Supplemental Information

An affinity switch controls hierarchical Type III protein targeting and secretion

Athina G. Portaliou¹, Konstantinos C. Tsolis¹, Maria S. Loos¹, Vasileia Balabanidou², Joseph Rayo¹,

Alexandra Tsirigotaki¹, Valerie F. Crepin⁴, Gad Frankel⁴, Charalampos G. Kalodimos³, Spyridoula Karamanou¹* and Anastassios Economou¹*

¹KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research,

Laboratory of Molecular Bacteriology, B-3000 Leuven, Belgium

²Institute of Molecular Biology and Biotechnology, FORTH and Department of Biology, University

of Crete, PO Box 1385, GR-711 10 Iraklio, Crete, Greece

³University of Minnesota, Biochemistry, Molecular Biology & Biophysics, 321 Church St,

Minneapolis MN 55455, USA

⁴Faculty of Natural Sciences, Department of Life Sciences, Imperial College London, UK

*For correspondence:

Anastassios Economou (tassos.economou@kuleuven.be)

Spyridoula Karamanou (lily.karamanou@kuleuven.be)

Abbreviations

EPEC: Enteropathogenic *E. coli* T3S: Type 3 Secretion T3SS: Type 3 Secretion System AHT: Anhydrotetracycline IMVs: Inverted Membrane Vesicles HDX: Hydrogen Deuterium Exchange MS: Mass Spectrometry MALS: Multi Angle Light Scattering DMEM: Dulbecco's Modified Eagle Medium TCA: Trichloroaetic Acid DDM: *n*-Dodecyl-β-D-maltopyranoside

Table of contents

Supplementary Figures:

- Figure S1: T3SS elements required for CesAB/EspA membrane targeting (Related to Figure 3 and 6)
- Figure S2: *in vivo* characterization of SepL and EscV mutants (Related to Figures 4 and 6)

Supplementary Table:

 Table S1:
 Hydrogen/Deuterium exchange profile of CesAB (Related to Figure 1)

 Table S2:
 T3SS proteins identified by LC-MS/MS (Related to Figure 2)

Supplementary materials and methods

- Buffers
- Antisera
- Dyes and labeled secondary antibodies
- Vectors
- Genetic constructs
- Bacterial strains
- List of primers
 Primers used for gene cloning and mutagenesis
 Primers used for gene replacement
- Synthetic genes
- Immobilized peptide arrays
- Preparation of Inverted Inner Membrane Vesicles (IMVs)
- *In vitro* protein labelling with [³⁵S]-methionine
- Affinity measurements/ Determination of equilibrium dissociation constants (*K*_ds)
- CesAB/EspA in vivo and in vitro cross-linking
- IMVs immunostaining coupled with electron microscopy
- Hydrogen-deuterium exchange (HDX) mass spectrometry (MS)
- Surface proteolysis of IMVs
- LC-MS/MS analysis
- MS data analysis
- Western Blot analysis
- Analysis of protein structures

References

Supplementary Figures:

Figure S1: T3SS elements required for CesAB/EspA membrane targeting (Related to Figure 3 and 6)

A. The indicated EPEC gene knock out-strains ($\Delta geneX$; lane 2) were tested for EspA secretion, under the same conditions with wild type EPEC (lane 1). 5 hours post-inoculation cells were separated from the spent growth medium (50 ml; 20 min; 3,000 x g; 4 °C) which was then TCA precipitated (20% w/v). TCA pellets were resuspended in volume adjusted according to OD₆₀₀ and proteins were analyzed on 15% SDS-PAGE. EspA secretion was monitored by immunostaining. Representative experiments are shown. None of these knock out-strains could secrete EspA (lane 2; $\Delta geneX$). In all cases, EspA secretion was restored by complementing the deletion strain with a plasmid carrying the respected gene (lane 3; $\Delta geneX + geneX$). n=3.

B. The ability of CesAB/EspA to bind to urea treated IMVs, prepared from the indicated EPEC knock out-strains, was examined using flotation assays (as in Fig. 2D). Representative experiments are shown. When the *sepL* "gatekeeper" or the cytoplasmic domain of EscV were deleted, the migration of CesAB/EspA to the top fractions was compromised. In the absence of CesL, a SepL chaperone (Younis et al, 2010), SepL was not be detected on the IMVs (see panel C) hence, the inability of CesAB/EspA to bind on them. n=6-9.

C. SepL content on urea treated IMVs, prepared from wild type or the indicated EPEC deletion strain (20 µgr total membrane protein) were analyzed on 15% SDS-PAGE and immunostained with α -SepL. A representative experiment is shown. The presence of SepL on IMVs was highly correlated with the ability of CesAB/EspA to bind to them. The very low amounts of SepL that were detected in EPEC $\Delta escQ$ (lane 3) and $escU(\Delta CD)$ (lane 7) were sufficient for CesAB/EspA binding on IMVs, suggesting that there is no linear correlation between the two. Immunostaining of the membrane protein SecY (bottom panel) served as an unrelated loading control against which SepL values were adjusted before plotting them in Fig. 3D. n=3.

D-L: The indicated EPEC gene knock out-strains were tested for their ability to infect HeLa cells under the same conditions with wild type EPEC. Nucleus and bacterial DNA are indicated in blue (stained with DAPI; TO-PRO®-3; Thermo Fisher Scientific); secreted EspA in red (stained with Cy3 α -rabbit; Jacksons ImmunoResearch Europe Ltd); actin in green (stained with Cy2-Phaloidin; Thermo Fisher Scientific). A merged picture is shown on the right. Arrowheads indicate bacterial colonies and actin pedestals. For each EPEC knock-out strain a representative picture is shown. Unlike wild type EPEC, none of the indicated knock-out strains was able to infect HeLa cells. n=4

Figure S2: *in vivo* characterization of SepL and EscV mutants (Related to Figures 4 and 6) A. EspA secretion (top; as in Fig. S3A), *sepL* membrane localization (IMVs; middle; as in Fig. S3C) in EPEC Δ *sepL* cells carrying a pASK-IBA7plus vector empty (lane 1), or with *sepL* (lane 2), or *sepL* mutant derivatives (lanes 3-7). Signals were quantified using Image J software (Schneider et al, 2012). Immunostaining of ZipA (bottom) served as an unrelated loading control against which SepL values were adjusted before plotting them in Fig. 4C. A representative experiment is shown. *n*=4 **B-I.** Infection of HeLa cells by EPEC Δ *sepL* cells carrying a pASK-IBA7plus vector empty, or with the indicated *sepL* derivatives (without induction of plasmid gene expression). SepL R333D derivative was used as a negative control, as it has been proposed to affect translocator/chaperone binding (Botteaux et al, 2009; Burkinshaw et al, 2015). Nucleus and bacterial DNA are indicated in blue (stained with DAPI; TO-PRO®-3; Thermo Phisher Scientific); secreted EspA in red (stained with Cy3 α -rabbit; Jacksons Immuno-Research lab); actin in green (stained with Cy2-Phaloidin; Thermo Phisher Scientific). A merged picture is shown on the right. Arrowheads indicate bacterial colonies and actin pedestals. Representative pictures are shown. *n*=4.

J. EspA secretion (top panel; as in Fig. S3A), EscV membrane localization (IMVs; second panel; as in S3C after immunostaining with α -EscV CD) and SepL membrane localization (IMVs; third panel; as in Fig. S3C) in EPEC $\Delta escV$ carrying a pASK-IBA7plus vector empty (lane 1), or with escV (lane 2), or with escV mutant derivatives (lanes 3-5). escV mutants restored EscV localization on IMVs but either could not or could barely secrete EspA. SepL localization on those IMVs was also slightly affected. Immunostaining of ZipA (bottom panel) served as an unrelated loading control against which SepL values were adjusted before plotting them in Fig. 4F. A representative experiment is shown. n=4

K-O. Infection of HeLa cells by EPEC $\triangle escV$ cells carrying a pASK-IBA7plus vector empty or with the indicated *escV* derivatives, as in panel B. n=3

P. EscV (IMVs; top panel; as in panel J) and SepL membrane localization (IMVs; middle panel; as in Fig. S3C) in EPEC $\Delta escV\Delta sepD$ carrying a pASK-IBA7plus vector empty (lane 1), or with escV (lane 2), or with escV mutant derivatives (lanes 3-5). escV mutants restored EscV localization on IMVs. SepL localization on those IMVs was slightly affected. Immunostaining of ZipA (bottom panel) served as an unrelated loading control against which SepL values were adjusted before plotting them in Fig. 4H. A representative experiment is shown. n=4

Supplementary tables:

Table S1: Hydrogen/Deuterium exchange profile of CesAB (Related to Figure 1). The deuterium (D) uptake, absolute values and relative to the complete deuteration control, is given for all identified peptides of the CesAB sequence (98% sequence coverage) for CesAB, CesAB/EspA and CesAB(DRE), as indicated. The overlapping peptides indicated by hashtag (#) were used for the D uptake determination of the sequence residues 59-62, for higher resolution localization of D uptake at this region. D uptake of peptides with mutated sequences (residues in red) were not compared (-).

Identified CesAB peptides			Absolute D uptake				% D uptake (relative to complete deuteration)		
Start	End	Sequence	Complete deuteration	CesAB	CesAB/ EspA	CesAB (DRE)	CesAB	CesAB/ EspA	CesAB (DRE)
3	23	IVSQTRNKELLDKKIRSEIEA	12.204945	5.972235	2.889644	-	48.9%	23.7%	-
23	30	AIKKIIAE	4.691717	0.45995	0.34798	0.190344	9.8%	7.4%	4.1%
23	31	AIKKIIAEF	5.54809	0.546953	0.414805	0.186649	9.9%	7.5%	3.4%
24	30	IKKIIAE	3.808228	0.353473	0.26307	0.16863	9.3%	6.9%	4.4%
24	31	IKKIIAEF	4.121063	0.472674	0.375524	0.239781	11.5%	9.1%	5.8%
31	40	FDVVKESVNE	5.805299	2.258135	0.840623	0.648278	38.9%	14.5%	11.2%
31	41	FDVVKESVNEL	7.208374	2.639588	0.839591	0.725584	36.6%	11.6%	10.1%
31	58	FDVVKESVNELSEKAKTDPQAAEKLNKL	20.711527	7.266918	2.411325	2.429544	35.1%	11.6%	11.7%
32	40	DVVKESVNE	4.998914	2.102245	0.615076	0.593526	42.1%	12.3%	11.9%
32	58	DVVKESVNELSEKAKTDPQAAEKLNKL	19.99834	7.144325	2.239756	2.408962	35.7%	11.2%	12.0%
32	61	DVVKESVNELSEKAKTDPQAAEKLNKLIEG	22.482801	7.965473	3.292445	2.738683	35.4%	14.6%	12.2%
32	75	DVVKESVNELSEKAKTDPQAAEKLNKLIEGYTYGEERK LYDSAL	34.398828	13.800839	3.705901	5.308861	40.1%	10.8%	15.4%
41	58	LSEKAKTDPQAAEKLNKL	10.676177	3.535546	1.355372	1.415413	33.1%	12.7%	13.3%
41	61	LSEKAKTDPQAAEKLNKLIEG	12.891826	4.148516	1.744197	1.587595	32.2%	13.5%	12.3%
41	75	LSEKAKTDPQAAEKLNKLIEGYTYGEERKLYDSAL	24.287387	9.908216	2.87125	4.040528	40.8%	11.8%	16.6%
42	58	SEKAKTDPQAAEKLNKL	10.144713	3.141387	1.048611	1.274797	31.0%	10.3%	12.6%
56	63	NKLIEGYT	1.344411	0.720293	1.02296	0.910831	53.6%	76.1%	67.7%
#59	75	IEGYTYGEERKLYDSAL	10.2792	5.153114	1.24488	2.329313	50.1%	12.1%	22.7%
#62	75	YTYGEERKLYDSAL	8.322433	3.907156	1.011225	2.061401	46.9%	12.2%	24.8%
68	75	RKLYDSAL	3.826801	1.544169	0.411798	0.833902	40.4%	10.8%	21.8%
76	83	SKIEKLIE	4.757447	0.606036	0.325324	0.218148	12.7%	6.8%	4.6%
82	107	IETLSPARSKSQSTMNQRNRNNRKIV	14.805574	12.86523	12.098505	11.930598	86.9%	81.7%	80.6%

