Supplementary Online Content

Li B, Cui Y, Diehn M, Li R. Development and validation of an individualized immune prognostic signature in early-stage nonsquamous non–small cell lung cancer. *JAMA Oncol*. Published online July 6, 2017. doi:10.1001/jamaoncol.2017.1609

eMethods. Data Preprocessing, Assessment of Robustness, and Comparison With Commercialized Lung Biomarker

eResults. Analysis and Robustness of IRGPs

eTable 1. Details About the Data Sets Used in This Study

eTable 2. Clinical and Pathologic Features of Patients in Meta-training, Meta-testing, and Independent Validation Cohorts

eTable 3. Model Information About IRGPI

eTable 4. Univariate and Multivariate Analyses of Prognostic Factors in Meta-training, Meta-testing, and Independent Validation Data Sets

eTable 5. Biological Processes Overrepresented by Genes Consisting of IRGPI

eTable 6. RMS Time Ratio Between Low- and High-Risk Groups Based on IRGPI or ICPI in Different Data Sets

eFigure 1. Overview of the Construction and Validation of Immune and Composite Immune/Clinical Signatures

eFigure 2. Time-Dependent ROC Curve for IRGPI in the Meta-training Data Set at 5 Years

eFigure 3. Kaplan-Meier Curve of Overall Survival for Patients With Different IRGPI Risks

eFigure 4. Kaplan-Meier Curve of Overall Survival for Early- and Late-Stage Patients With Different IRGPI Risks

eFigure 5. Kaplan-Meier Curve of Overall Survival for Stage IA and IB Patients With Different IRGPI Risks

eFigure 6. C-index Comparison Between IRGPI and 2 Existing Biomarkers

eFigure 7. Time-Dependent ROC for ICPI and RMS Curve for ICPI and IRGPI in Meta-training Data Set

eFigure 8. Kaplan-Meier Curves for Overall Survival of All Patients Stratified by the IRGPI and the ICPI

eFigure 9. C-index Comparison Between ICPI and mPS Score in Validation Data Sets

This supplementary material has been provided by the authors to give readers additional information about their work.

eMethods. Data Preprocessing, Assessment of Robustness, and Comparison With Commercialized Lung Biomarker

Data preprocessing

All microarray data and corresponding clinical information were collected from Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/). All affymetrix microarrays were normalized with MAS5.0 method (R package *affy*, v1.50.0). For Illumina datasets, Model-Based Background Correction (MBCB) processed data were downloaded. To improve reproducibility of data measured by different platforms, raw median intensity values of tumor samples in each Agilent datasets were extracted by R package *agilp* (v3.4.0).¹ Normalized TCGA RNA-Seq data and clinical information were downloaded from Cancer Genomics Browser (https://genome-cancer.ucsc.edu/).² Entrez IDs were used to represent genes across different platform. Probe sets correspond to multiple Entrez IDs were removed. If multiple probe sets correspond to the same Entrez ID, the one with the highest mean signal was selected as the expression level of the corresponding gene.³ Gene symbols in TCGA dataset were also converted to Entrez IDs.

Assessing robustness of the 25 IRGPs and variability of prediction for different biomarkers

To evaluate the robustness of the selected 25 IRGPs, feature selection and model building were repeated 1000 times in different randomization of the meta-cohort. The same criteria described in Methods were used to find prognostic IRGPs and build IRGP-based models in each meta-training cohort. IRGPs that appeared in at least one prognostic model were considered. The frequencies of selected IRGPs were used to estimate a background distribution. The frequencies of the 25 IRGPs consisting of the IRGPI were examined and compared with the background distribution with Wilcoxon rank-sum test.

The C-index of IRGP-based prognostic biomarker, Cell Cycle Progression (CCP) score and the 14-gene biomarker was also calculated in 1000 randomization of the meta-testing cohort to estimate performance variations of each biomarker. Implementations of CCP score and 14-gene biomarker were described below. The standard deviation of C-index was used to measure the variability of survival prediction for different biomarkers.

