Supplementary Online Content

van Agtmaal MJM, Houben AJHM, Pouwer F, Stehouwer CDA, Schram MT. Association of microvascular dysfunction with late-life depression: a systematic review and meta-analysis. *JAMA Psychiatry*. Published online May 31, 2017. doi:10.1001/jamapsychiatry.2017.0984

eAppendix. Search Terms Used for the Systematic Review and Meta-analysiseFigure 1. Funnel Plot of Cross-Sectional Studies on the Association BetweenMicrovascular Dysfunction and Depression; Plasma Markers for Endothelial Function(A), WMH (B), Microbleeds (C) And Microinfarctions (D)

eFigure 2. Forest Plots With the Odds Ratios and 95% Confidence Intervals for Original Studies and the Pooled Odds Ratios for the Cross-Sectional Association Between Cerebral Microbleeds and Depression

eFigure 3. Forest Plots With the Odds Ratios and 95% Confidence Intervals for Original Studies and the Pooled Odds Ratios for the Cross-Sectional Association Between Cerebral (Micro)Infarctions and Depression

eFigure 4. Funnel Plot of Cross-Sectional Studies on the Association Between White Matter Hyperintensities and Depression After Trim-and-Fill Analysis

eFigure 5. Funnel Plot of Longitudinal Studies on the Association Between Cerebral Small Vessel Disease and Depression

eTable 1. Quality Assessment of the Included Studies by Use Of the Newcastle-Ottawa Scale (NOS)

eTable 2. Characteristics of Studies Included in the Systematic Review and Meta-Analysis

eTable 3. Reported Results of Studies Included in the Systematic Review and Metaanalysis

eReferences.

This supplementary material has been provided by the authors to give readers additional information about their work.

eAppendix. Search Terms Used for the Systematic Review and Meta-analysis We used the following terms to systematically search the current literature: "depression" OR "depressive disorder" OR "depress*[Title]" AND 1) "sICAM-1" OR "sVCAM-1"OR "sE-selectin" OR "vWF" AND 2a) "capillary recruitment" OR "capillaroscopy" OR "laser-Doppler flowmetry" OR "capillaries" AND 2b) "L-NMMA" OR "sodium nitroprusside" OR "plethysmography" OR "forearm blood flow" OR "iontophoresis" OR "intracutaneous injection" AND 3) "urinary albumin excretion" OR "albuminuria" OR "macroalbuminuria" OR "microalbuminuria" AND 4) "retinal arteriolar diameter" OR "retinal venular diameter" OR "arteriovenous ratio" OR "retinal vessels" AND 5) "cerebral small vessel disease" OR "CSVD" OR "white matter lesion" OR "WML" OR "microbleeds" OR "microinfarctions" OR "lacunar infarctions". The references of the identified studies were checked in order to identify additional relevant articles. The search was limited to humans and study populations aged >40 years.

eFigure 1. Funnel Plot of Cross-Sectional Studies on the Association Between Microvascular Dysfunction and Depression; Plasma Markers for Endothelial Function (A), WMH (B), Microbleeds (C) And Microinfarctions (D)

Cerebral microbleeds

eFigure 2. Forest Plots With the Odds Ratios and 95% Confidence Intervals for Original Studies and the Pooled Odds Ratios for the Cross-Sectional Association Between Cerebral Microbleeds and Depression

These data represent the odds to have a clinically relevant depression, per standard deviation higher number of cerebral microbleeds.

Cerebral (micro)infarctions

eFigure 3. Forest Plots With the Odds Ratios and 95% Confidence Intervals for Original Studies and the Pooled Odds Ratios for the Cross-Sectional Association Between Cerebral (Micro)Infarctions and Depression

These data represent the odds to have a clinically relevant depression, per standard deviation higher number of cerebral (micro)infarctions.

eFigure 4. Funnel Plot of Cross-Sectional Studies on the Association Between White Matter Hyperintensities and Depression After Trim-and-Fill Analysis

Two theoretical and 38 original studies are indicated with white and black circles, respectively.

eFigure 5. Funnel Plot of Longitudinal Studies on the Association Between Cerebral Small Vessel Disease and Depression

eTable 1. Quality Assessment of the Included Studies by Use Of the Newcastle-Ottawa Scale (NOS)