Table S2: T3SS proteins identified by LC-MS/MS (Related to Fig. 2). T3SS proteins present on isolated WT EPEC IMVs detected by LC-MS/MS in various surface proteolysis experiments. 33 LEE-encoded proteins and 5 non-LEE effectors have been detected with medium or high confidence scores (see Supplementary Methods). For each protein, the number of IMV preparations out of the total in which it was detected is indicated (as a percentage; green: 70-100%; orange; 35-70%; red < 35%). The number of peptides used for the comparison in Fig. 2C is shown. Non-detected proteins are marked with (-).

Structural sub-assembly	Subunit function/role	T3SS common nomenclature	EPEC protein nomenclature	Uniprot Accession number	Confidence of identification	Total number of peptides detected	% of IMV preparations in which this protein was detected	No. peptides used for Urea vs Non- urea IMVs comparison
Translocators	Translocator	SctB	EspB	Q05129	High	33		17
	Translocator	SctE	EspD	B7UM93	High	22		13
	Translocator	SctA	EspA	B7UM94	High	10		10
Needle	Needle component	SctF	EscF	B7UM90	High	4		1
OM ring	Secretin	SctC	EscC	B7UMB3	High	13		13
OM-IM connector	Inner rod	SctI	EscI	B7UMB0	-	-		-
IM ring	Lipoprotein ring component	SctJ	EscJ	B7UMB1	High	7		7
	Major IM ring component	SctD	EscD	B7UM96	High	22		17
Export apparatus	Translocase channel	SctR	EscR	B7UMC1	-	-		-
	Translocase channel	SctS	EscS	B7UMC0	-	-		-
	Translocase channel	SctT	EscT	B7UMB9	-	-		-
	Minor component, external channel	SctU	EscU	B7UMB8	High	7		1
	Major component, external channel	SctV	EscV	B7UMA7	High	21		18
Cytoplasmic ring	Component of 6- pod assembly	SctQ	EscQ	B7UMA3	Medium	1		
	Connector of 6- pod with EscD	SctK	EscK	B7UMC3	High	11		9

	External Stator						
ATPase	connecting	SctL	EscL				
complex	ATPase and Cytoplasmic ring			P7UMC2	High	6	
	Hexameric ring-			B70WIC2	Ingn	0	
	structure ATPase	SctN	EscN	B7UMA6	High	4	2
	Central stalk.			2701110	8	•	_
	inserting in	SctO	EscO				
	ATPase ring			B7UMA5	-	-	-
	Molecular ruler						
	regulating	SctP	EscP				
Assembly	needle/filament	ben	Lisei				_
regulators	length			B7UMA4	High	5	5
	Gatekeeper/ Affinity switch	SctW	SepL	B7UM95	High	14	10
Gatekeeper	Subunit 1 of			D/011/0	111.511		10
	SctW chaperone		SepD				
	heterodimer		1	B7UMB2	High	1	1
	Subunit 2 of						
	SctW chaperone		CesL				
	heterodimer			B7UMA8	High	3	4
	For early		EscG		TT 1		
	substrates (EscF)			B7UM89	High		
	For early substrates (EscF)		EscE	B7UMC5	_	-	-
	For middle			2701100			
	substrates		CesAB				
	(translocators)			B7UMC4	High	4	3
	For middle						
	substrates		CesD				
	(translocators)			B7UMB4	High	7	4
	For middle		G D2				
Cl	substrates		CesD2		TT' . 1.	0	0
Chaperones	(translocators)			B/UM91	High	9	9
	ror late		CesT				
	(effectors)		CCST	P21244	High	7	6
	For late		1	1 21277	111511	,	0
	substrates		CesF				
	(effectors)			B7UMA1	High	6	6

9

Transcription regulators	Global regulators	Ler	B7UMC6	High	1	1
	negative regulators	grIR	B7UMB6	Medium	2	
	Positive regulators	grIA	B7UMB5	High	2	2
	Histone-like nucleoid-like structuring	H-NS				
	protein		B/UQC9	-	-	-
Muramidase		etgA	B7UMB7	-	-	-
Attachment receptor		Intimin	P19809	High	53	43
Secreted effector (LEE						
encoded)		Tir	B7UM99	High	30	21
cheoucu)		1 11				
cheoded)		Map	B7UMA0	High	11	8
cheoded)		Map EspZ	B7UMA0 B7UMA9	High High	11 2	8
cheodedy		Map EspZ EspF	B7UMA0 B7UMA9 B7UM88	High High High	11 2 9	8 - 9
cheoded)		Map EspZ EspF EspG	B7UMA0 B7UMA9 B7UM88 B7UM28	High High High High High	11 2 9 16	8 - 9 12
		Map EspZ EspF EspG EspJ	B7UMA0 B7UMA0 B7UMA9 B7UM88 B7UMC8 B7UMB1	High High High High High High	11 2 9 16 6	8 - 9 12 -
		Map EspZ EspF EspG EspJ EspH	B7UMA0 B7UMA9 B7UMA9 B7UM88 B7UMC8 B7UMB1 B7UMA2	High High High High High -	11 2 9 16 6	8 - 9 12 -
Secreted effector (non-		Map EspZ EspF EspG EspJ EspH	B7UMA0 B7UMA9 B7UM88 B7UM88 B7UMC8 B7UMB1 B7UMA2	High High High High High -	11 2 9 16 6	8 - 9 12 - -
Secreted effector (non- LEE encoded)		Map EspZ EspF EspG EspJ EspH	B7UMA0 B7UMA9 B7UMA9 B7UM88 B7UMC8 B7UMB1 B7UMA2 B7UI20	High High High High - High	11 2 9 16 6 5	8 - 9 12 - -
Secreted effector (non- LEE encoded)		Map EspZ EspF EspG EspJ EspH EspH SepL NleA	B7UMA0 B7UMA9 B7UMA9 B7UM88 B7UMC8 B7UMA2 B7UMA2 B7UMA2 B7UI20 B7UI20 B7UR60	High High High High High - High High	11 2 9 16 6 5 2	8 - 9 12 - -
Secreted effector (non- LEE encoded)		Map EspZ EspF EspG EspJ EspH EspH SupA NleA NleB2	B7UMA0 B7UMA0 B7UMA9 B7UM88 B7UMC8 B7UMB1 B7UMA2 B7UI20 B7UR60 B7UI21	High High High High - High High High High	$ \begin{array}{c} 11 \\ 2 \\ 9 \\ 16 \\ 6 \\ \hline 5 \\ 2 \\ 6 \\ \hline \end{array} $	8 - 9 12 - - - -
Secreted effector (non- LEE encoded)		Map EspZ EspF EspG EspJ EspH EspL NleA NleB2 NleE1	B7UMA0 B7UMA0 B7UMA9 B7UM88 B7UMC8 B7UMB1 B7UMA2 B7UI20 B7UR60 B7UI21 B7UI22	High High High High High - High High High High	$ \begin{array}{c} 11\\ 2\\ 9\\ 16\\ 6\\ \\ 5\\ 2\\ 6\\ 3\\ \end{array} $	8 - 9 12 - - - - -

Supplementary Materials and methods

Buffers

Buffer A	50mM Tris/HCl pH 8.0; 50mM NaCl
Buffer B	50mM Tris/HCl pH 8.0; 50mM NaCl; 50% Glycerol
Buffer C	50mM Tris/HCl pH 8.0; 50mM KCl; 5mM MgCl ₂
Buffer D	50mM HEPES pH:7.5; 50mM KCl; 5mM MgCl ₂ ; 5% glycerol
Buffer E	50mM HEPES-KOH pH 6.6; 50mM KCl
Buffer F	50mM Tris/HCl pH 8.0; 20% Glycerol
1X PBS	137mM NaCl ₂ ; 2.7mM KCl; 4.3mM Na ₂ HPO ₄ ; 1.4mM KH ₂ PO ₄
Rehydration buffer	8M urea; 2% Triton; 2% IPG Buffer; 40mM DTT; 1% Bromophenol Blue

Antisera

Rabbit polyclonal antibodies against the indicated purified proteins, or protein domains, were raised by Davids Biotechnologie, Germany. T3SS antibodies were further purified by 9 cycles of negative immuno-absorption, using membranes isolated from *EPEC* strains that lacked the gene of interest, i.e. for α -CesAB, membranes isolated from EPEC $\Delta cesAB$ cells were used.