Comparison with commercialized lung biomarker:

The 14-gene biomarker consisting of 11 prognostic genes and 3 reference genes and the CCP biomarker consisting of 31 CCP genes were implemented.^{4,5} Briefly, for 14-gene biomarker, gene expression values of 11 prognostic genes were normalized by those of 3 reference genes and risk scores for each patient were calculated based on coefficients proposed by the original paper.⁴ The construction of CCP biomarker was based on the pipeline designed for microarray data.⁵ In short, Affymetrix datasets were normalized with Robust Multi-array Average (RMA)⁶ method. For Illumina and Agilent datasets, GEO normalized datasets were used. The average expression value of 31 genes were used as the CCP score.⁵

The performance of commercialized mPS⁷, which is an integration of CCP score with pathological staging was compared with our immune-clinical composite score ICPI in terms of C-index in the validation datasets.

eResults. Analysis and Robustness of IRGPs

Analysis of IRGPs with constant orderings

To further illustrate the possible causes of constant ordering, we categorized the total 126615 IRGPs with constant orderings into three groups based on measurement platforms and datasets. First, ~23% (29200) of IRGPs were consistently constant (all 0 or 1) in datasets only measured by a single platform (Affymetrix, Agilent or Illumina) and ~9% (11712) of IRGPs were consistently constant within one platform, but constant in the opposite direction in other platforms. These types of IRGPs, in our opinion, were caused by platform bias. Second, 58% (73805) IRGPs were consistently constant in datasets measured by at least two different platforms, which might be caused by biological preferential transcription. Third, the remaining 10% (11898) IRGPs were inconsistently constant (1 for some datasets and 0 for others) between different datasets of the same microarray platform. The reasons for this may be various, and one possibility could be batch effects.

Robustness of 25 IRGPs in IRGPI

There were 1588 IRGPs that appeared in at least 1 model. Among the top 10 IRGPs with the highest frequencies, 5 of them were included in our 25 IRGPs. The smallest frequency of our 25 IRGPs ranked among top 25 percentile of that for all 1588 IRGPs. Wilcoxon rank-sum test showed significantly higher frequencies for our 25 IRGPs compared with the background distribution of frequencies for all 1588 IRGPs ($P < 1.7 \times 10^{-14}$). Hence, our IRGPI biomarker was relatively robust to different randomization.

eReferences

- 1. Stafford P, Brun M. Three methods for optimization of cross-laboratory and cross-platform microarray expression data. *Nucleic Acids Res.* 2007;35(10):e72.
- 2. Sanborn JZ, Benz SC, Craft B, et al. The UCSC Cancer Genomics Browser: update 2011. *Nucleic Acids Res.* 2011;39(Database issue):D951-959.
- 3. Miller JA, Cai C, Langfelder P, et al. Strategies for aggregating gene expression data: the collapseRows R function. BMC Bioinformatics. 2011;12:322.
- 4. Kratz JR, He J, Van Den Eeden SK, et al. A practical molecular assay to predict survival in resected non-squamous, non-small-cell lung cancer: development and international validation studies. *The Lancet.* 2012;379(9818):823-832.
- 5. Wistuba, II, Behrens C, Lombardi F, et al. Validation of a proliferation-based expression signature as prognostic marker in early stage lung adenocarcinoma. *Clin Cancer Res.* 2013;19(22):6261-6271.
- 6. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP. Summaries of Affymetrix GeneChip probe level data. *Nucleic Acids Res.* 2003;31(4):e15.
- 7. Bueno R, Hughes E, Wagner S, et al. Validation of a molecular and pathological model for five-year mortality risk in patients with early stage lung adenocarcinoma. *Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.* 2015;10(1):67-73.

	Name/Accession No.	Platform	No. of Nonsquamous NSCLC
nt asets	TCGA lung adenocarcinoma (TCGA)	Illumina HiSeq	439
Independent validation datasets	Director's Challenge Consortium (DCC)	Affymetrix Human Genome U133A Array	323
lnd valida:	GSE30219	Affymetrix Human Genome U133 Plus 2.0 Array	207
	GSE31210	Affymetrix Human Genome U133 Plus 2.0 Array	204
	GSE41271	Illumina HumanWG-6 v3.0 expression beadchip	192
	GSE50081	Affymetrix Human Genome U133 Plus 2.0 Array	138
Meta (training/testing) dataset	GSE13213	Agilent-014850 Whole Human Genome Microarray 4x44K G4112F	117
da	GSE26939	Agilent-UNC-custom-4X44K	115
g)	GSE83227	Affymetrix Human Genome U95 Version 2 Array	112
stin	GSE11969	Agilent Homo sapiens 21.6K custom array	105
'tes	GSE42127	Illumina HumanWG-6 v3.0 expression beadchip	94
ng,	GSE68571	Affymetrix Human Full Length HuGeneFL Array	86
iri	GSE19188	Affymetrix Human Genome U133 Plus 2.0 Array	58
tra	GSE3141	Affymetrix Human Genome U133 Plus 2.0 Array	58
ta (GSE37745	Affymetrix Human Genome U133 Plus 2.0 Array	47
Mei	GSE10245	Affymetrix Human Genome U133 Plus 2.0 Array	40
2	GSE14814	Affymetrix Human Genome U133A Array	36
	GSE31547	Affymetrix Human Genome U133A Array	30
	GSE31546	Affymetrix Human Genome U133 Plus 2.0 Array	13

