Supplementary Online Content

Richter GM, Wang M, Jiang X, et al; Chinese American Eye Study Group. Ocular determinants of refractive error and its age- and sex-related variations in the Chinese American Eye Study. *JAMA Ophthalmol*. Published online May 18, 2017. doi:10.1001/jamaophthalmol.2017.1176

eFigure 1. Association Among Age, Sex, and Spherical Equivalent (SE) Plotted Using LOWESS

eFigure 2. Association Among Age, Sex, and Mean Axial Length (AL) Plotted Using LOWESS

eFigure 3. Association Among Age, Sex, and Mean Vitreous Chamber Depth Plotted Using LOWESS

eFigure 4. Association Among Age, Sex, and Mean Anterior Chamber Depth (ACD) Plotted Using LOWESS

eFigure 5. Association Among Age, Sex, and Mean Lens Thickness Plotted Using LOWESS

eTable 1. Age-Stratified Multivariate Linear Regression Models Demonstrating Association of Ocular Variables with Age

eTable 2. Age-Stratified Multiple Linear Regression Models Demonstrating Ocular Determinants of Refractive Error in CHES

This supplementary material has been provided by the authors to give readers additional information about their work.

The mean data are plotted for each year from ages 50 to 85+, with a 95% confidence interval. The locally weighted regression lines that best fit the data are also shown. Beyond 60 to 65 years, there is a greater SE refractive error each year.

eFigure 2. Association Among Age, Sex, and Mean Axial Length (AL) Plotted Using LOWESS

The mean data are plotted for each year from ages 50 to 85+, with a 95% confidence interval. The locally weighted regression lines that best fit the data are also shown. The overall difference between axial length in men and women is demonstrated in the relatively parallel and separate regression lines across the age distribution.

The mean data are plotted for each year from ages 50 to 85+, with a 95% confidence interval. The locally weighted regression lines that best fit the data are also shown. There appears to be a significant difference in vitreous chamber depth in men versus women.

The data are plotted by means for each year from ages 50 to 85+, with a 95% confidence interval. The locally weighted regression lines that best fit the data are also shown. Mean ACD across age for women and men have relatively parallel and separated regression lines across the age distribution.

eFigure 5. Association Among Age, Sex, and Mean Lens Thickness Plotted Using LOWESS

The data are plotted by means for each year from ages 50 to 85+, with a 95% confidence interval. The locally weighted regression lines that best fit the data are also shown. Lens thickness increases with age for both women and men, but there is virtually no sex difference.

Biometric and Clinical Variables	Regression Coefficient	P						
50.50 A as Crown								
Spherical Equivalent (D) 0.029								
Axial Longth (mm)	0.038	.003						
Vitroous Chember Depth (mm)	0.004	.04						
Antorior Chamber Depth (mm)	-0.003	.//						
Anterior Chamber Depth (IIIII)	-0.01	<.001						
Central Corneal Thickness (µm)	-0.1	.095						
Lens Thickness (mm)	0.017	<.001						
Corneal Power (D)	0.01	.33						
Lens Nuclear Opalescence (LOCS II grade)	1.14*	<.001"						
60-69 Age Group								
Spherical Equivalent (D)	0.005	.88						
Axial Length (mm)	0.007	.6						
Vitreous Chamber Depth (mm)	0.004	.77						
Anterior Chamber Depth (mm)	-0.01	.004						
Central Corneal Thickness (µm)	-0.08	.81						
Lens Thickness (mm)	0.014	<.001						
Corneal Power (D)	0.019	.2						
Lens Nuclear Opalescence (LOCS II grade)	1.11*	<.001 ^a						
70-79 Age Group								
Spherical Equivalent (D)	0.037	.35						
Axial Length (mm)	-0.032	.09						
Vitreous Chamber Depth (mm)	-0.034	.066						
Anterior Chamber Depth (mm)	-0.016	.006						
Central Corneal Thickness (µm)	-0.29	.62						
Lens Thickness (mm)	0.018	.009						
Corneal Power (D)	0.008	.73						
Lens Nuclear Opalescence (LOCS II grade)	1.10*	.011 ^a						
80+ Age Group								
Spherical equivalent (D)	-0.01	.83						
Axial Length (mm)	0.009	.74						
Vitreous Chamber Depth (mm)	0.001	.97						
Anterior Chamber Depth (mm)	-0.024	.015						
Central Corneal Thickness (µm)	0.36	.67						
Lens Thickness (mm)	0.032	.021						