	Study	Selection	Comparability	Exposure	Outcome	Overall	Percentage
Study	design			(c-c only)	(cohort	assessment	of maximum
					only)		score
Plasma mark	ers of endoth	elial function					
Dimonoulos	Case-	134	1a 1b	1h 2		7/8	87.5%
2006	control	_, _, .		/ _		.,-	
Lesperance	Case-	1, 2, 4	1a, 1b	1b, 2		7/8	87.5%
2004	control						
Phuong Do	Population	1a, 2, 3	1a		1a	5/6	83.3%
2010	based						
	cohort						
Rajagopalan	Case-	1		1b		2/8	25%
2001 Taballa 2015	Control	1.2	1a 1b		10	F /C	82.2%
TCHAIR 2015	based	1, 2	1d, 10		Id	5/0	83.3%
	cohort						
Thomas	Case-	3, 4	1a	1b, 2		5/8	62.5%
2007	control			-			
Tully 2016	Population	1, 2			1a	3/6	50%
	based						
	cohort						
van Dooren	Population	1, 2, 3	1a, 1b		1a	6/6	100%
2016	based						
van Sloten	Population	1 2 2	1a 1b		12	6/6	100%
2013	based	1, 2, 5	18, 10		10	0/0	100%
2010	cohort						
Albuminuria							1
Fischer 2013	Population-	1a, 3a	1a, 1b	1b		5/6	83.3%
	based						
	cohort						
Katon 2004	Population-		1a, 1b	1a		3/6	50%
	based						
	cohort						
Retinal alama	eters	1.4	1a 1b	16.2	[C / 9	750/
2010	control	1, 4	18, 10	10, 2		0/8	/3/6
Ikram 2010	Population	1, 2, 3b, 4	1a, 1b		1a, 2	8/9	88.9%
	based		,		,		
	cohort						
Cerebral sma	ll vessel disea	se			•		
Aizenstein	Case-	1, 4	1a	1a, 2		5/8	62.5%
2011	control						
Almeida	Case-	3, 4	1a	1b, 2a		5/8	62.5%
2004 Chattorica	control	1 2	1	12.2		E /9	62.5%
2010	control	1, 2	I	18, 2		5/8	02.3%
Chen 2009	Case-	1. 2	1a. 1b	1a. 2		6/8	75%
	control	,	-, -	- /		-, -	
Colloby 2011	Case-	1, 3	1a	1b, 2a		5/8	62.5%
	control						
Cyprien 2014	Population-	1, 2, 3b, 4	1a, 1b		1a, 2	8/9	88.9%
	based						
	cohort,						
	prospective						
	(ESPKI) study)						
Dalby 2010	Case-	1, 2, 3. 4	1a, 1b	1b, 2a		8/8	100%
,	control	/	, -			, -	

De Groot	Population-	1a, 2a	1a, 1b		1a	5/6	83.3%
2000	based						
	cohort.						
	Rotterdam						
	scan study.						
Delaloye	Case-	1, 4	1a, 1b	1b, 2a		6/8	75%
2010	control						
Devantier	Case-	1, 3	1a	1a, 2		5/8	62.5%
2016	control						
Direk 2016	Population-	1a, 2a	1a, 1b		1a	5/6	83.3%
	based						
	cohort.						
	Rotterdam						
	study.						
Dotson 2013	Population-	1a, 2a	1a, 1b		1a, 2a, 3a	7/9	77.8%
	based						
	cohort,						
	prospective						
	(Baltimore						
	longitudina						
	l study of						
	aging)						
Feng 2013	Population-	1a, 2a	1a, 1b		1a	5/6	83.3%
	based						
	cohort						
Firbank 2005	Population-	1a, 2a	1a, 1b		1a	5/9	55.6%
	based						
	cohort,						
	prospective						
	(LADIS)			1.2	-	c./0	750/
Fujishima	Case-	1a, 2a, 3a	1a	1a, 2a		6/8	/5%
2014	Deputation	10 2 0 2h	1a 1b		10.2	7/0	77.00/
Godin 2008	Population-	1d, 2d, 3D,	1d, 10		1d, 2	7/9	//.8%
	cohort						
	prospective						
	(3C-Diion						
	(SC Dijon study)						
Greenwald	Case-	1a 2a 3a			1a 2	5/8	62.5%
1998	control	10, 20, 50			20,2	5,5	021070
Grool 2013	Population-	1a. 2a	1a. 1b		1a. 2	6/9	66.7%
	based		,		, -	-, -	
	cohort.						
	prospective						
	(SMART-						
	Medea)						
Gudmunds-	Population-	1a, 2a, 3b	1a, 1b		1a	6/6	100%
son 2013	based						
	cohort						
	(AGES-						
	Reyklavik						
	study)						
Hannestad	Case-	1a, 3a, 4a	1a	1a, 2		6/8	75%
2006	control						
losifescu	Case-	1a, 3a, 4a	1a, 1b	1b, 2a		7/8	87.5%
2005	control						
Jansson 2004	Casa	10.20.40	10	10.2		C / 9	750/
Janssen 2004	Case-	1a, 3d, 4a	τa	1d, 2		0/0	/ 570
Jansson 2007	Care	12.42	1-	1h 2a		Е /0	62 50/
Janssen 2007	CdSE-	1d, 4d	τa	ID, Za		5/6	02.5%
lorm 2005	Population	1. 0.	15 1h			1/6	66.7%
JUIII 2005	-opuiation-	1a, 2d	1a, 10			4/0	00.7%
	cohort						
Kiesenna	Caro	1 2 2 2 1 1 2	15	1h 2a		7/9	87 5%
кісзерра	Case-	1a, 2a, 3d, 4d	TQ	10, Zd		//0	01.370