eTable 1. Details About the Data Sets Used in This Study

eTable 2. Clinical and Pathologic Features of Patients in Meta-training, Meta-testing, and **Independent Validation Cohorts**

	Meta-training	Meta-testing	<i>P</i> Value [*]	DCC	GSE30219	TCGA
No. of samples	729	716		323	207	439
Median age in years (range)	63 (35 – 86)	64 (30 - 90)	.32	66 (33 - 87)	61 (15 - 84)	67 (38 - 88
Female (%)	364 (50)	321 (45)	4.4	158 (49)	37 (18)	231 (53)
Male (%)	322 (44)	340 (47)	.11	165 (51)	170 (82)	208 (47)
Stage IA (%)	125 (17)	118 (16)		108 (33)	98 (47)	123 (28)
Stage IB (%)	155 (21)	157 (22)		116 (36)	32 (15)	116 (26)
Stage IA/B (%) ^a	128 (18)	109 (15)		0	Ò	6 (1)
Stage IIA (%)	22 (3)	18 (3)		17 (5)	9 (4)	44 (10)
Stage IIB (%)	65 (9)	55 (8)	50	41 (13)	22 (11)	55 (13)
Stage IIA/B (%) ^b	22 (3)	28 (4)	.59	0	Ó	1 (0)
Stage IIIA (%)	42 (6)	63 (9)		33 (10)	22 (11)	62 (14)
Stage IIIB (%)	25 (3)	17 (2)		7 (2)	16 (8)	10 (2)
Stage IIIA/B (%) ^c	10 (1)	9 (1)		Ò	0	0
Stage IV (%)	8 (1)	6 (1)		0	3 (1)	21 (5)
Positive smoking history (%)	397 (54)	393 (55)	1.00	206 (64)	NA	371 (85)
Non-smoker (%)	151 (21)	148 (21)	1.00	32 (10)	NA	61 (14)
Median Follow-up in months	47.6	43.85	.29	48	55	14.47
No. of death (%)	291 (40)	303 (42)	.29	155 (48)	134 (65)	118 (27)

Abbreviations: DCC, Director's Challenge Consortium; TCGA, TCGA lung adenocarcinoma dataset;

^a annotated as stage I patients only

^b annotated as stage II patients only ^c annotated as stage III patients only

NA represents information was unavailable

The difference between meta-testing and meta-training dataset was calculated in terms of clinical pathologic factors. Specifically, age was compared with Wilcoxon rank-sum test; gender, stage and smoking history was compared with chi-squared test; follow-up difference was assessed with log-rank test.