Protein-antigen	Animal Source	Reference or commercial source
CesAB	Rabbit	(Chen et al, 2011; Creasey et al, 2003)
EspA	Rabbit	(Chen et al, 2011; Creasey et al, 2003)
SepL	Rabbit	This study
EscV Cytoplasmic domain	Rabbit	This study
CesF	Rabbit	This study
Tir	Rabbit	This study
MBP	Rabbit	This study
SecY	Rabbit	(Karamanou et al, 2008)
SecA	Rabbit	(Karamanou et al, 2008)
SecB	Rabbit	This study
OmpA	Rabbit	This study
PhoA	Rabbit	(Gouridis et al, 2009)
ZipA	Rabbit	This study
α-Rabbit	Goat	Jackson ImmunoResearch Europe Ltd
α-Mouse	Goat	Jackson ImmunoResearch Europe Ltd
α-His	Mouse	SEROTEC

α-Rabbit 5nm GOLD	Goat	British Biocell International (Cardiff, UK)

Dyes and labeled secondary antibodies

Dyes/labelled secondary antibodies	Commercial source
Cy TM 3-Affinipure α -Rabbit	Jacksons Immuno-Research Lab
Cy2 Oregon Green®4889 Phalloidin	Thermo Fisher Scientific
TO-PRO®-3	Thermo Fisher Scientific
DAPI	Thermo Fisher Scientific

Vectors

Vector name	Antibiotic	Origin	Reference
	resistance		
pASKIBA7 plus	Ampicillin	pBR322	IBA life sciences (http://www.iba-lifesciences.com/isotope/2/2-1406-000-
			DS-2-1406-000-pASK-IBA7plus.pdf) (Guzman et al, 1995)
pET Duet 1	Ampicillin	pBR322	Novagen
pKD4	Kanamycin	R6Kγ	(Datsenko & Wanner, 2000)
pKD3	Chloramphenicol	R6Ky	(Datsenko & Wanner, 2000)
pKD46	Ampicillin	R101 w/repA101ts	(Datsenko & Wanner, 2000)
pET 16B	Ampicillin	pBR322	Novagen
pET 22B	Ampicillin	pBR322	Novagen
pMAL-c2X	Ampicillin	pBR322	New England Biolabs
pET16B His-MBP-TEV	Ampicillin	pBR322	This study

Genetic constructs

Genes were cloned in the indicated plasmid vectors using a combination of restriction sites (as indicated). Gene-mutations were introduced by following the Quick Change Site-Directed Mutagenesis protocol (Stratagene-Agilent); templates and primers were as indicated. Restriction enzymes and T4 DNA Ligase were either from Minotech (Greece), or Promega, or NEB. For PCR mutagenesis PFU Ultra Polymerase (Stratagene) was used; for gene amplification either Expand High fidelity Polymerase (Roche) or DNA *Taq* polymerase (Thermo scientific). *Dpn*I was used to cleave the maternal methylated DNA (NEB). All PCR-generated plasmids were sequenced (Macrogen Europe). Plasmids were stored in DH5α cells.

Gene	Uniprot KB	Plasmid	Vector	Cloning/PCR strategy or source					
	accession	name							
Chaperones and expe	Chaperones and exported proteins								
cesAB	B7UMC4	pIMBB585	pETDuet-1	The <i>cesAB</i> gene, was amplified from EPEC strain E2348/69 using primers X345 and X346, digested with BamHI-HindIII and cloned in pETDuet-1.					
cesAB and espA	B7UMC4 and B7UM94	pIMBB648	pETDuet-1	The <i>espA</i> gene was amplified from EPEC strain E2348/69 using primers X375 and X376, digested with MunI-KpnI and cloned in pIMBB585.					
$cesAB(\Delta C)$ and $espA$	B7UMC4 and B7UM94	pIMBB803	pETDuet-1	The <i>cesAB</i> (N1-86) fragment was amplified from EPEC strain E2348/69 using primers X345 and X431, digested with BamHI-HindIII and cloned in pIMBB648 instead of <i>cesAB</i> gene.					
cesAB and espA	B7UMC4 and B7UM94	pIMBB1289	pASK- IBA7plus	The <i>espA</i> gene was amplified from pIMBB648 using primers X1018 and X1019, digested with HindIII-HindIII and cloned in pIMBB806. Primer X1018 inserts an RBS.					
$cesAB(\Delta C)$ and $espA$	B7UMC4 and B7UM94	pLMB1792	pASK- IBA7plus	The <i>espA</i> gene was digested from pIMBB1289 using HindIII-HindIII and cloned in pIMBB807					
$cesAB(\Delta C)$	B7UMC4	pIMBB801	pETDuet-1	The <i>cesAB</i> (N1-86) fragment was amplified from EPEC strain E2348/69 using primers X345 and X431, digested with BamHI-HindIII and cloned in pETDuet-1.					
cesAB	B7UMC4	pIMBB806	pASK- IBA7plus	The <i>cesAB</i> gene was amplified from pIMBB585 using primers X453 and X346, digested with NheI-HindIII and cloned in pASK-IBA7plus.					
$cesAB(\Delta C)$	B7UMC4	pIMBB807	pASK- IBA7plus	The <i>cesAB</i> (N1-86) fragment was amplified from pIMBB585 using primers X453 and X431, digested with NheI-HindIII and cloned in pASK-IBA7plus					

cesAB(6A)	B7UMC4	pIMBB1413	pASK- IBA7plus	The 6 mutations (R89A, K91A, R99A, R101A, R104A, K105A) in pIMBB806 were introduced sequentially using primer pairs X1221-X1222, X1223-X1224 and X1225-X1226.
cesAB(DRE)	B7UMC4	pIMBB1287	pETDuet-1	The mutations <i>D14L</i> , <i>R18D</i> and <i>E20L</i> were introduced in pIMBB585 using primer pairs X954-X955, X958-X959 and X1000-X1001.
cesAB(DRE)	B7UMC4	pIMBB1294	pASK- IBA7plus	The <i>cesAB(D14L/R18D/E20L)</i> gene was digested from pIMBB1287 using BamHI-HindIII and cloned in pASKIBA7plus vector.
$cesAB(DRE/\Delta C)$	B7UMC4	pLMB0006	pETDuet-1	The <i>cesAB(D14L/R18D/E20L</i> (N1-86) was amplified from pIMBB1287 using primers X1442 and X431, digested with NcoI-HindIII and inserted in pETDuet-1.
cesT	P21244	pIMBB1157	pETDuet-1	The <i>cesT</i> gene was amplified from EPEC strain E2348/69 using primers X865 and X866, digested with BamHI-HindIII and cloned in pETDuet- 1.
cesT and tir	P21244 and B7UM99	pIMBB1158	pETDuet-1	The <i>tir</i> gene was amplified from EPEC strain E2348/69 using primers X867 and X868, digested with MfeI-KpnI and cloned in pIMBB1157.
SepL-related constru	cts			
sepL	B7UM95	pIMBB1189	pET 16B	The <i>sepL</i> gene was amplified from EPEC strain E2348/69 using primers X980 and X981, digested with NdeI-XhoI and cloned in pET 16B.
sepD	B7UMB2	pIMBB1188	pET 16B	The <i>sepD</i> gene was amplified from EPEC strain E2348/69 using primers X978 and X979, digested with NdeI-XhoI and cloned in pET 16B.
cesL	B7UMA8	pIMBB1549	pETDuet-1	The <i>cesL</i> gene was amplified from EPEC strain E2348/69 using primers X1730 and X1731 digested with BamHI-SalI and cloned in pETDuet- 1.
cesL	B7UMA8	pLMB1821	pASK- IBA7plus	The <i>cesL</i> gene was amplified from EPEC strain E2348/69 using primers X2068 and X1731 digested with NheI-SalI and cloned in pASK-IBA7plus.
cesL and sepD	B7UMA8 and B7UMB2	pIMBB1547	pETDuet-1	The <i>sepD</i> gene was amplified from EPEC strain E2348/69 using primers X1732 and X1733, digested with SalI-HindIII and cloned in pIMBB1549.
cesL, sepD and sepL	B7UMA8, B7UMB2 and B7UM95	pIMBB1548	pETDuet-1	The <i>sepL</i> gene was digested from pIMBB1189 using NdeI-XhoI and cloned in pIMBB1547.

His-sepL	B7UM95	pIMBB1305	pASK-	The <i>sepL</i> gene was digested from pIMBB1189 using XbaI-XhoI and
II' D		B (DD1204	IBA/plus	cioned in pASKIBA/plus.
His-sepD	B/UMB2	pIMBB1304	pASK-	The sepD gene was digested from pIMBB1188 using Xbal-Xhol and
			IBA/plus	cloned in pASKIBA/plus.
sepL(R333D)	B7UM95	pIMBB1543	pASK-	The mutation R333D was introduced in pIMBB1305 using primers
			IBA7plus	X1735 and X1736.
<i>sepL</i> (<i>N1-241</i>)	B7UM95	pIMBB1541	pET 16B	The <i>sepL</i> fragment was amplified from EPEC strain E2348/69 using
				primers X980 and X1737, digested with NdeI-XhoI and cloned in pET
				16B.
sepL N1-278	B7UM95	pIMBB1542	pET 16B	The sepL fragment was amplified from EPEC strain E2348/69 using
				primers X980 and X1738, digested with NdeI-XhoI and cloned in pET
				16B.
sepL N124-351	B7UM95	pIMBB1540	pET 16B	The sepL fragment was amplified from EPEC strain E2348/69 using
				primers X1734 and X981, digested with NdeI-XhoI and cloned in pET
				16B.
His-sepL N1-241	B7UM95	pLMB0090	pASK-	The <i>sepL</i> fragment was digested from pIMBB1541 using XbaI-XhoI
			IBA7plus	and cloned in pASKIBA7plus.
His-sepL N1-278	B7UM95	pLMB0089	pASK-	The <i>sepL</i> fragment was digested from pIMBB1542 using XbaI-XhoI
_		_	IBA7plus	and cloned in pASK-IBA7plus.
His-sepL N124-351	B7UM95	pLMB0091	pASK-	The sepL fragment was digested from pIMBB1540 using XbaI-XhoI
_		_	IBA7plus	and cloned in pASK-IBA7plus.
sepL patch a	B7UM95	pLMB1755	pASK-	The synthetic gene fragment from pUC47 sepL Patch a was digested
		-	IBA7plus	with XbaI-HindIII and cloned in pIMBB1305.
sepL patch b	B7UM95	pLMB1756	pASK-	The synthetic gene fragment from pUC47 sepL Patch b was digested
		•	IBA7plus	with XbaI-HindIII and cloned in pIMBB1305.
sepL patch c	B7UM95	pLMB1757	pASK-	The synthetic gene fragment from pUC47 sepL Patch c was digested
		•	IBA7plus	with HindIII-XhoI and cloned in pIMBB1305.
sepL patch d	B7UM95	pLMB1758	pASK-	The synthetic gene fragment from pUC47 sepL Patch d was digested
		1	IBA7plus	with HindIII-XhoI and cloned in pIMBB1305.
sepL patch e	B7UM95	pLMB1759	pASK-	The synthetic gene fragment from pUC47 sepL Patch e was digested
		1	IBA7plus	with HindIII-XhoI and cloned in pIMBB1305.
Major export appara	atus component	constructs	1 1	