eTable 1. Age-Stratified Multivariate Linear Regression Models Demonstrating Association of Ocular Variables with Age

Corneal Power (D)	0.009	.83
Lens Nuclear Opalescence (LOCS II grade)	1.12*	.093 ^a

All data were sex-adjusted

CHES = Chinese American Eye Study; LOCS II = Lens Opacification Classification System II

*Odds ratio for LOCII grade ≥ 2 and ^aP value associated with each year of older age

Model 1 ^a						Model 2 ^a					
Variable	Regressio	S	SP	P		Variable	Regression	S	SP	P	
	n (95%	R	C	Val				R	C	Val	
	CI)	C	\mathbf{C}^2	ue				C	\mathbf{C}^2	ue	
50-59 Age Group											
						Vitreous	-2.32 (-	-	0.5	<.0	
						Chamber	2.39, -2.26)	1.0	3	01	
						Depth		2			
Axial	-2.02 (-	-	0.5	<.0		Corneal	-0.94 (-	-	0.1	<.0	
Length	2.08, -	0.9	4	01		Power	0.99, -0.9)	0.5	7	01	
	1.96)	3									
Corneal	-0.86 (-	-	0.1	<.0		Lens	-2.34 (-	-	0.0	<.0	
Power	0.91, -	0.4	7	01		Thickness	2.55, -2.13)	0.2	6	01	
	0.81)	6						7			
Nuclear	0.06 (-	0.0	0.0	0.4		Anterior	-0.40 (-	-	0.0	<.0	
Opalesce	0.10,	09	00	8		Chamber	0.62, -0.18)	0.0	02	01	
nce	0.21)		1			Depth		46			
						Central	-0.003 (-	-	0.0	<.0	
						Corneal	0.005, -	0.0	02	01	
						Thickness	0.002)	41			
						Nuclear	0.14 (-0.01,	0.0	0.0	.06	
						Opalescence	0.28)	21	00		
									4		
Model R^2	0.71					Model R ²	0.75				
				60-69	A	ge Group					
						Vitreous	-2.31 (-	-	0.5	<.0	
						Chamber	2.38, -2.23)	0.9	7	01	
						Depth		8			
Axial	-2.06 (-	-	0.6	<.0		Corneal	-0.88 (-	-	0.1	<.0	
Length	2.13, -	0.9		01		Power	0.94, -0.82)	0.4	4	01	
	1.99)	3						3			
Corneal	-0.81 (-	-	0.1	<.0		Lens	-2.14 (-	-	0.0	<.0	
Power	0.87, -	0.3	3	01		Thickness	2.39, -1.90)	0.2	49	01	
	0.75)	9						5			
Nuclear	-0.24 (-	-	0.0	0.0		Anterior	-0.49 (-	-	0.0	<.0	
Opalesce	0.39, -	0.0	02	01		Chamber	0.76, -0.22)	0.0	02	01	
nce	0.10)	46				Depth		5			
						Central	-0.003 (-	-	0.0	.02	
						Corneal	0.005, -	0.0	01	5	
						Thickness	0.0004)	3			
						Nuclear	-0.14 (-	-	0.0	.05	

eTable 2. Age-Stratified Multiple Linear Regression Models Demonstrating Ocular Determinants of Refractive Error in CHES

© 2017 American Medical Association. All rights reserved.

				Opalescence	0.28, 0.00)	0.0	00	2
						26	7	
Model R^2	0.73			Model R^2	0.76			