IRG 1	Full name	Immune processes	IRG 2	Full name	Immune processes	Coefficient
ESM1	endothelial cell-specific molecule 1	Cytokine	AGTR1	angiotensin II receptor, type 1	Cytokine receptor	-0.151291958
CX3CR1	chemokine (C-X3-C motif) receptor 1	Cytokine receptor	FCGR2B	Fc fragment of IgG, low affinity IIb, receptor (CD32)	BCR signaling	0.10001878
ADRB2	adrenergic, beta-2-, receptor, surface	Cytokine receptor	HTR3A	5-hydroxytryptamine (serotonin) receptor 3A	Cytokine receptor	0.014243079
ADRB2	adrenergic, beta-2-, receptor, surface	Cytokine receptor	INHBB	inhibin, beta B	Cytokine	0.074206935
EDN3	endothelin 3	Cytokine	CD1B	CD1b molecule	Antigen processing and presentation	-0.035977941
EDNRB	endothelin receptor type B	Cytokine receptor	INHBB	inhibin, beta B	Cytokine	0.06319796
ANGPT1	angiopoietin 1	Cytokine receptor	IL1B	interleukin 1, beta	Cytokine	0.028027231
GZMB	granzyme B	Natural Killer cell cytotoxicity	IL6R	interleukin 6 receptor	Cytokine receptor	-0.047644839
HSPA6	heat shock 70kDa protein 6 (HSP70B')	Antigen processing and presentation	CD1C	CD1c molecule	Antigen processing and presentation	-0.025903083
IL7	interleukin 7	Cytokine	MIA	melanoma inhibitory activity	Cytokine	0.028908034
INHBB	inhibin, beta B	Cytokine	CX3CL1	chemokine (C-X3-C motif) ligand 1	Cytokine	-0.00418581
NR3C2	nuclear receptor subfamily 3, group C, member 2	Cytokine receptor	PIK3CA	phosphoinositide-3- kinase, catalytic, alpha polypeptide	Multiple	0.030567093
NFKBIB	nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, beta	Multiple	PTGER2	prostaglandin E receptor 2 (subtype EP2), 53kDa	Cytokine receptor	-0.013838628
NRAS	neuroblastoma RAS viral (v-ras) oncogene homolog	Multiple	BMPR2	bone morphogenetic protein receptor, type II (serine/threonine kinase)	Cytokine receptor	-0.104349443
PSMD2	proteasome (prosome, macropain) 26S subunit, non-ATPase, 2	Antigen processing and presentation	TGFBR2	transforming growth factor, beta receptor II (70/80kDa)	Cytokine receptor	-0.006260886
RORA	RAR-related orphan receptor A	Cytokine receptor	TGFA	transforming growth factor, alpha	Cytokine	0.063627166
RORA	RAR-related orphan receptor A	Cytokine receptor	RABEP1	rabaptin, RAB GTPase binding effector protein 1	Cytokine	0.035503811
CCL7	chemokine (C-C motif) ligand 7	Cytokine	CCL17	chemokine (C-C motif) ligand 17	Cytokine	-0.068004041
CCL13	chemokine (C-C motif) ligand 13	Cytokine	IL32	interleukin 32	Cytokine	0.066796769
SECTM1	secreted and transmembrane 1	Cytokine	VAV1	vav 1 guanine nucleotide exchange factor	Multiple	-0.052319774
BTK	Bruton agammaglobulinemia	BCR signaling	IL1R2	interleukin 1 receptor, type II	Cytokine receptor	0.097609448

eTable 3. Model Information About IRGPI

© 2017 American Medical Association. All rights reserved.

	tyrosine kinase			Tata abain (TCD)		
C5	complement component 5	Cytokine	ZAP70	zeta-chain (TCR) associated protein kinase 70kDa	Multiple	0.046488127
C5	complement component 5	Cytokine	MIA	melanoma inhibitory activity	Cytokine	0.039305453
IL1R2	interleukin 1 receptor, type II	Cytokine receptor	CD1C	CD1c molecule	Antigen processing and presentation	-0.092033309
MIA	melanoma inhibitory activity	Cytokine	CD1B	CD1b molecule	Antigen processing and presentation	-0.185391168