escV	B7UMA7	pLMB0088	pASK- IBA7plus	The <i>escV</i> gene was amplified from EPEC strain E2348/69 using primers X1814 and X1710, digested with NheI –XhoI and cloned in pASK-IBA7plus
escV patch α	B7UMA7	pLMB1762	pASK- IBA7plus	The synthetic gene fragment from pUC47 <i>escV Patch</i> α was isolated by NheI-HindIII digestion and inserted in pLMB0088.
escV patch β	B7UMA7	pLMB1763	pASK- IBA7plus	The synthetic gene fragment from pUC47 <i>escV</i> β was digested with NheI-HindIII and inserted in pLMB0088.
escV patch y	B7UMA7	pLMB1764	pASK- IBA7plus	The synthetic gene fragment from pUC47 <i>escV</i> γ was digested with HindIII-XhoI and inserted in pLMB0088.
Constructs for protein	in purification and	d <i>in vivo</i> comple	mentation	
escV(Δ21-509)	B7UMA7	pIMBB1459	pETDuet-1	The N1-20 and the N510-676 domains of EscV were amplified from EPEC strain E2348/69 using the primer pairs X1278-X1279 and X1280-X1281.The N1-20 product was digested with BamHI-PstI and the N510-676 by PstI-HindIII and were cloned sequentially in pETDuet-1.
espA	B7UM94	pIMBB485	pET 16B	The <i>espA</i> gene was amplified from EPEC strain E2348/69 using primers X258 and X259, digested with NdeI-BamHI and cloned in pET 16B.
cesF	B7UMA1	pIMBB664	pETDuet-1	The <i>cesF</i> gene was amplified from EPEC strain E2348/69 using primers X379 and X380, digested with BamHI-SalI and cloned in pETDuet-1.
Tir	B7UM99	pIMBB1448	pETDuet-1	The <i>tir</i> gene was amplified from EPEC strain E2348/69 using primers X1265 and X897, digested with BamHI-HindIII and cloned in pETDuet-1.
His-mbp-TEV	P0AEX9	pIMBB491	pET 16B	The <i>mbp</i> gene was amplified from pMAL-c2X using primers X239 and X240, digested with BamHI-HindIII and cloned in pETDuet-1.
His-mbp-TEV-sepL	B7UM95	pIMBB1191	pET 16B His MBP TEV	The <i>sepL</i> gene was amplified from EPEC strain E2348/69 using primers X980 and X981, digested with NdeI-XhoI and cloned in pET16B-MBP-TEV.
<i>escV</i> (N334-675)	B7UMA7	pLMB1676	pET 16B	The <i>escV</i> gene was amplified from EPEC strain E2348/69 using primers X1850 and X1710, digested with NdeI-XhoI and cloned in pET 16B.
His-mbp-TEV-	B7UMA7	pLMB1643	pET 16B -	The escV C-terminal domain (N334-675) fragment was digested with
escVCD			MBP-TEV	NdeI- XhoI from pLMB1676 and inserted in pIMBB1191.
His-secA	P10408	pIMBB7	pET 16B	(Sianidis et al, 2001)
prophoA- His	P00634	pIMBB882	pET 22b	(Gouridis et al, 2009)

escN	B7UMA6	pIMBB1179	pASK-	The escN gene was amplified from EPEC strain E2348/69 using					
		-	IBA7plus	primers X698 and X253, digested with NheI-BamHI and cloned in					
				pASK-IBA7plus					
escQ	B7UMA3	pLMB0065	pASK-	The escQ gene was amplified from EPEC strain E2348/69 using					
			IBA7plus	primers X1665 and X1444, digested with NheI-HindIII and cloned in					
				pASK-IBA7plus					
escU	B7UMB8	pLMB0064	pASK-	The escU gene was amplified from EPEC strain E2348/69 using					
			IBA7plus	primers X1526 and X1527, digested with NheI-BamHI and cloned in					
				pASK-IBA7plus					
secB	P0AG86	pIMBB490	pET 16B	The <i>secB</i> gene was amplified from <i>E. coli</i> DH5a strain using primers					
				X264 and X265, digested with NdeI-BamHI and cloned in pET 16B					
ompA	P0A910	pIMBB454	pET22B	The <i>ompA</i> gene was amplified from <i>E. coli</i> DH5a strain using primers					
				X191 and X193, digested with NdeI-EcoRI and cloned in pET 22B					
zipA	P77173	pIMBB1476	pET22B	The <i>zipA</i> gene was amplified from <i>E. coli</i> DH5a strain using primers					
				X1408 and X1409, digested with NdeI-XhoI and cloned in pET 22B					
Constructs used for ³	⁵ S-labelling								
MM His-cesAB	B7UMC4	pLMB0003	pETDuet-1	The cesAB gene was amplified from pIMBB585 using primers X1442					
				and X346, digested with NcoI-HindIII and cloned in pETDuet-1.					
MM His- <i>cesAB</i> (ΔC)	B7UMC4	pLMB0004	pETDuet-1	The cesAB (N1-86) gene was amplified from pIMBB585 using primers					
				X1442 and X431, digested with NcoI-HindIII and cloned in pETDuet-					
				1.					
MM His-	B7UMC4	pLMB0005	pETDuet-1	The gene was amplified from pIMBB1287 using primers X1442 and					
cesAB(DRE)				X346, digested with NcoI-HindIII and cloned in pETDuet-1.					

Bacterial strains

To generate the deletion strains, the indicated gene was replaced by a gene encoding for the indicated antibiotic (Datsenko & Wanner, 2000)

Bacterial strain E. coli	Description (gene deleted)	Reference/		
DH5a		Invitrogen		
BL21 (DE3)		(Studier et al, 1990)		
BL21.19 (DE3)		(Mitchell & Oliver, 1993)		
BL31(DE3)		(Chatzi et al, 2017)		
EPEC wt	Escherichia coli O127:H6 (strain	(Levine et al, 1978)		
	E2348/69)			

Portaliou et al

EPEC $\triangle escN$	$\Delta escN:: nptII(Kan^R)$	(Iguchi et al, 2009)
EPEC $\triangle cesAB$	$\Delta cesAB:: nptII(Kan^{R})$	(Iguchi et al, 2009)
EPEC $\Delta sepL$	$\Delta sepL:: nptII(Kan^{R})$	(Munera et al, 2010)
EPEC $\Delta sepD$	$\Delta sepD:: nptII(Kan^{R})$	(Iguchi et al, 2009)
EPEC $\triangle cesAB / \triangle espA$	$\Delta cesAB:: cat(Cam^{R}), \Delta espA:: nptII(Kan^{R})$	(Chen et al, 2011)
EPEC $\triangle escQ$	$\Delta escQ:: nptII(Kan^{R})$	This study
EPEC $\Delta escV$	$\Delta escV:: nptII(Kan^{R})$	This study
EPEC	$escU\Delta 264-345:: nptII(Kan^R)$	This study
<i>escU</i> ∆Cytoplasmic		
domain		
EPEC <i>escV</i> ∆Cytoplasmic	<i>escV</i> Δ334-675:: <i>nptII</i> (Kan ^R)	This study
domain		
E2348/69 $\triangle cesL$	$\Delta cesL:: nptII(Kan^{R})$	This study
EPEC $\triangle escV \triangle sepL$	$\Delta escV:: nptII(Kan^{R}), \Delta sepL:: cat(Cam^{R})$	This study
$EPEC\Delta escV\Delta sepD$	$\Delta escV:: nptII(Kan^R), \overline{\Delta sepD:: cat(CamR)}$	This study

List of primers

Primers used for gene cloning and mutagenesis

Primer Name	Forward/ Reverse	Gene or/and Mutation Inserted	Restriction Site	Sequence (5'-3') (Mutated codons are bold, restriction sites underlined)
X191	F	ompA	NdeI	GGAATTC <u>CATATG</u> AAAAAGACAGCTATCGC
X193	R	ompA	EcoRI	CG <u>GAATTC</u> TTAAGCCTGCGGCTGAGTTAC
X239	F	Mbp	AseI	CCGGATTAATATGAAAACTGAAGAAGGTAAACTGG
X240	R	<i>mbp</i> Inserts Tev cleavage site	NdeI	CCCTTAAG <u>CATATG</u> GGCGCCCTGAAAATAAAGATTCTCAGTGGCTTCATCGACAGTCTGACG
X253	R	escN	BamHI	GCG <u>GGATCC</u> TCAGGCAACCACTTTGAATAGG
X258	F	espA	NdeI	GGGAATTC <u>CATATG</u> GATACATCAACTACAGCA
X259	R	espA	BamHI	GCG <u>GGATCC</u> TTATTTACCAAGGGATATTCC
X264	F	secB	NdeI	GGGAATTC <u>CATATG</u> TCAGAACAAAAACAACACTGAAATG
X265	R	secB	BamHI	GCG <u>GGATCC</u> TTAGGCATCCTGATGTTCTTCAGTACC
X345	F	cesAB	BamHI	CGC <u>GGATCC</u> GATGAGTATTGTGAGCCAAACAAG
X346	R	cesAB	HindIII	CCC <u>AAGCTT</u> TCATACTATTTTCTATTTCTATTCCG
X375	F	espA	MfeI	GGCCAATTGGGATACATCAACTACAGCATCAGTTG