2013	control						
Kohler 2010	Case- control	1a, 2a, 3a, 4a	1a	1a		6/8	75%
Krishnan 2006	Population- based cohort	1a, 2a	1a, 1b		1a	5/6	83.3%
Kumar 2000	(LADIS)	12 22 42	15	12, 22		<i>c 1</i> 9	750/
Kulliai 2000	control	1d, 3d, 4d	Id	18, 28		0/8	73%
Lavretsky 2008	Population- based	1a, 2a, 3b	1a, 1b		1a	6/6	100%
Lee 2003	Case- control	1a, 2a, 3a	1a	1b, 2a		6/8	75%
Lin 2005	Case- control	2a, 4a		1a, 2a		4/8	50%
MacFall 2005	Case- control	2a, 3a, 4a	1a	2a		5/8	62.5%
Murray 2013	Population- based cohort, prospective	1a, 2a	1a		1a	4/9	44.4%
Nys 2005	Case- control	2a, 4a	1a	1a, 2a		5/8	62.5%
Olesen 2010	Population- based cohort, prospective	1a, 2a, 3b	1a, 1b		1a, 2a	7/9	77.8%
Paranthama	Case-	1a, 2a		1b, 2a		4/8	50%
n 2010 Perez 2012	control Population-	1a 2a	1a 1h		12	5/6	83.3%
	based cohort (Rotterdam Scan Study)	10, 20	10, 10			5,0	0.5%
Potter 2007	Population- based cohort	1a, 2a, 3b	1a, 1b		1a	6/6	100%
Sheline 2008	Population- based cohort	1a, 3a	1a, 1b	1b		5/6	83.3%
Shimony 2009	Population- based cohort	1a, 2a, 3b	1a		1a	5/6	83.3%
Steffens 2002	Population- based cohort, prospective (Cardio- vascular Health Study)	1a, 2a, 4a	1a, 1b		1a, 2a	7/9	77.8%
Steffens 1999	Population- based cohort (Cardio- vascular Health Study)	1a, 2a	1a, 1b		1a	5/9	55.6%
Tang 2010	Case- control	1a, 3a, 4a	1a	1b, 2a		6/8	75%
Taylor 2005	Case- control	2a, 3a, 4a	1a, 1b	1b, 2a		7/8	87.5%
Taylor 2007	Case- control	1a, 2a, 3a, 4a	1a	1b, 2a		7/8	87.5%

Teodorczuk	Population-	1a, 2a, 4a	1a, 1b		1a, 2a	7/9	77.8%
2010	based						
	cohort,						
	prospective						
	(LADIS						
	study)						
Tudorascu	Population-	1a, 2a	1a, 1b		1a	5/6	83.3%
2014	based						
	cohort						
Tupler 2002	Case-	1a, 2a, 3a, 4a	1a	1a, 2a		7/8	87.5%
	control						
Van Sloten	Population-	1a, 2a, 4a	1a, 1b		1a, 2a, 3a	8/9	88.9%
2015	based						
	cohort,						
	prospective						
	(AGES-						
	Reykjavik)						
van Uden	Population-	2a, 3a	1a	1a		4/9	44.4%
2011	based						
	cohort,						
	prospective						
	(RUN DMC						
	study)						
Vardi 2010	Case-	1a, 4a		1a, 2a		4/8	50%
	control						
Vataja 2001	Case-	1a, 2a, 3a, 4a		1a, 2a		6/8	75%
	control						
Versluis 2006	Population-	1a, 2a	1a		1a, 2a	5/6	83.3%
	based						
	cohort						
	(Prosper						
	study)						
Videbech	Case-	1a, 2a, 3a, 4a	1a	1b, 2a		7/8	87.5%
2000	control						
Wu 2014	Case-	1a, 3a, 4a	1a	1a, 2a		7/8	87.5%
	control						

eTable 2. Characteristics of Studies Included in the Systematic Review and Meta-Analysis

Study	Study design	Characteristics of	Age	Sex	Participants	Participants	Microcirculation	Definition of
		study population	(yrs)	(%F)	(n)	depression	marker	depression
						(n)		
Plasma markei	rs of endothelial fi	unction (Cross-sectiona	l data)					
Dimopoulos 2006	Case-control	Greece, general population	60+	61	66	33	sICAM-1; s-VCAM-1	GDS, diagnostic interview
Lesperance 2004	Case-control	Canada, consecutive patients coronary syndrome	57	19	481	35	sICAM-1	SCID
Phuong Do 2010	Population based cohort	USA, general population	43	35	434	103	sICAM-1; sE-Selectin	11 item CES-D ≥ 16
Tchalla 2015	Population based cohort (MOBILIZE Boston study)	USA, general population	78	63	668	179	sICMAM-1, sVCAM- 1	CES-D ≥ 16
Thomas 2007	Case-control	UK, general population	75	60	48	23	sICAM-1; sVCAM-1	GDS, MDRS, DSM- IV
Tully 2016	Population based cohort (Florey Adelaide Male ageing study)	Australia, general populaton	53	0	688	59	sE-Selectin	BDI
van Dooren 2016	Population based cohort (The Maastricht Study)	the Netherlands, general population	60	45	852	55	sICAM-1, s-VCAM-1, sE-Selectin, vWF	PHQ-9, MINI
van Sloten 2014	Population based cohort (The Hoorn Study)	the Netherlands, general population	70	50	493	63	sICAM-1; s-VCAM-1; sE-Selectin vWF	20 item CES-D ≥ 16
Albuminuria (C	ross-sectional dat	ta)						
Fischer 2012	Population- based cohort	USA, Hispanic and non-Hispanic CKD patients	58	43	3853	1098	ACR	BDI
Katon 2004	Population- based cohort	USA, primary care patients with predominantly diabetics	60	49	557	78	Micro-albuminuria in spot urine	PHQ-9
Retinal vessel o	liameters(Cross-s	ectional data)						
Nguygen 2010	Case-control	USA, Caucasian and African Americans, mean age 70	70	77	146	43	Arteriolar and venular diameters	HDRS, DSM-IV
Retinal vessel o	liameters(Longitu	dinal data)						
lkram 2010	Population based cohort, prospective (Rotterdam Scan study)	the Netherlands, general population, 9 years follow-up	66	55	3605	555	Arteriolar and venular diameters	CES-D, HADS, diagnostic interview
Cerebral Small	Vessel Disease (C	ross-sectional data)						
Aizenstein 2011	Case-control	Caucasian and African Americans	70	67	60	33	WMH volumetry (semi-automatic)	HDRS
Almeida 2004	Case-control	South America, heart failure	74	53	32	8	Scheltens scale	HDRS
Chatterjee 2010	Case-control	UK, stroke population	70	40	103	33	CT scan WMH rating scale	Diagnostic interview, MDRS
Chen 2009	Case-control	China, stroke population	65	75	127	44	WMH volumetry (semi-automatic)	GDS
Colloby 2011	Case-control	UK, general population	74	69	68	38	WMH volumetry (semi-automatic)	GDS, MDRS, diagnostic