Detecto		Univariat	е	Multivariate		
Datasets -	Variable	HR (95% CI)	<i>P</i> Value ^a	HR (95% CI)	P Value ^b	
D	Age	1.04 (1.02 – 1.05)	2.68×10 ⁻⁷	1.03 (1.00 – 1.06)	.055	
Meta-training	Gender	1.59 (1.24 - 2.02)	.00017	1.33 (0.72 - 2.44)	.37	
ain	Smoking	2.08 (1.46 - 2.96)	3.27×10⁻⁵	1.09 (0.47 - 2.55)	.84	
-tt	Stage	1.39 (1.29 – 1.50)	<2×10 ⁻¹⁶	1.24 (1.05 - 1.47)	.010	
eta	Grade	2.55 (1.73 - 3.76)	9.45×10 ⁻⁷	1.82 (1.12 - 2.95)	.016	
Š	Immune risk	4.38 (3.37 - 5.70)	<2×10 ⁻¹⁶	4.86 (2.28 - 10.34)	4.10×10 ⁻⁵	
_	Age	1.02 (1.01 – 1.03)	.0044	1.02 (1.00 – 1.03)	.022	
6u	Gender	1.38 (1.09 – 1.75)	.0075	1.14 (0.82 - 1.58)	.44	
Meta-testing	Smoking	1.57 (1.14 - 2.17)	.0050	1.19 (0.81 - 1.77)	.38	
a-ta	Stage	1.45 (1.35 – 1.57)	<2×10 ⁻¹⁶	1.46 (1.34 - 1.58)	< 2×10 ⁻¹⁶	
eta	Grade	1.34 (0.99 – 1.81)	.056	-	-	
Σ	Immune risk	2.21 (1.75 – 2.79)	7.47×10 ⁻¹²	1.72 (1.26 - 2.33)	.00054	
	Age	1.03 (1.01 – 1.05)	.00054	1.04 (1.02 – 1.05)	.00011	
	Gender	1.41 (1.02 – 1.95)	.035	1.07 (0.77 - 1.49)	.68	
с С	Smoking	1.31 (0.70 – 2.45)	.39	-		
	Stage	1.54 (1.39 - 1.70)	<2×10 ⁻¹⁶	1.52 (1.37 - 1.69)	5.66×10 ⁻¹⁵	
_	Grade	1.03 (0.81 - 1.31)	.81	-	-	
	Immune risk	2.00 (1.41 - 2.84)	8.54×10⁻⁵	1.75 (1.22 - 2.50)	.0023	
	Age	1.04 (1.02 – 1.06)	6.48×10 ⁻⁶	1.03 (1.01 – 1.05)	.00050	
GSE30219	Gender	2.00 (1.19 - 3.37)	.0081	1.49 (0.88 – 2.54)	.14	
00	Smoking	NA	NA	-	-	
л Ш	Stage	1.28 (1.17 - 1.40)	1.59×10 ^{⁻8}	1.19 (1.08 - 1.31)	.00048	
χ Ω	Grade	NA	NA	-	-	
5	Immune risk	3.72 (2.43 - 5.70)	1.10×10 ⁻¹⁰	2.36 (1.47 – 3.79)	.00038	
	Age	1.02 (1.00 – 1.04)	.073	-	-	
4	Gender	1.13 (0.79 - 1.62)	.51	-	-	
ġ	Smoking	0.85 (0.49 - 1.46)	.54	-		
TCGA	Stage	1.32 (1.20 - 1.45)	1.90×10 ⁻⁹	1.30 (1.18 - 1.43)	1.40×10 ⁻⁷	
	Grade	NA	NA	-	-	
	Immune risk	2.15 (1.46 - 3.16)	7.28×10⁻⁵	1.85 (1.26 - 2.73)	.0019	

eTable 4. Univariate and Multivariate Analyses of Prognostic Factors in Meta-training, Meta-testing, and Independent Validation Data Sets

Abbreviations: DCC, Director's Challenge Consortium; TCGA, TCGA adenocarcinoma dataset;

a P value was calculated by log-rank test

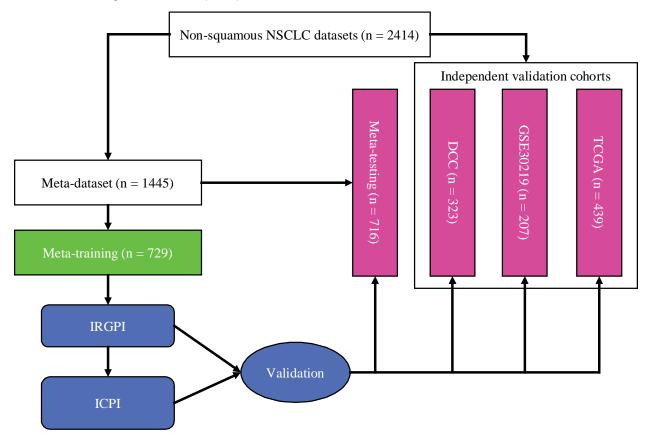
b P value was calculated with wald-test of Cox-proportional hazard regression model