X376	R	espA	KpnI	GGGGTACCTTATTTACCAAGGGATATTCCTG				
X379	F	cesF	BamHI	GCGGGATCCGAATGAACAATTTTGCAAAGATC				
X380	R	cesF	SalI	GGCGTCGACTCAAAGTGAAAGTAGTTTTATTATTTC				
X431	R	cesAB N1-86	HindIII	CCCAAGCTTTCAACTCAGTGTCTCTATTAGTTTTTC				
X453	F	cesAB	NheI	GCGCCCTAGCTAGCATGAGTATTGTGAGCCAAACAAG				
X698	F	escN	NheI	GCGCCCTAGCTAGCATGATTTCAGAGCATGATTCTG				
X865	F	cesT	BamHI	CGCGGATCCGATGTCATCAAGATCTGAACTT				
X866	R	cesT	HindIII	CCCAAGCTTTTATCTTCCGGCGTAATAATG				
X867	F	Tir	MfeI	GGCCAATTG <i>G</i> CCTATTGGTAACCTTGGT				
X868	R	Tir	KpnI	GGGGGTACCTTAAACGAAACGTACTGGTCC				
X897	R	Tir	HindIII	CCCAAGCTTTTAAACGAAACGTACTGGTCCCGG				
X954	F	cesAB/D14L		AAAGAACTATTA CTG AAAAAAAAAAAGATCAGAAATTGAGGCG				
X955	R	cesAB/D14L		CGCCTCAATTTCTGATCTTATTTTTTTT CAG TAATAGTTCTTT				
X958	F	cesAB/D14L/R18D		AAAGAACTATTA CTG AAAAAAAAAAA GAC TCAGAAATTGAGGCG				
X959	R	cesAB/D14L/R18D		CGCCTCAATTTCTGA GTC TATTTTTTT CAG TAATAGTTCTTT				
X978	F	sepD	NdeI	GGGAATTC <u>CATATG</u> AACAATAATAATGGCATAGCA				
X979	R	sepD	XhoI	GACCCG <u>CTCGAG</u> TTACACAATTCGTCCTATATC				
X980	F	sepL	NdeI	GGGAATTC <u>CATATG</u> GCTAATGGTATTGAATTTAAT				
X981	R	sepL	XhoI	GACCCG <u>CTCGAG</u> TTACATAACATCCTCCTTATAATC				
X1000	F	cesAB/E20L		CTGAAAAAATACTGTCA TTA ATTGAGGCGATAAAAAA				
X1001	R	cesAB/E20L		TTTTTTTATCGCCTCAAT TAA TGACAGTATTTTTTTCAG				
X1018	F	petDuet 1 RBS	HindIII	CCCAAGCTTTTAAGTATAAGAAGGAGATATACATATGGC				
X1019	R	espA	HindIII	CCCAAGCTTTTATTTACCAAGGGATATTCCTGAAATAGT				
X1221	F	cesAB/R89A/K91A		GAGACACTGAGTCCAGCA GCA TCT GCA AGCCAATCAACAATGAAT				
X1222	R	cesAB/R89A/K91A		ATTCATTGTTGATTGGCT TGC AGA TGC TGCTGGACTCAGTGTCTC				
V1223	F	cesAB(R89A/K91A)/		ΓΑ ΑΨΓΑ ΑΓΑ ΑΨΓΑ Α ΓΓΓ Α ΑΨ ΓΓΑ ΑΑΨΑ ΑΨΑ ΕΥΑΓΑ ΑΤΑ ΑΤΑ ΕΥΑΓ				
A1223	1	R99A/R101A						
X1224	R	cesAB(R89A/K91A)/		ͲΑϹͲΑͲͲͲͲϹͲΑͲͲ Α ͲͲ ͲϚϹ ΑͲͲ ϹϚϹ ͲͲϚΑͲͲϚΑͲͲϚΑͲͲϚ				
111227	R	R99A/R101A						
		cesAB(R89A/K91A/						
X1225	F	R99A/R101A)/		CAAGCGAATGCAAATAAT GCAGCA ATAGTATGAAAGCTTGACCTG				
		R104A/K105A						
	D	cesAB(R89A/K91A/						
X1226	ĸ	R99A/R101A)		CAGGTCAAGCTTTCATACTAT TGCTGC ATTATTTGCATTCGCTTG				
3710/8	г	/R104A/K105A	D III					
X1265	Г	1 lr	BamHI					
X1278	Г D	escv	BamHI					
X1279	K	escv N1-20	PStI					
X1280	F	escV N510-675	Pstl					
X1281	К	escV N510-675	HindIII	CCCAAGCTTTCATGCTCTGAAATCATTTACCGT				

Portaliou et al

X1408	F	zipA	NheI	GGGAATTC <u>CATATG</u> ATGCAGGATTTGCGTCTGATATTA
X1409	R	zipA	XhoI	GACCCG <u>CTCGAG</u> GGCGTTGGCGTCTTTGACTTCGCG
X1442	F	cesAB	NcoI	CATG <u>CCATGG</u> GCATGATGAGCAGCCATCACCATCATCAC
X1444	R	escQ	HindIII	CGC <u>AAGCTT</u> TTAATCACATACTACGCTAATAGT
X1526	F	escU	NheI	GCGCCCTA <u>GCTAGC</u> -GAAAAAACAGAAAAGCCCACAC
X1527	R	escU	BamHI	CGC <u>GGATCC</u> TTAATAATCAAGGTCTATCGCAATAC
X1665	F	escQ	NheI	GCGCCCTA <u>GCTAGC</u> -ATGAAGCCATTGAGTTCACAAT
X1710	R	escV	XhoI	GGC <u>CTCGAG</u> TCATGCTCTGAAATCATTTAC
X1730	F	cesL	BamHI	CGC <u>GGATCC</u> GATGAATCTTTTAGTTAAAAGAAATG
X1731	R	cesL	SalI	ACGCGTCGACTTATGATGTCATCCTGCGAACG
X1732	F	sepD	SalI	ACGC <u>GTCGAC</u> TTTAAGAAGGAGATATAC <i>C</i> ATGAACAATAATAATGGCATAG
X1733	R	sepD	HindIII	CGC <u>AAGCTT</u> TTACACAATTCGTCCTATATCAG
X1734	F	sepL N124-351	NdeI	GGGAATTC <u>CATATG</u> ATGCCAAAGGGGGAAATTGTTG
X1735	F	sepL/R333D		ATTGATAACGAGCAG GAC AGTAATACATTATTA
X1736	R	sepL/R333D		TAATAATGTATTACT GTC CTGCTCGTTATCAAT
X1737	R	sepL N1-241	XhoI	GACCCGCTCGAGTCATCATCTTACCTTGTCTTCAAAAG
X1738	R	sepL N1-278	XhoI	GACCCGCTCGAGTCATCATAAAATGACATCTTTATC
X1814	F	escV	NheI	GCGCCCTA <u>GCTAGC</u> ATGAATAAACTCTTAAATATATTTAAAAAAGCA
X1850	F	escV N334-675	NdeI	GGAATTC <u>CATATG</u> GATGCTATGGGAGCTGATTT
X2068	F	cesL	NheI	GCGCCCTAGCTAGCATGAATCTTTTAGTTAAAAGAAATG

20

Primers used for gene replacement.

Primers X1697, X1700, X1702 and X2067 were designed internally to the deleted gene to avoid polar effects due to the deletion of sequences in overlapping neighbor genes.

Primer Name	Forward/ Reverse	Gene or fragment deleted	Resistance introduced	Sequence (5'-3')
X1494	F	escV	KanR	ACTTTTCAACAGCATGTGCAGATTATTGAGCGCGTTCGCAGGATGACATCTAGGCTGGAGCTGCTTC
X1697	F	escQ	Chlo ^R	CGATTTTTATTTGCCGTTGTTGCCAGTTATCGGAACCGGTCGCCTCTATACATATGAATATCCTCCTTAG
X1698	R	escQ	Chlo ^R	CCTGATAATGATGACGACATCATACACCTCCCTATATAACGCATTCCTGATAGGCTGGAGCTGCTTC
X1700	R	escU	Kan ^R	CAAGGTCTATCGCAATACGAATCAATTGTGCCACAGGTTCAAAAAAGTCTCATATGAATATCCTCCTTAG
X1701	F	escV	Kan ^R	TCTTAAATATATTTAAAAAAGCAGAGTCATATCACGATCTTATTCTGGCTTAGGCTGGAGCTGCTTC
X1702	R	escV	Kan ^R	GTTCGATATTATTCCCAACCTCCTGAAAAGAGAGCACGGGGACTGACGGGCATATGAATATCCTCCTTAG
X1721	F	escUA263-345	Kan ^R	GAAGTTTGGCGAATAACATCAAAAAATCAACCGTTATTGTTAAAAAACCCGTGATAATAGGCTGGAGCTGCTTC
X1722	F	escV∆333-675	Kan ^R	TAGCCTGGAAATTACAGAAGAAAAGAACATTTGGAGCTGGCAATAATAAGTGATAATAGGCTGGAGCTGCTTC
X2066	F	cesL	Kan ^R	GCTTTTTCAAGCAATAATATTCACACGTATACTTACTTCAGAGCCTGCAGTAGGCTGGAGCTGCTTC
X2067	R	cesL	Kan ^R	ACATCGATATTGGTTAACAAACAACTTAAGCACAATTTATTATCGTAGACCATATGAATATCCTCCTTAG
X2081	F	sepL	Chlo ^R	ACAGTACTATTTAATGGAATATTCATAATTAATGATTACGTGAGTTTCCACATATGAATATCCTCCTTAG
X2082	R	sepL	Chlo ^R	ACCTCTTCATAATCTTTCTTAGCATGACAAAAACTATAAAAAAAA

Synthetic genes

To introduce the following multiple mutations (red in the sequence), the indicated *sepL* or *escV* DNA fragments were synthesized by GenScript[®], delivered as pUC47 clones and subcloned in pASK IBA7plus vector (IBA life sciences).

Gene/mutant	Mutation introduced	Amino acid sequence				
sepL						
Patch a	E90S/ T93A/ K140A/ F141S/ K143A	MANGIEFNQNPASVFNSNSLDFELESQQLTQKNSSNTSSPLINLQNELAMITSSSLSETIEGLSLGYRKGSARKEEEGTT IEKLLNEMQ <mark>SLLA</mark> LTDSDKIKELSLKNSGLLEQHDPTLAMFGNMPKGEIVALISSLLQS <mark>AS</mark> VAIELKKKYAKLLLDLLGE DDWELALLSWLGVGELNQEGIQKIK				
Patch b	K152S/ D156S/ E160A/ D161A/ D162S/ E164S	MANGIEFNQNPASVFNSNSLDFELESQQLTQKNSSNTSSPLINLQNELAMITSSSLSETIEGLSLGYRKGSARKEEEGTT IEKLLNEMQELLTLTDSDKIKELSLKNSGLLEQHDPTLAMFGNMPKGEIVALISSLLQSKFVKIELKKKYA <mark>S</mark> LLLSLLGA ASWSLALLSWLGVGELNQEGIQKIK				
Patch c	D204A/ M207A/ E208S/ D211A	YEKAKDEDSENGASLLAWFASIKALPEREKHLKVIIRALSFDLSYMSSFEDKVRTSSIISDLCRIIIFLSLNNYTDIIAI SIKKDKDVILNEMLSIIEHVWLTEDWLLESPSRVSIVEDKHVYYFHLLKEFFASLPDACFIDNEQRSNTLLMIGKVIDYK EDVM*				
Patch d	S257A/ N259A/ N260A T262S/ D263A	YEKAKDEDSENGASLLDWFMEIKDLPEREKHLKVIIRALSFDLSYMSSFEDKVRTSSIISDLCRIIIFLALAAYSAIIAI SIKKDKDVILNEMLSIIEHVWLTEDWLLESPSRVSIVEDKHVYYFHLLKEFFASLPDACFIDNEQRSNTLLMIGKVIDYK EDVM*				
Patch e	H313A/ K316V/ L338S	YEKAKDEDSENGASLLDWFMEIKDLPEREKHLKVIIRALSFDLSYMSSFEDKVRTSSIISDLCRIIIFLSLNNYTDII SIKKDKDVILNEMLSIIEHVWLTEDWLLESPSRVSIVEDKHVYYFALLVEFFASLPDACFIDNEQRSNTLSMIGKVID EDVM*				
escV						
Patch α	S359A/ N360S/ Y410A/ K411S/ D412S	MNKLLNIFKKAESYHDLILALFFFMAVMMMIIPLPTVVVDIIIAINISTALLLLMLSIYIKNPLELTSFPTILLITTLMR LSLSVSTTRLILLHHDAGDIIYSFGNFVVGGNIVVGLVIFTIITIVQFMVITKGAERVAEVSARFSLDGMPGKQMSIDGD MRAGVIDPLEAKVLRSRVQKESQFYGSMDGAMKFVKGDAIAGIIIVLVNLFGGVLIGMWQFDMPFSEALSLFSVLSVGDA LVAQIPALIISVTAGVVVTRVPGESEKEENLAGDIVQQVSVNSRPFLISAALMLVMAIIPGFPTLVFLFLAVCLLGIAWK LQKKRTFGAGNNKDAMGADLSNSQNISPGAEPLILNLSASIYSSDITQQIEVMRWNFFEESGIPLPKIIVNPVKNNDSAI EFLLYQESIASSTLIDDTVYFEAGHAEISFEFVQE				
Patch β	E401S/ L403A/ Q406A/ E407S/ S408A	MNKLLNIFKKAESYHDLILALFFFMAVMMMIIPLPTVVVDIIIAINISTALLLLMLSIYIKNPLELTSFPTILLITTLMR LSLSVSTTRLILLHHDAGDIIYSFGNFVVGGNIVVGLVIFTIITIVQFMVITKGAERVAEVSARFSLDGMPGKQMSIDGD MRAGVIDPLEAKVLRSRVQKESQFYGSMDGAMKFVKGDAIAGIIIVLVNLFGGVLIGMWQFDMPFSEALSLFSVLSVGDA LVAQIPALIISVTAGVVVTRVPGESEKEENLAGDIVQQVSVNSRPFLISAALMLVMAIIPGFPTLVFLFLAVCLLGIAWK LQKKRTFGAGNNKDAMGADLSNSQNISPGAEPLILNLSSNIYSSDITQQIEVMRWNFFEESGIPLPKIIVNPVKNNDSAI SFALYASAIYKDTLIDDTVYFEAGHAEISFEFVQE				
Patch y	K468S/ T470A/ F471V/ K474A/ K475S/ L478S	STNSIVYKTNKTNQQLAHLTGMDVYATTNDSIAVLLASLVSSNAKEFIGVQETRYLMDIMERKYNELVKELQRQLGLSKI VDILQRLVEENVSIRDLRTIFETLIFWSTKEKDVVILCEYVRIALRRHILGRYSVSGTLLNVWLIGSDIENELRESIRQT SSGSYLNISPERTEQIIGFLKNIMNPTGNGVILTALDIRRYVKKMIEGSFPSVPVLSFQEVGNNIELKVLGTVNDFRA*				