								interview
Cyprien 2014	Population-	France, general	71	45	467	120	WMH volumetry	MINI 5, CES-D,
	based cohort,	population					(semi-automatic)	current anti-
	prospective							depressive
	(ESPRIT study)							treatment
Dalby 2010	Case-control	Denmark, general	58	68	44	22	WMH volumetry	Physicians
		population				105	(semi-automatic)	diagnosis
De Groot 2000	Population-	the Netherlands,	72	52	1077	185	WMH severity	CES-D, history of
Deleleus 2010	based cohort	general population	70	70	60	11	rating scale	depression
Delaloye 2010	Case-control	Switzerland, non-	70	/3	60	11	Scheitens scale	GDS
Dovantion	Casa control	Specified population	60	15	FG	20	W/MH volumetry	Diagnostic
2016	Case-control	nonulation	00	15	50	29	(semi-automatic)	interview
Direk 2016	Population-	the Netherlands	59	55	3799	60	WMH volumetry	CES-D SCAN
Direk 2010	based cohort	general population	55	55	5755	00	(semi-automatic)	diagnostic
	(Rotterdam	Serierar population					Microbleeds	interview in
	study)						Microinfarctions	participants with
								CES-D≥16
Dotson 2013	Population-	South-America,	72	43	90	9	WMH severity	20 item CES-D,
	based cohort,	general population					rating scale	history of
	prospective							depression
Feng 2013	Population-	China, general	72	57	85	57	Fazekas scale	GDS
	based cohort	population						
Firbank 2005	Population-	the Netherlands,	74	55	629	169	WMH volumetry	GDS
	based cohort,	Denmark, France,					(semi-automatic)	
	prospective	Austria, Sweden,						
	(LADIS)	Finland, Portugal,						
		Germany, England,						
Fujichima	Case-control		70	57	277	Q1	W/MH volumetry	
2014	Case-control	MCL-/+	19	57	522	01	(semi-automatic)	00323
Greenwald	Case-control	USA general	75	59	66	35	Scheltens scale	HDRS
1998		population	, 5	55	00	55	o chercento o cure	
Gudmundsson	Population-	Iceland, general	75	58	4296	185	WMH volumetry	MINI, GDS
2013	based cohort	population					(semi-automatic)	
Hannestad	Case-control	USA, general	60+	64	246	182	WMH volumetry	CES-D, MDRS,
2006		population					(semi-automatic)	history of
								depression
Iosifescu 2005	Case-control	USA, general	41	34	85	50	Fazekas scale	Modified HDRS
		population						
Janssen 2004	Case-control	the Netherlands,	63	100	69	28	WMH volumetry	Diagnostic
		general population			=0		(semi-automatic)	interview
Janssen 2007	Case-control	the Netherlands,	70	67	70	50	WMH volumetry	MDRS
Jorm 2005	Dopulation	general population	60	Not	475	20	(semi-automatic)	
J0111 2005	hased cohort	Australia, general	64	dos-	475	30	Fazekas scale	antidepressant
	based conort	population	04	cribed				medication
Kieseppa 2013	Case-control	Finland, general	41	55	65	44	Coffey scale	Physicians
incocppu 2010		population			00		correy scare	diagnosis
Kohler 2010	Case-control	UK, general	60+	78	64	35	Scheltens scale	MDRS
		population						
Krishnan 2006	Population-	the Netherlands,	74	55	626	92	Scheltens scale	GDS-15
	based cohort	Denmark, France,						
	(LADIS)	Austria, Sweden,						
		Finland, Portugal,						
		Germany, England,						
		general population						
Kumar 2000	Case-control	USA, general	70	73	81	51	WMH volumetry	SCID DMS-IV,
Les metels :	Demulation	population	74	21	270	40	(semi-automatic)	HDRS >15
	Population-	USA, general	74	21	270	49	(semi-outernatio)	MUD2
	Case-control		60.	67	82		(semi-automatic)	HDRS bistony of
2005	case-control	nonulation	00+	07	02	41	concy scale	depression
Lin 2005	Case-control	Taiwan, general	71	64	55	37	Fazekas scale	17-item HDRS >
1 2005		population					- azenas seure	15, diagnostic
		h - h - marrier -						interview
MacFall 2005	Case-control	USA, general	60+	63	99	50	WMH volumetry	CES-D > 16,
		population					(semi-automatic)	history of MDD
Murray 2013	Population-	UK, general	64	47	219	n.a.	Scheltens scale	HADS-D
	based cohort,	population						
	prospective							