- represents variables were not included in multivariate Cox regression

NA represents variables were not publicly available

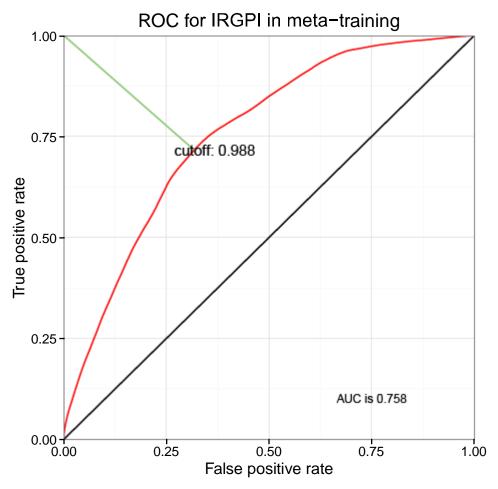
Age, stage, grade was coded as continuous variable. Specifically, stage was coded as IA=1, IA/IB=1.5, IB=2, IIA=3, IIA/B=3.5, IIB=4 etc. Grade was coded as well differentiated=0, moderate differentiated=1, poorly differentiated=2. The risk factors of gender, smoking and immune risk are male, smoker and high risk based on IRGPI.

GO ID	BP name	P Value	
GO:0030593	neutrophil chemotaxis	.018	
GO:2001240	negative regulation of extrinsic apoptotic signaling pathway in absence of ligand	.042	
GO:0010468	regulation of gene expression	.053	
GO:0002548	monocyte chemotaxis	.063	
GO:0048246	macrophage chemotaxis	.090	
GO:0071347	cellular response to interleukin-1	.095	

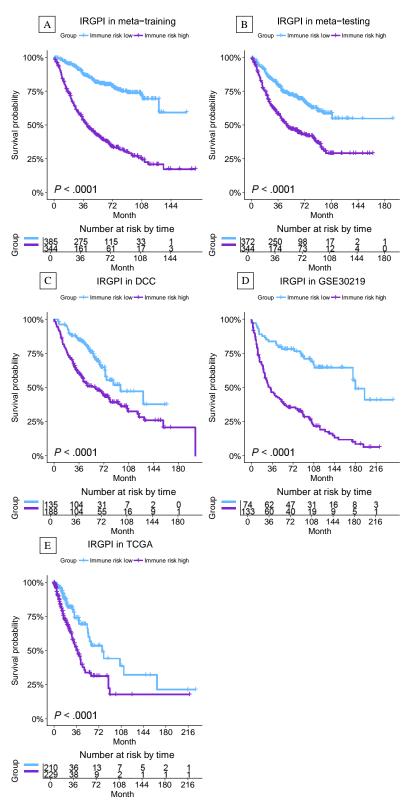

eTable 5. Biological Processes Overrepresented by Genes Consisting of IRGPI

RMS time		IRGPI		ICPI			
(months)	low risk (95% Cl)	high risk (95% Cl)	ratio (95% CI)	low risk (95% Cl)	high risk (95% Cl)	ratio (95% CI)	
Moto training	99.40	59.88	1.66	101.51	58.47	1.74	
Meta-training	(95.05 - 103.75)	(53.89 - 65.87)	(1.49 - 1.85)	(97.31 - 105.72)	(52.62 - 64.32)	(1.56 - 1.94)	
Moto tooting	88.88	63.37	1.40	95.76	57.68	1.66	
Meta-testing	(83.78 - 93.98)	(57.14 - 69.60)	(1.25 - 1.57)	(90.88 - 100.64)	(51.89 - 63.47)	(1.48 - 1.86)	
DCC	84.87	64.75	1.31	91.00	59.03	1.54	
DCC	(76.73 - 93.00)	(57.83 - 71.68)	(1.14 - 1.51)	(83.62 - 98.38)	(52.10 - 65.96)	(1.34 - 1.78)	
GSE30219	96.32	52.44	1.84	91.71	48.93	1.88	
G3E30219	(87.12 - 105.52)	(44.49 - 60.39)	(1.54 - 2.20)	(82.74 - 100.69)	(40.70 - 57.15)	(1.54 - 2.28)	
TCGA	74.77	50.60	1.48	83.90	47.65	1.76	
TOGA	(63.47 - 86.08)	(41.51 - 59.68)	(1.17 - 1.87)	(72.03 - 95.77)	(39.67 - 55.63)	(1.41 - 2.19)	

