 or 25 day old Mtm1-KO mice.. n, number of mice used for each analysis: for the quadriceps, n = 9 and 8 at day 21, 8 and 8 at day 35 for WT and KO-Mtm1 mice respectively; for the soleus, n = 8 and 7 at day 21, 9 and 9 at day 35 for WT and KO-Mtm1 mice respectively. All graphs represent mean ± SD. A one-way ANOVA, followed by the Fisher's Least Significant Difference multiple comparison test was performed. p *< 0.05; **<0.01; ***<0.001

Supplementary figure 4: Effect of Mtm1-rescue and mSeAP-PropD76A co-injection on muscle morphological features after 2 weeks of rAAV transduction in the Tibialis anterior (TA) in knockout mouse model. Histological aspect of PBS-treated WT and KO muscle and after injection of a rAAV2/1-Des-Mtm1 and rAAV2/1-CMV-mSeAP-PropD76A. Musclular fiber of TA cross-sections were stained on left panel with hematoxilin and eosin (HE) (magnification × 40 and × 100), mitochondria and endoplasmic reticulum were stained with nicotimanide adenine dinucleotide tetrazolium reductase (NADH-TR) (magnification × 100), and on right panel dihydropyridine receptor (DHPR), dysferlin (Dys) and ryanodine receptor (RYR) were detected by immunofluorescence (magnification × 1200).