Olesen 2010	Population-	Sweden, general	72	70	525	83	Gothenburg scale	HRSD, MDRS,
	based cohort,	population, 5 years						physicians
	prospective	follow-up						diagnosis
Paranthaman 2010	Case-control	UK, general population	72	65	40	20	WMH volumetry (semi-automatic)	Physicians diagnosis, history of depression
Potter 2007	Case-control	USA, general population	72	64	130	83	WMH volumetry (semi-automatic)	MADRS
Sheline 2008	Case-control	USA, depressed inpatients	59+	65	115	83	WMH volumetry (semi-automatic)	MDRS, diagnostic interview based on DMS-IV
Steffens 1999	Population- based cohort (Cardio- vascular Health Study)	USA, general population	75	58	3660	880	WMH severity rating scale	CES-D score in highest quartile
Tang 2010	Case-control	China, post-stroke depression	67	53	156	78	Fazekas scale	Diagnostic interview
Taylor 2005	Case-control	USA, general population	60+	68	399	253	WMH volumetry (semi-automatic)	CES-D, history of depression
Taylor 2007	Case-control	USA, general population	60+	68	370	226	WMH volumetry (semi-automatic)	CES-D, MDRS, history of depression
Tudorascu 2014	Population- based cohort (Health ABC)	USA, general population	83	64	277	63	WMH volumetry (semi-automatic)	CES-D
Tupler 2002	Case-control	USA, general population	50+	73	267	115	Fazekas scale	Physicians diagnosis
van Uden	Population- based cohort (RUN DMC	the Netherlands, consecutive patients with CSVD	65	44	491	101	WMH volumetry (semi-automatic)	CES-D, antidepressant medication
Vardi 2010	Case-control	Israel, general	55	54	101	37	WMH volumetry (semi-automatic)	Diagnostic
Vataja 2001	Case-control	Finland, consecutive	71	51	275	109	WMH volumetry (calculated by band)	Diagnostic
Videbech 2000	Case-control	Denmark, inpatients	45	67	137	44	Fazekas scale	Diagnostic
Wu 2014	Case-control	Chinese, general	72	60	335	65	Fazekas scale	Diagnostic
Cerebral Small	Vessel Disease (L	ongitudinal data)						Interview
Firbank 2012	Population- based cohort, prospective (LADIS study)	Multicenter, general population, 3 years follow-up	64+	54	639	211	WMH volumetry (semi-automatic)	GDS
Godin 2008	Population- based cohort, prospective (3C-Dijon study)	France, general population, 4 years follow-up	72	61	1658	241	WMH volumetry (semi-automatic)	MINI, CESD, antidepressant medication use
Grool 2013	Population- based cohort, prospective (SMART- Medea)	Dutch, symptomatic atherosclerotic disease, 3 years follow-up	62	19	650	No cases described	WMH volumetry (semi-automatic)	PHQ-9 quartiles
Olesen 2010	Population- based cohort, prospective	Sweden, general population, 5 years follow-up	72	70	525	83	Gothenburg scale	HRSD, MDRS, physicians diagnosis
Perez 2012	Population- based cohort (Rotterdam Scan Study)	Dutch, non-demented population, 3.6 years follow-up	60+	52	961	92	WMH severity rating scale	CES-D
Steffens 2002	Population- based cohort, prospective (Cardio- vascular Health	USA, general population, 4 years follow-up	70	40	3236	1821	WMH severity rating scale	Ever CES-D >7
Teodorczuk	Population-	Multicenter, patients	65+	54	399	85	WMH volumetry	GDS

© 2017 American Medical Association. All rights reserved.

2010	based cohort,	presenting at					(semi-automatic)	
	prospective	neurology						
	(LADIS study)	department, 3 years						
		follow-up						
van Sloten	Population-	Iceland, general	75	57	1949	197	WMH volumetry	GDS
2015	based cohort,	population, 4 years					(semi-automatic),	
	prospective	follow-up					microbleeds,	
	(AGES-						subcortical infarcts	
	Reykjavik)							
Versluis 2006	Population-	the Netherlands, high	75	43	527	43	WMH volumetry	15 items GDS
	based cohort,	CVD risk population,					(semi-automatic)	
	prospective	2.8 years follow-up						
	(Prosper study)							

sICAM-1 (Soluble intercellular adhesion molecule-1), s-VCAM-1 (Soluble vascular cell adhesion molecule-1), GDS (Geriatric Depression Scale), SCID (Structured clinical interview for DSM-IV), CES-D (Center for Epidemiological

Studies of Depression), DSM-IV (Diagnostic and Statistical Manual of Mental Disorders IV), MDRS (Montgomery–Åsberg Depression Rating Scale), HDRS (Hamilton Rating Scale for Depression), WMH (White matter hyper-

intensities), PWMH (Periventricular WMH), DWMH (Deep cortical WMH), AWMH (Anterior WMH), MINI (Mini International Neuropsychiatric Interview), MCI (Mild cognitive impairment), PHQ-9 (Patient health questionnaire-9),