Immobilized peptide arrays

The following 13 mer-, overlapping (by 10 residues) peptides were synthesized and immobilized on cellulose membranes by PepSpot Peptides, JPT Peptide Technologies, Germany.

Sep	SepL										
No	Sequence										
1	MANGIEFNQNPAS	20	ETIEGLSLGYRKG	39	DPTLAMFGNMPKG	58	GVGELNQEGIQKI	77	DLSYMSSFEDKVR	96	HVWLTEDWLLESP
2	GIEFNQNPASVFN	21	EGLSLGYRKGSAR	40	LAMFGNMPKGEIV	59	ELNQEGIQKIKKL	78	YMSSFEDKVRTSS	97	LTEDWLLESPSRV
3	FNQNPASVFNSNS	22	SLGYRKGSARKEE	41	FGNMPKGEIVALI	60	QEGIQKIKKLYEK	79	SFEDKVRTSSIIS	98	DWLLESPSRVSIV
4	NPASVFNSNSLDF	23	YRKGSARKEEEGT	42	MPKGEIVALISSL	61	IQKIKKLYEKAKD	80	DKVRTSSIISDLC	99	LESPSRVSIVEDK
5	SVFNSNSLDFELE	24	GSARKEEEGTTIE	43	GEIVALISSLLQS	62	IKKLYEKAKDEDS	81	RTSSIISDLCRII	100	PSRVSIVEDKHVY
6	NSNSLDFELESQQ	25	RKEEEGTTIEKLL	44	VALISSLLQSKFV	63	LYEKAKDEDSENG	82	SIISDLCRIIIFL	101	VSIVEDKHVYYFH
7	SLDFELESQQLTQ	26	EEGTTIEKLLNEM	45	ISSLLQSKFVKIE	64	KAKDEDSENGASL	83	SDLCRIIIFLSLN	102	VEDKHVYYFHLLK
8	FELESQQLTQKNS	27	TTIEKLLNEMQEL	46	LLQSKFVKIELKK	65	DEDSENGASLLDW	84	CRIIIFLSLNNYT	103	KHVYYFHLLKEFF
9	ESQQLTQKNSSNT	28	EKLLNEMQELLTL	47	SKFVKIELKKKYA	66	SENGASLLDWFME	85	IIFLSLNNYTDII	104	YYFHLLKEFFASL
10	QLTQKNSSNTSSP	29	LNEMQELLTLTDS	48	VKIELKKKYAKLL	67	GASLLDWFMEIKD	86	LSLNNYTDIIAIS	105	HLLKEFFASLPDA
11	QKNSSNTSSPLIN	30	MQELLTLTDSDKI	49	ELKKKYAKLLLDL	68	LLDWFMEIKDLPE	87	NNYTDIIAISIKK	106	KEFFASLPDACFI
12	SSNTSSPLINLQN	31	LLTLTDSDKIKEL	50	KKYAKLLLDLLGE	69	WFMEIKDLPEREK	88	TDIIAISIKKDKD	107	FASLPDACFIDNE
13	TSSPLINLQNELA	32	LTDSDKIKELSLK	51	AKLLLDLLGEDDW	70	EIKDLPEREKHLK	89	IAISIKKDKDVIL	108	LPDACFIDNEQRS
14	PLINLQNELAMIT	33	SDKIKELSLKNSG	52	LLDLLGEDDWELA	71	DLPEREKHLKVII	90	SIKKDKDVILNEM	109	ACFIDNEQRSNTL
15	NLQNELAMITSSS	34	IKELSLKNSGLLE	53	LLGEDDWELALLS	72	EREKHLKVIIRAL	91	KDKDVILNEMLSI	110	IDNEQRSNTLLMI
16	NELAMITSSSLSE	35	LSLKNSGLLEQHD	54	EDDWELALLSWLG	73	KHLKVIIRALSFD	92	DVILNEMLSIIEH	111	EQRSNTLLMIGKV
17	AMITSSSLSETIE	36	KNSGLLEQHDPTL	55	WELALLSWLGVGE	74	KVIIRALSFDLSY	93	LNEMLSIIEHVWL	112	SNTLLMIGKVIDY
18	TSSSLSETIEGLS	37	GLLEQHDPTLAMF	56	ALLSWLGVGELNQ	75	IRALSFDLSYMSS	94	MLSIIEHVWLTED	113	LLMIGKVIDYKED
19	SLSETIEGLSLGY	38	EQHDPTLAMFGNM	57	SWLGVGELNQEGI	76	LSFDLSYMSSFED	95	IIEHVWLTEDWLL	114	MIGKVIDYKEDVM
Esc	V CD										
No.	Sequence										
1	DAMGADLSNSQNI	20	NPVKNNDSAIEFL	39	KTNQQLAHLTGMD	58	VKELQRQLGLSKI	77	LRRHILGRYSVSG	96	NIMNPTGNGVILT
2	GADLSNSQNISPG	21	KNNDSAIEFLLYQ	40	QQLAHLTGMDVYA	59	LQRQLGLSKIVDI	78	HILGRYSVSGTLL	97	NPTGNGVILTALD
3	LSNSQNISPGAEP	22	DSAIEFLLYQESI	41	AHLTGMDVYATTN	60	QLGLSKIVDILQR	79	GRYSVSGTLLNVW	98	GNGVILTALDIRR

4	SQNISPGAEPLIL	23	IEFLLYQESIYKD	42	TGMDVYATTNDKI	61	LSKIVDILQRLVE	80	SVSGTLLNVWLIG	99	VILTALDIRRYVK
5	ISPGAEPLILNLS	24	LLYQESIYKDTLI	43	DVYATTNDKITFL	62	IVDILQRLVEENV	81	GTLLNVWLIGSDI	100	TALDIRRYVKKMI
6	GAEPLILNLSSNI	25	QESIYKDTLIDDT	44	ATTNDKITFLLKK	63	ILQRLVEENVSIR	82	LNVWLIGSDIENE	101	DIRRYVKKMIEGS
7	PLILNLSSNIYSS	26	IYKDTLIDDTVYF	45	NDKITFLLKKLVL	64	RLVEENVSIRDLR	83	WLIGSDIENELRE	102	RYVKKMIEGSFPS
8	LNLSSNIYSSDIT	27	DTLIDDTVYFEAG	46	ITFLLKKLVLSNA	65	EENVSIRDLRTIF	84	GSDIENELRESIR	103	KKMIEGSFPSVPV
9	SSNIYSSDITQQI	28	IDDTVYFEAGHAE	47	LLKKLVLSNAKEF	66	VSIRDLRTIFETL	85	IENELRESIRQTS	104	IEGSFPSVPVLSF
10	IYSSDITQQIEVM	29	TVYFEAGHAEISF	48	KLVLSNAKEFIGV	67	RDLRTIFETLIFW	86	ELRESIRQTSSGS	105	SFPSVPVLSFQEV
11	SDITQQIEVMRWN	30	FEAGHAEISFEFV	49	LSNAKEFIGVQET	68	RTIFETLIFWSTK	87	ESIRQTSSGSYLN	106	SVPVLSFQEVGNN
12	TQQIEVMRWNFFE	31	GHAEISFEFVQEK	50	AKEFIGVQETRYL	69	FETLIFWSTKEKD	88	RQTSSGSYLNISP	107	VLSFQEVGNNIEL
13	IEVMRWNFFEESG	32	EISFEFVQEKLST	51	FIGVQETRYLMDI	70	LIFWSTKEKDVVI	89	SSGSYLNISPERT	108	FQEVGNNIELKVL
14	MRWNFFEESGIPL	33	FEFVQEKLSTNSI	52	VQETRYLMDIMER	71	WSTKEKDVVILCE	90	SYLNISPERTEQI	109	VGNNIELKVLGTV
15	NFFEESGIPLPKI	34	VQEKLSTNSIVYK	53	TRYLMDIMERKYN	72	KEKDVVILCEYVR	91	NISPERTEQIIGF	110	NIELKVLGTVNDF
16	EESGIPLPKIIVN	35	KLSTNSIVYKTNK	54	LMDIMERKYNELV	73	DVVILCEYVRIAL	92	PERTEQIIGFLKN	111	ELKVLGTVNDFRA
17	GIPLPKIIVNPVK	36	TNSIVYKTNKTNQ	55	IMERKYNELVKEL	74	ILCEYVRIALRRH	93	TEQIIGFLKNIMN		
18	LPKIIVNPVKNND	37	IVYKTNKTNQQLA	56	RKYNELVKELQRQ	75	EYVRIALRRHILG	94	IIGFLKNIMNPTG		
19	IIVNPVKNNDSAI	38	KTNKTNQQLAHLT	57	NELVKELQRQLGL	76	RIALRRHILGRYS	95	FLKNIMNPTGNGV		