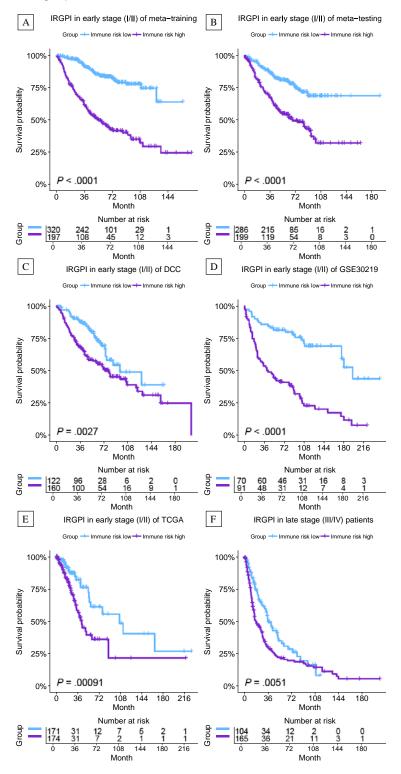
eTable 6. RMS Time Ratio Between Low- and High-Risk Groups Based on IRGPI or ICPI in Different Data Sets


eFigure 1. Overview of the Construction and Validation of Immune and Composite Immune/Clinical Signatures

Nineteen datasets were included in this study. The three largest individual datasets were used for independent validation, while the remaining 16 datasets were merged to a meta-dataset. The meta-dataset was randomly divided into meta-training and meta-testing datasets. The meta-training dataset was used to build an immune prognostic signature (IRGPI). Age, stage and IRGPI were used to construct the composite immune clinical prognostic signature (ICPI). Both IRGPI and ICPI were evaluated on the meta-testing, Director's Challenge Consortium (DCC), GSE30219 and TCGA lung adenocarcinoma (TCGA) datasets.

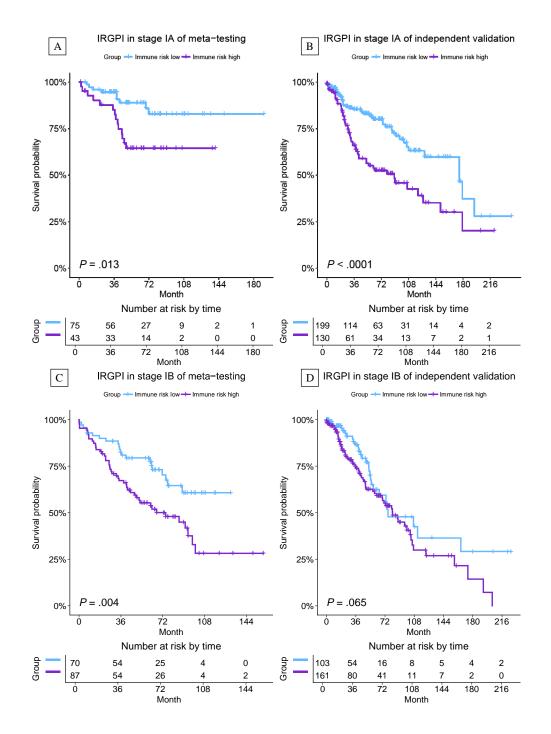

eFigure 2. Time-Dependent ROC Curve for IRGPI in the Meta-training Data Set at 5 Years

Green line indicates the shortest distance between the receiver operating characteristic (ROC) curve and the point represents 100 percent true positive rate and 0 percent false positive rate. Intersection of green line with ROC curve corresponds to the IRGPI score of 0.988 which was used as cutoff for IRGPI to stratify patients into low or high immune risk group.

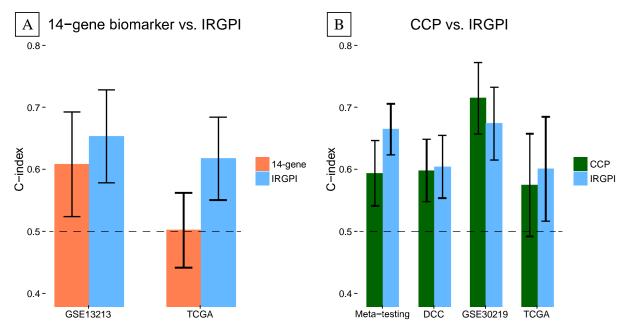

eFigure 3. Kaplan-Meier Curve of Overall Survival for Patients With Different IRGPI Risks

All patients in meta-training (A), meta-testing (B) and 3 independent validation datasets (C-E) were stratified into low or high immune risk groups based on IRGPI score.