BDI (Beck Depression Index), CSVD (Cerebral small vessel disease), CVD (Cardiovascular disease), CKD (Chronic kidney disease), ACR (Albumin creatinin ratio)

Study	Marker	Results	Calculated	Transformation	Adjustments for covariates
Endothelial dysf	unction (Cross-section	anal data)	results		
Dimonoulos	sICAM-1	OR 2 97 [1 23 – 7 18]	NA	None	Sex smoking metabolic syndrome
2006	510/111/2	0112107 [1120 7120]			
	sVCAM-1	OR 4.66 [1.55 – 13.98]	NA		
Lesperance	sICAM-1	Depression: 5.34±0.24	OR 2.66	SMD*	Sex, smoking, metabolic syndrome
2004		Control:	[1.43 – 4.96]		
Phuong Do	sICAM-1	5.20±0.26 % change: 17.6	NA	None	Age, sex, systolic blood pressure, cardiovascular
2010	E-Selectin	% change: 17.96	NA		condition, inflammation, BMI, smoking status
Tchalla 2015	sICAM-1	Depression: 272+97	OP 1 /1	SMD*	None
	SICAWI-1	Control: 258±75	[1.04 – 1.92]	31010	None
	sVCAM-1	OR 1.97 [1.14 – 3.57]	NA	None	Age, sex, race, educational level, BMI, smoking,
					alcohol use, physical activity, diabetes, comorbidity
Thomas 2007	sICAM-1	Depression: 289.0	OR 2 08 [SMD	Index None
111011103 2007	510/11/1	Control: 251.6	0.86 - 5.01]	51110	None
	sVCAM-1		OR 0.61		
T II 2016	5.6 1. 11	0	[0.25 - 1.48]	C145*	
Tully 2016	sE-Selectin	Depression: 3.475 Control: 3.469	OR 1.11	SMD*	None
		(Logtransformed)	[0.00 1.02]		
van Dooren	sICAM-1	Depression:	OR 1.35	SMD*	Age, sex, T2DM, eGFR, history of CVD, smoking,
2016		284.9±71.9	[1.10 - 1.65]		alcohol use, BMI
	sVCAM-1	Depression:	OR 1 25	SMD*	
	010/0/12	428.5±99.3	[0.99 - 1.58]	0.110	
		Control: 402.4±101.0			
	E-Selectin	Depression: 16.5±10.3	OR 1.36	SMD*	
	vWF	Depression:	OR 1.19	SMD*	
		143.1±44.8	[0.93 – 1.53]		
		Control: 134.3±47.8			
van Sloten 2013*	sICAM-1	Depression: 257 9+36 5	OR 1.55	SMD*	Age, sex, glucose metabolism status, prior CVD,
		Control: 248.8±37.5	[0.00 1.00]		education, physical activity, dietary habits, use of
					antihypertensive, lipid-lowering, glucose-modifying
		Demosient	00.2.25	CMD*	medication
	SVCAM-1	427.0±59.1	[2.03 – 5.21]	SIMD.*	
		Control: 390.6±55.8	,		
	E-Selectin	Depression: 16.6±2.3	OR 0.38	SMD*	
)//A/E	Control: 17.9±2.4	[0.13 – 1.08] OP 1 21	SMD*	
	••••	177.4±19.2	[1.31 - 8.59]	51410	
		Control: 146.5±16.3			
Albuminuria (Cro	oss-sectional data)	00407000400			
Fischer 2013	ACR	OR 1.07 [0.90 – 1.26]	NA	None	Age, sex, race, education, hypertension, choiesterol, CVD, diabetes, obesity, eGFR, antidepressant medication
Katon 2004	Microal-	OR 1.29 [0.96 – 1.73]	NA	None	Smoking, obesity, exercise, triglycerides, LDL, Hb1Ac,
	buminuria				hypertension
Retinal vessel dia	ameters (Cross-secti	ional data)	NIA	Nono	Age say duration of diabetes systelic blood
Nguygen 2010	diameter	OR 8.3 [4.70 – 11.99]	NA	None	pressure, cigarette smoking, serum glucose,
					cerebrovascular risk factor scale, cumulative illness
					scale, retinopathy
	Venular	OR 2.18 [0.00 - 7.20]	NA	None	
Retinal vessel dia	ameters (Longitudin	al data)			
Ikram 2010	Arteriolar	HR 1.01 [0.93 – 1.10]	NA	None	Age, sex, smoking, blood pressure, diabetes mellitus,
	diameter		NIA	Nega	BMI, carotid artery plaques, cholesterol
	venular	11N 1.02 [U.94 - 1.12]	INA	none	

eTable 3. Reported Results of Studies Included in the Systematic Review and Metaanalysis