Preparation of Inverted inner membrane vesicles (IMVs)

EPEC cells, grown overnight (200 mL LB; 37 °C) were used to inoculate 15 L LB (37 °C; 5 h). Cells were harvested (5,000 x g; 20 min; 4 °C; Avanti J-26S XPI, Beckman; JLA 8.1000 rotor), resuspended in Buffer F and lysed using a French press (8,000 psi; 5-6 times). Unbroken cells were removed (3,000 x g; 10 min; Sigma 3-16KL; rotor 11180) before the supernatant was ultra-centrifuged (100,000 x g; 90 min; 4 °C; fixed angle 45Ti rotor; Optima XPN-80, Beckman). The membrane pellet was Dounce-homogenized in Buffer F, loaded (2.5 mL) on top of a 5-step sucrose gradient (1.9; 1.7; 1.5; 1.3; 1.1 M sucrose in 50 mM Tris pH: 8.0; 6 mL / layer) and centrifuged (100,000 x g; 16 h; 4 °C; swinging bucket SW32 Ti rotor, Optima XPN-80, Beckman) (equilibrium centrifugation). Inverted Inner Membrane Vesicles (IMVs) were collected from gradient fractions 2-3, resuspended in Buffer F and re-centrifuged (100,000 x g; 90 min; 4 °C; fixed angle 45Ti rotor; Optima XPN-80, Beckman). The membrane pellet was homogenized in 6 M Urea-Buffer C (35 min; ice), loaded on top of an equal volume of 0.2 M Sucrose-Buffer C and centrifuged (100,000 x g; 90 min; 4 °C; swinging bucket SW32 Ti rotor, Optima XPN-80, Beckman). Finally, IMVs were collected (Chang et al, 1978; Cunningham et al, 1989; Lill et al, 1989; Lill et al, 1990; Rhoads et al, 1984), homogenized in Buffer C, passed through an Avestin LiposoFast-Basic system (100 nm pore size filter; 15-21 times) and stored in aliquots at -80 °C.

In vitro protein labeling with [³⁵S]-methionine

For protein labeling *in vitro* we used the Easy TagTM L-[³⁵S]-methionine (1 mC, Perkin Elmer) and the TNT® Quick coupled Transcription/Translation systems (Promega), according to the manufacturer's instructions and as described (Gouridis et al, 2010; Gouridis et al, 2013). At the end of the labeling process, a buffer exchange step was included, using hand-made columns (1 ml syringes; G-50 resin; equilibrated with Buffer A). Proteins were aliquoted and stored in Buffer B (maximum 3-5 days; -20 °C).

Affinity measurements/ Determination of equilibrium dissociation constants (K_ds)

Proteins, stored in Buffer B, were serially diluted in Buffer C (20 concentration points well distributed within the 0.01-5 μ M range were used) and added to reactions (final volume 20 μ l in Buffer C) containing IMVs (20 μ g total membrane protein/reaction), as described (Gouridis et al, 2009; Gouridis et al, 2010; Gouridis et al, 2013). The [³⁵S]-labelled protein, diluted (4 times), was added to all the reactions, as a tracer (1 μ l / reaction). Samples were incubated (20 min; ice), overlaid on an equal volume of BSA/sucrose cushion (0.2 M Sucrose; 1 mg/ml BSA in Buffer C) and centrifuged (300,000 x g; 20 min; 4°C; rotor TL-100; Optima Max-XP, Beckman-Coulter). The pellet (containing IMVs and IMVs-bound proteins) was resuspended in 300 μ l buffer C by using a waterbath sonicator and then proteins were immobilized on a nitrocellulose membrane using a vacuum manifold (Bio-Dot apparatus; Bio-Rad). Binding of [³⁵S]-labelled proteins on IMVs was visualized by using a high resolution phosphor storage screen (GE Healthcare) on a Typhoon FLA 9500 system (GE Healthcare). For signal - quantification we used the Image Quant software (GE Healthcare). Data were analyzed by non-linear regression fit for one binding site, using Prism 5 (GraphPad). For the determination of one K_d, 9-14 repetitions were performed, each repeat using 20-25 concentration points.

CesAB/EspA in vivo and in vitro cross-linking

Purified His CesAB/EspA (50 μ M; Buffer D) was incubated with succinimidyl 4,4azipentanoate (SDA-NHS-Diazerine; 240 μ M; 2 h; dark; 4 °C) and quenched (10 mM Tris/HCl pH: 8; 30 min; ice). The labeled complex was diluted (to 10 μ M in Buffer C), mixed with either His-CesL/SepD/SepL complex (10 μ M in Buffer C) or IMVs (100 μ g total membrane protein), incubated (100 μ l reactions; 5 min; 4 °C) and UV irradiated (10 cm dist. from UV source; BLX-365 UV; Vilber Lourmat; 15min; 4 °C). IMV-containing samples were ultra-centrifuged (250,000 x g; 15 min; 4 °C) and resuspended in 100 μ l Buffer C. Cross-linked polypeptides were analyzed on 12% SDS-PAGE, electrotransferred and immunostained. The synthesis of SDA-NHS-Diazerine will be detailed elsewhere.

IMVs immunostaining coupled with electron microscopy

IMVs (10 µg total membrane protein / 50 µl; Buffer C) were sonicated (3 x 15 sec; bath sonicator; 4 °C), applied (5 µl) on a glow-discharged 400 mesh carbon and formvar coated copper grids (TedPella; Redding CA, USA). After 5min (RT), grids were washed (1 x PBS) incubated with α -EscVC-domain antibodies (1:500; 1 h; RT) and then with 2nd^{ary} α -rabbit coupled to 5 nm GOLD particles (1:500; 1 h; RT). Grids were further incubated with 1% Uranyl Acetate in Milli Q water (1 min; RT), blotted, dried and observed (JEM1400; 80 kV; JEOL USA, Inc; equipped with Olympus SIS 11Mpxl; VIB/KUL imaging facility).

Hydrogen-deuterium exchange (HDX) mass spectrometry (MS)

Local HDX-MS was performed as described (Tsirigotaki et al, 2017) with slight modifications. Proteins (Buffer B) were dialyzed (16 h; Buffer E; 4 °C) and concentrated (144 μ M). 1 μ l of protein sample was diluted with 49 μ l deuterated buffer E [lyophilized; freshly dissolved in D₂O (99.9% atom D, Euriso-top); pD 6.6] on ice, resulting in 98% v/v D content. pD refers to the corrected value for the isotope effect. At 10 sec, the exchange reaction was quenched by acidification (pD 2.5) and freezing in liquid nitrogen. The quenching solution contained urea (2 M), formic acid (Ultra-pure, Merck) and protease XIII (1.3 mg/ml) from *Aspergillus saitoi* (Sigma). In-solution digestion was allowed (2 min; ice) prior to freezing. 48 pmol CesAB from the quenched reaction (0.96 μ M) were injected into a nanoACQUITY UPLC/ HDX (Waters) coupled with a Synapt G2 (Waters) mass spectrometer. Data acquisition was performed using the MassLynX interface (version 4.1 SCN870, Waters) and data analysis using the ProteinLynX Global Server (PLGS v3.01, Waters) and DynamX software (v3.0, Waters).

Surface proteolysis of IMVs

IMVs (10 μ g total membrane protein) were resuspended [50 mM Ammonium Bicarbonate Solution (ABS)] using 3 x 15sec pulses in a bath sonicator. For the reduction and alkylation of cysteines, samples were first incubated with 1 mM Tris (2-carboxyethyl) phosphine hydrochloride (TCEP) (30 min; 22 °C) and then with 10 mM Iodoacetamide (IAA) (30 min; 22 °C; dark). Protein samples were incubated with Trypsin (0.1 μ g; Trypsin Gold, Promega; 15 h; 37 °C; shaking) acidified (Trifluoroacetic acid; TFA; pH <2), lyophilized (Speedvac; Savant) and desalted using custom made C18 column-tips (Rappsilber et al, 2007; Tsolis & Economou, 2017a).

LC-MS/MS analysis

Lyophilized samples were dissolved in aqueous solution [0.1% v/v formic acid (FA); 5% v/v Acetonitrile (ACN)] prior to their analysis on a nano-Reverse Phase LC coupled to a Q ExactiveTM Hybrid Quadrupole Orbitrap mass spectrometer, through a nano-electrospray ion source (Thermo Scientific). Peptides were first separated using a Dionex UltiMate 3000 UHPLC system on an EasySpray C18 column (Thermo Scientific; OD 360 μ m; ID 50 μ m; 15 cm length; C18; 2 μ m) at of 300 nLmin⁻¹. The LC mobile phase consisted of two buffer solutions; Buffer 1 (0.1% v/v FA) and Buffer 2 (0.08% v/v FA; 80% v/v ACN). A 60 min multistep Buffer 1:Buffer 2 gradient was used, as follows (% are shown in parentheses below): 0–3 min (96:4); 3–15 min (90:10); 15–35 min (65:35); 35–40 min (35:65); 40-41 min (5:95);

41-50 min (5:95); 50-51 min (95:5); 51-60 min (95:5). The separated peptides were analyzed in the Orbitrap QE operated in positive ion mode (nanospray 1.5 kV; source temperature 250 °C). The instrument was operated in data-dependent acquisition mode: survey MS scan resolution 70,000; full width half maximum (FWH M) for the mass range of m/z 400-1600 for precursor ions; MS/MS scans of the top 10 most intense peaks with +2, +3 and +4 charged ions above a threshold ion count of 16,000 at 35,000 resolution. MS/MS was performed using: normalized collision energy (NCE; 25%); isolation window 3.0 m/z; apex trigger 5-15 sec; dynamic exclusion 10 sec. Data were acquired with Xcalibur 2.2 software (Thermo Scientific).