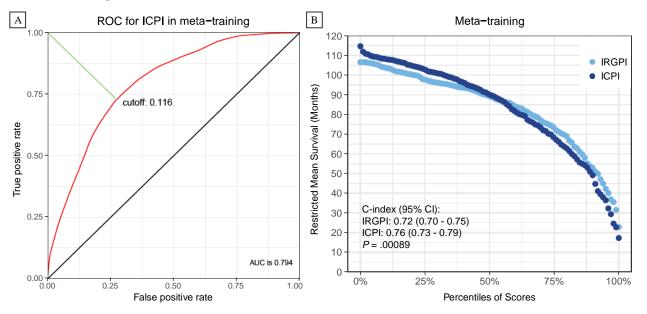
eFigure 4. Kaplan-Meier Curve of Overall Survival for Early- and Late-Stage Patients With Different IRGPI Risks


Early stage (stage I or II) patients in meta-training (A), meta-testing (B) and 3 independent validation datasets (C-E) were stratified into low or high immune risk groups based on IRGPI score. (F) Late stage (stage III or IV) patients of meta-testing, DCC, GSE30219 and TCGA were stratified into low or high immune risk groups based on IRGPI score.

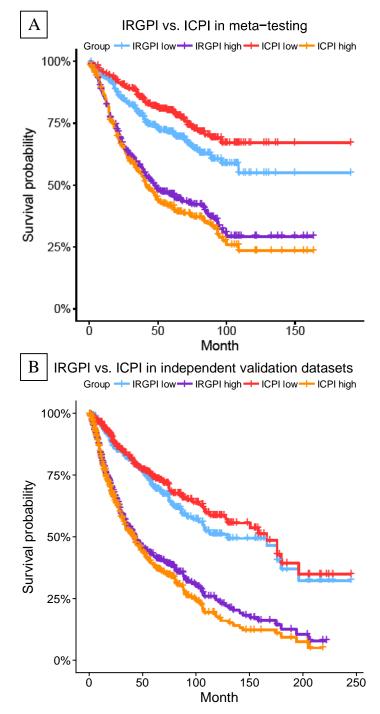
© 2017 American Medical Association. All rights reserved.


eFigure 5. Kaplan-Meier Curve of Overall Survival for Stage IA and IB Patients With Different IRGPI Risks

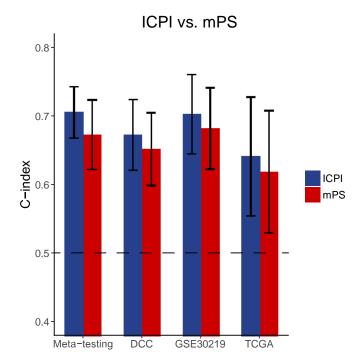
A: survival curve of stage IA patients of meta-testing dataset; B: survival curve of all stage IA patients in 3 independent validation datasets; C: survival curve of stage IB patients of meta-testing dataset; D: survival curve of all stage IB patients in 3 independent validation datasets.


eFigure 6. C-index Comparison Between IRGPI and 2 Existing Biomarkers

A: comparison of C-index between 14-gene biomarker and IRGPI in stage I to III patients in GSE13213 and TCGA dataset. B: comparison of C-index between CCP score and IRGPI in early stage patients in meta-testing, DCC, GSE30219 and TCGA datasets. Whisker represents confident interval of estimated corresponding C-index. Dashed horizontal line indicates random prediction (C-index = 0.5).


eFigure 7. Time-Dependent ROC for ICPI and RMS Curve for ICPI and IRGPI in Metatraining Data Set

(A) Green line indicates the shortest distance between the receiver operating characteristic (ROC) curve and the point represents 100 percent true positive rate and 0 percent false positive rate. Intersection of green line with ROC curve corresponds to the ICPI score of 0.116 which was used as cutoff for ICPI to stratify patients into low or high risk groups. (B) RMS (restricted mean survival) curve of continuous ICPI and IRGPI score in meta-training dataset


eFigure 8. Kaplan-Meier Curves for Overall Survival of All Patients Stratified by the IRGPI and the ICPI

Patients were stratified with both IRGPI and ICPI in all patients of meta-testing (A) and all patients of 3 independent validation datasets (B). The composite index had higher separation than immune index alone between high versus low risk groups in both cases.

eFigure 9. C-index Comparison Between ICPI and mPS Score in Validation Data Sets

Comparison of C-index between ICPI and mPS score in early stage patients in meta-testing, DCC, GSE30219 and TCGA datasets. Dashed horizontal line indicates random prediction (C-index = 0.5).