	diameter				
Cerebral Small V	essel Disease (Cross	-sectional data)			
Aizenstein 2011	WMH rating scale	Depression: 0.0015 Control: 0.0008	NA	None	Age, sex
Almeida 2004	Scheltens scale	correlation coefficient 0.79	NA	None	Age, sex
Chatterjee 2010	WMH Volumetry	OR 1.50 [0.97 – 2.20]	NA	None	None
Chen 2009	Fazekas scale	Depression: 1.23±0.83 Control: 1.19±0.85	OR 1.09 [0.57 – 2.09]	SMD	None
Colloby 2011	WMH Volumetry	Depression: 0.94±1.28 Control: 0.84±0.88	OR 1.17 [0.50 – 2.78]	SMD	Age, sex
Cyprien 2014	WMH Volumetry	Depression: 0.59±0.26 Control: 0.53±0.26	OR 1.52 [1.03 – 2.25]	SMD*	Age, education, global cognitive impairment, ischaemic pathologies, left-handedness, ICV, past depression
De Groot 2000	PWMH rating scale	OR 3.3 [1.20 – 9.50]	NA	None	Age, sex, educational level
Delaloye 2010	Scheltens scale DWMH	Depression: 6.45±6.3 Control: 2.87±4.99	OR 3.32 [0.97 – 11.41]	SMD	None
Devantier 2016	WMH Volumetry	Depression: 1249±9018 Control: 308±4479	OR 1.27 [0.49 – 3.28]	SMD	Age, sex, smoking status
Direk 2016	WMH Volumetry	OR 1.40 [1.20 – 1.62]	NA	None	Age, sex, education, smoking status, hypertension, diabetes mellitus, BMI, total and HDL cholesterol, cognitive function
	Microbleeds	OR 1.40 [1.01 – 1.94]	NA	None	
	Micro- infarctions	OR 1.73 [1.07 – 2.95]	NA	None	
Dotson 2013	WMH rating scale	Regression coefficients -0.06 [0.57] (women) -0.27 [0.42] (men)	NA	None	None
Feng 2013	PWMH Fazekas scale	OR 1.14 [0.71 – 1.83]	NA	None	Age, sex, education, hypertension, diabetes, cognition
	DWMH Fazekas scale	OR 1.87 [1.13 – 3.08]	NA	None	
	Microbleeds	OR 1.59 [0.75 - 3.38]	NA	None	
	Micro- infarctions	OR 1.98 [1.00 – 3.92]	NA	None	
Firbank 2005	WMH Volumetry	OR 1.52 [1.05 – 2.22]	NA	None	Age, sex, cognition, disability, baseline depression, study center, baseline WMH (longitudinal data only)
Firbank 2012	WMH Volumetry	Spearman's rho 0.48	NA	None	Age, sex, cognition, disability, baseline depression, study center, baseline WMH
Fujishima 2014	WMH Volumetry	Depression: 2.35±0.48 Control: 1 29+0 53	OR 3.25	SMD	None
Godin 2008	WMH	Depression: 7.6+0.54	OR 1.30	SMD*	Age, sex, hypertension, history of cardiovascular
	Volumetry	Control: 6.8±0.50	[1.05 – 1.61]		disease, alcohol and tobacco consumption, physical impairment, brain white matter volume
Greenwald 1998	Sum of DWMH, Scheltens scale	Depression: 1.53±1.82 Control: 0.72±1.24	OR 1.57 [1.16 – 2.13]	SMD*	Sex, hypertension
Grool 2011	WMH Volumetry	RR 1.07 [0.85 – 1.35]	NA	None	Age, sex, education, hypertension, diabetes mellitus, physical functioning
Gudmunds-	WMH ,	Depression: 0.9±0.3	OR 0.92	SMD*	Age, sex, years of follow up, ICV, height, education,
son 2013	Volumetry	Control: 0.9±0.4	[0.70 - 1.21]		systolic and diastolic blood pressure, anti- hypertensive medication use
Hannestad 2006	WMH Volumetry	Depression: 6.68±10.1 Control: 3.88+3.8	OR 1.75	SMD*	Age, sex, ICV
losifescu 2005	Fazekas scale	Depression: 0.67±0.66	OR 1.05	SMD*	Age, sex, hypertension, family history of CVD.
		Control: 0.65±0.59	[0.44 – 2.50]	-	smoking, diabetes, hypercholesterolemia
Janssen 2004	WMH Volumetry	Depression: 6.93±7.89 Control: 14.15±11.38	OR 0.84 [0.35 – 2.02]	SMD	Age, sex
Janssen 2007	Larger DWMH	Depression: 47%	NA	None	Age, cognition, ICV
Jorm 2005	Fazekas scale	OR 1.39 [0.93 – 2.08]	NA	None	Age, sex, education, physical disability, history of stroke, diabetes, hypothyroidism, cognition, systolic and diastolic blood pressure smaking alcohol was
Kieseppa 2014	DWMH Coffey scale	Depression: 1.13±1.15 Control: 0.62±0.97 (obtained through correspondence)	OR 1.59 [0.84 – 3.01]	SMD	Age, sex