MS data analysis

Raw MS files were analyzed by MaxQuant v1.5.3.30 (Cox & Mann, 2008). MS/MS spectra were searched by the Andromeda search engine against the Uniprot EPEC E2348/69 sequence (taxon id: 574521; 4,595 proteins; February 2016) and common contaminants as described (Cox et al, 2011), using a peptide and protein false discovery identification rate (FDR) of 1%. Confidence of T3SS protein identification was derived from the maximum peptide identification score and minimum posterior error probability (PEP) of the Andromeda search engine output (identification confidence: "High" = Score > 75 and PEP < 0.0001; "Medium" = Score > 40 and PEP < 0.01). Protease specificity was set to trypsin, allowing for a maximum of two missed cleavages. Dynamic (methionine oxidation and N-terminal acetylation) and fixed (S-Carbamidomethylation of cysteinyl residues) modifications were selected. Precursor and MS/MS mass tolerance was set to 10 ppm for the parent ion mass and 20 ppm for the fragment ion mass. Peptide features were aligned between different runs by matching the retention time and feature masses ("match between runs" feature; match time window 0.7 min; mass alignment window 10 min). Peptide intensities across the MS runs were normalized based on the abundance of membrane proteins. EPEC non-T3S inner membrane proteins were selected based on the degree of homology with the E. coli K12 proteins (STEPdb; (Orfanoudaki & Economou, 2014). One run of the dataset was selected as reference; a normalization factor was calculated by subtracting the mean of log peptide intensities of each MS-run from the reference one (Callister et al, 2006). Log-peptide intensities for all the identified peptides in the dataset were corrected based on the calculated normalization factors. For comparison of the protein abundance across the runs we used the sum of normalized peptide intensities. To identify proteins with differential abundance between EPEC IMVs and Urea treated IMVs we used a combination of two-side t-test and fold difference of mean abundance. Sum of peptide intensities (TIC: total ion current) were log₂ transformed and tested for significance using a two-side t-test, without assumption of equal variance. Missing values were omitted. Calculated p-values were adjusted for multiple hypothesis testing error using the "Benjamini-Hochberg" (Benjamini & Hochberg, 1995) method, as previously described (Tsolis et al, 2016; Tsolis & Economou, 2017b). Proteins identified in at least three repeats in each group were compared. Fold difference was calculated by dividing the mean raw TIC from untreated IMVs over the urea treated ones. Proteins identified in at least three repeats in each of the comparing groups were considered significant if the adjusted p-value was < 0.05 and the fold difference was > 2x(or \log_2 fold difference > 1). EscF, Ler and EscN that were identified in 5 repeats of untreated IMVs and in 2 or less of urea-treated ones were considered significant in the untreated condition, assuming they were no longer detected, due to low abundance. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE (Vizcaino et al, 2016) partner repository with the dataset identifier PXD007087.

Western Blot analysis

Protein samples were analyzed in SDS-PAGE gels and transferred onto nitrocellulose membrane (PROTRAN) using Semi-Dry Transfer protocol (30min; RT; 20V; 300mA)

following manufacturer's instruction (BIORAD). Images were acquired using Las 4000 (GE Healthcare) and Image Quant LasTM 4000, version 1.2 software. For image acquisition the manufacturer's setting were used (Resolution/ Sensitivity: standard mode; Exposure time 10-16 min; Image dimensions 210 x 140 mm; Image resolution 176 dpi)

Analysis of protein structures

Protein structures were downloaded from the Protein Data Bank (<u>http://www.rcsb.org/;</u> PDB codes are indicated) and visualized using Swiss PDB viewer and The PyMOL Molecular Graphics System (Version 0.99, Schrödinger, LLC). FASTA protein sequences were downloaded from Uniprot (<u>http://www.uniprot.org/;</u> STEPdb; (Orfanoudaki & Economou, 2014). SepL and EscV CD sequence alignment and conservation was performed using the "ConSurf Database software" (<u>http://bental.tau.ac.il/new_ConSurfDB/</u>). The EscV CD model was made using SWISS-MODEL SERVER (http://swissmodel.expasy.org) and Shigella *flexneri* MxiA (4A5P) based on their homology. Disorder prediction was performed on the IUPred web server (<u>http://iupred.enzim.hu/;</u> (Dosztanyi et al, 2005).

References

Benjamini Y, Hochberg Y (1995) Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. *Journal of the Royal Statistical Society Series B* (*Methodological*) **57:** 289-300

Botteaux A, Sory MP, Biskri L, Parsot C, Allaoui A (2009) MxiC is secreted by and controls the substrate specificity of the Shigella flexneri type III secretion apparatus. *Molecular microbiology* **71**: 449-460

Burkinshaw BJ, Souza SA, Strynadka NC (2015) Structural analysis of SepL, an enteropathogenic Escherichia coli type III secretion-system gatekeeper protein. *Acta crystallographica Section F, Structural biology communications* **71**: 1300-1308

Callister SJ, Barry RC, Adkins JN, Johnson ET, Qian WJ, Webb-Robertson BJ, Smith RD, Lipton MS (2006) Normalization approaches for removing systematic biases associated with mass spectrometry and label-free proteomics. *Journal of proteome research* **5:** 277-286

Chang CN, Blobel G, Model P (1978) Detection of prokaryotic signal peptidase in an Escherichia coli membrane fraction: endoproteolytic cleavage of nascent f1 pre-coat protein. *Proceedings of the National Academy of Sciences of the United States of America* **75**: 361-365

Chatzi KE, Sardis MF, Tsirigotaki A, Koukaki M, Sostaric N, Konijnenberg A, Sobott F, Kalodimos CG, Karamanou S, Economou A (2017) Preprotein mature domains contain translocase targeting signals that are essential for secretion. *The Journal of cell biology* **216**: 1357-1369

Chen L, Balabanidou V, Remeta DP, Minetti CA, Portaliou AG, Economou A, Kalodimos CG (2011) Structural instability tuning as a regulatory mechanism in protein-protein interactions. *Molecular cell* **44**: 734-744

Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. *Nature biotechnology* **26:** 1367-1372

Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. *Journal of proteome research* **10**: 1794-1805

Creasey EA, Friedberg D, Shaw RK, Umanski T, Knutton S, Rosenshine I, Frankel G (2003) CesAB is an enteropathogenic Escherichia coli chaperone for the type-III translocator proteins EspA and EspB. *Microbiology* **149**: 3639-3647

Cunningham K, Lill R, Crooke E, Rice M, Moore K, Wickner W, Oliver D (1989) SecA protein, a peripheral protein of the Escherichia coli plasma membrane, is essential for the functional binding and translocation of proOmpA. *The EMBO journal* **8**: 955-959

Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. *Proc Natl Acad Sci U S A* **97:** 6640-6645

Dosztanyi Z, Csizmok V, Tompa P, Simon I (2005) IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. *Bioinformatics* **21:** 3433-3434

Gouridis G, Karamanou S, Gelis I, Kalodimos CG, Economou A (2009) Signal peptides are allosteric activators of the protein translocase. *Nature* **462**: 363-367

Gouridis G, Karamanou S, Koukaki M, Economou A (2010) In vitro assays to analyze translocation of the model secretory preprotein alkaline phosphatase. *Methods in molecular biology* **619:** 157-172

Gouridis G, Karamanou S, Sardis MF, Scharer MA, Capitani G, Economou A (2013) Quaternary dynamics of the SecA motor drive translocase catalysis. *Molecular cell* **52:** 655-666

Guzman LM, Belin D, Carson MJ, Beckwith J (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. *J Bacteriol* **177**: 4121-4130

Iguchi A, Thomson NR, Ogura Y, Saunders D, Ooka T, Henderson IR, Harris D, Asadulghani M, Kurokawa K, Dean P, Kenny B, Quail MA, Thurston S, Dougan G, Hayashi T, Parkhill J, Frankel G (2009) Complete genome sequence and comparative genome analysis of enteropathogenic Escherichia coli O127:H6 strain E2348/69. *J Bacteriol* **191:** 347-354

Karamanou S, Bariami V, Papanikou E, Kalodimos CG, Economou A (2008) Assembly of the translocase motor onto the preprotein-conducting channel. *Molecular microbiology* **70**: 311-322

Levine MM, Bergquist EJ, Nalin DR, Waterman DH, Hornick RB, Young CR, Sotman S (1978) Escherichia coli strains that cause diarrhoea but do not produce heat-labile or heat-stable enterotoxins and are non-invasive. *Lancet* **1**: 1119-1122

Lill R, Cunningham K, Brundage LA, Ito K, Oliver D, Wickner W (1989) SecA protein hydrolyzes ATP and is an essential component of the protein translocation ATPase of Escherichia coli. *The EMBO journal* **8:** 961-966

Lill R, Dowhan W, Wickner W (1990) The ATPase activity of SecA is regulated by acidic phospholipids, SecY, and the leader and mature domains of precursor proteins. *Cell* **60**: 271-280

Mitchell C, Oliver D (1993) Two distinct ATP-binding domains are needed to promote protein export by Escherichia coli SecA ATPase. *Mol Microbiol* **10**: 483-497

Munera D, Crepin VF, Marches O, Frankel G (2010) N-terminal type III secretion signal of enteropathogenic Escherichia coli translocator proteins. *Journal of bacteriology* **192:** 3534-3539

Orfanoudaki G, Economou A (2014) Proteome-wide subcellular topologies of E. coli polypeptides database (STEPdb). *Molecular & cellular proteomics : MCP* **13:** 3674-3687

Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, prefractionation and storage of peptides for proteomics using StageTips. *Nat Protoc* **2:** 1896-1906

Rhoads DB, Tai PC, Davis BD (1984) Energy-requiring translocation of the OmpA protein and alkaline phosphatase of Escherichia coli into inner membrane vesicles. *Journal of bacteriology* **159:** 63-70

Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. *Nature methods* **9**: 671-675

Sianidis G, Karamanou S, Vrontou E, Boulias K, Repanas K, Kyrpides N, Politou AS, Economou A (2001) Cross-talk between catalytic and regulatory elements in a DEAD motor domain is essential for SecA function. *The EMBO journal* **20**: 961-970

Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW (1990) Use of T7 RNA polymerase to direct expression of cloned genes. *Methods in enzymology* **185:** 60-89

Tsirigotaki A, Papanastasiou M, Trelle MB, Jørgensen TJD, Economou A (2017) Chapter Four - Analysis of Translocation-Competent Secretory Proteins by HDX-MS. In *Methods in Enzymology*, Arun KS (ed), Vol. Volume 586, pp 57-83. Academic Press

Tsolis KC, Bagli E, Kanaki K, Zografou S, Carpentier S, Bei ES, Christoforidis S, Zervakis M, Murphy C, Fotsis T, Economou A (2016) Proteome Changes during Transition from Human Embryonic to Vascular Progenitor Cells. *Journal of proteome research* **15**: 1995-2007

Tsolis KC, Economou A (2017a) Chapter Two - Quantitative Proteomics of the E. coli Membranome. In *Methods in Enzymology*, Arun KS (ed), Vol. Volume 586, pp 15-36. Academic Press

Tsolis KC, Economou A (2017b) Quantitative Proteomics of the E. coli Membranome. *Methods Enzymol* **586:** 15-36

Vizcaino JA, Csordas A, del-Toro N, Dianes JA, Griss J, Lavidas I, Mayer G, Perez-Riverol Y, Reisinger F, Ternent T, Xu QW, Wang R, Hermjakob H (2016) 2016 update of the PRIDE database and its related tools. *Nucleic acids research* **44:** D447-456

Younis R, Bingle LE, Rollauer S, Munera D, Busby SJ, Johnson S, Deane JE, Lea SM, Frankel G, Pallen MJ (2010) SepL resembles an aberrant effector in binding to a class 1 type III secretion chaperone and carrying an N-terminal secretion signal. *Journal of bacteriology* **192:** 6093-6098