Kohler 2010	Scheltens scale	Depression: 12.2±5.4	OR 1.27	SMD*	Age, sex, education
		Control: 13.2±9.9	[0.53 – 3.06]		
Krishnan 2006	Scheltens scale	OR 1.04 [1.00 - 1.08]	NA	None	Age, cognition, hypertension, prior CVD
Kumar 2000	WMH	Depression:	OR 1.43	SMD	Age, sex, ICV
	Volumetry	0.00330±0.00460	[1.11 – 1.85]		
		Control:			
Lauradalu i		0.0003/±0.00054		News	
Lavretsky	VVIVIH	OK 1.14 [0.96 – 1.35]	NA	None	Age, sex, education
2008	(comi				
	(seriii-				
Lee 2003	Coffey scale	Depression: n=9	NA	None	
2005	DWMH grade 3	Control: n=13	10,1	None	, BC, SCA, ICV
Lin 2005	Fazekas scale	Depression: 2.57+1.44	OR 1.20	SMD	None
		Control: 1.67±1.14	[1.07 – 1.35]		
MacFall 2005	WMH	Depression: 6.11±0.90	OR 5.66	SMD	Age, sex
	Volumetry	Control: 3.09±1.02	[4.57 – 6.73]		
Murray 2013	Scheltens scale	Pearson correlation	NA	None	Sex, living alone
· ·		coefficient 0.066			
Paranthaman	WMH	Depression:	OR 1.36	SMD	None
2010	Volumetry	342.2±748.1	[0.45 - 4.10]		
		Control:			
		202.0±881.2			
Per ez 2012	WMH rating	OR 1.10 [1.00 – 1.22]	NA	None	Age, sex, education, cognition
	scale				
Potter 2007	AWMH	Depression:	OR 1.60	SMD*	Age, education, depression severity, anxiety, time
	Volumetry	0.094±0.026	[0.84 – 3.05]		between MRI and depression screening
		Control:			
		0.063±0.186			
Sheline 2008	WMH	Graphic	NA	None	None
	Volumetry	representation of			
		regional differences			
Steffens 2002	WMH rating	OR 1.33 [0.86 – 2.06]	NA	None	Age, sex, race, education, antidepressant medication
	scale				use, cognition, hypertension, coronary heart disease,
a. ((apoE genotype, ADL, LADL
Steffens 1999	WMH rating	OR 1.04 [0.99 – 1.08]	NA	None	Age, sex, race, education, antidepressant medication
	scale				use, cognition, hypertension, coronary heart disease,
T 2010		00.13.0.[1.04		News	apoE genotype, ADL, LADL
Tang 2010	DWINH Fazekas	UK 13.8 [1.64 -	NA	None	Age, sex
Tang 2014	Pontine	OP 2 2 [1 16 - 4 16]	NA	None	None
1 alig 2014	Microbleeds	OK 2.2 [1.10 - 4.10]	NA	None	None
	rating scale				
Taylor 2005	WMH	Depression:	OR 1 57	SMD*	Age sex race hypertension diabetes heart disease
10,101 2005	Volumetry	7 22+10 71	[1.06 - 2.32]	51110	Nge, sex, ruce, hypertension, diasetes, neure alsease
	volumetry	Control: 4 87+6 47	[1.00 2.52]		
Tudorascu	WMH	OR 1 89 [1 33 – 2 69]	NA	None	Age sex cognition cardiovascular disease diabetes
2014	Volumetry	011105 [1.55 2.05]	10,1	None	hypertension
Tupler 2002	Sum of Fazekas	Depression: 3.65+7.05	OR 2.14	SMD	Age
	scale	Control: 1.16+2.43	[1.05 - 4.36]		
van Sloten	WMH	OR 1.04 [0.89 – 1.21]	NA	None	Age, sex, education, smoking history, alcohol intake.
2015	Volumetry				anxiety, gait speed, hypertension, antihypertensive
					medication, BMI, diabetes, coronary calcium score,
					cognition
	Microbleeds	OR 1.15 [0.77 – 1.72]	NA	None	
	rating scale				
van Uden	WMH	Depression: 21.8±20.2	OR 1.49	SMD	Age, sex, ICV, lacunar infarcts, amygdala volume
2011	Volumetry	Control: 14.7±13.8	[0.97 – 2.29]		
Vardi 2010	WMH	Depression:	OR 1.82	SMD	None
	Volumetry	366.96±1072	[0.40 - 8.34]		
		Control: 54.7±57			
Vataja 2001	WMH Fazekas	Depression: 3.4±1.5	OR 1.00	SMD	None
		Control: 3.4±1.6	[0.65 - 1.54]		
Versluis 2006	WMH	OR 0.70 [0.28 – 1.76]	NA	None	Age, sex
	Volumetry				
Videbech	Fazekas scale	OR 0.86 [0.31 -2.38]	NA	None	Age, sex
2000					
Wu 2014	Fazekas scale	Depression: 1.62±1.10	OR 2.53	SMD*	Sex, cognition, microbleeds, microinfarctions
	1.2.	Control: 1.11±0.97	[1.50 – 4.27]		
Corobral Croall V	essel Disease (Lonait	udinal data)			

Firbank 2012	WMH	Depression: 2	NA	None	Age, sex, cognition, disability, baseline depression,
	Volumetry	(IQR 1-4)			study centre, baseline WMH
		Control: 1 (IQR 0 -3)			
Godin 2008	WMH	Depression: 2.1±0.35	OR 1.30	SMD*	Age, sex, hypertension, history of CVD, alcohol
	Volumetry	Control: 1.5±0.31	[1.05 – 1.62]		consumption, smoking, education, diabetes
Grool 2011	PWMH	OR 1.07 [0.93 – 1.24]	NA	None	Age, sex, education, vascular risk, cognition
	Volumetry				
Olesen 2010	Gothenburg scale	OR 3.21 [1.00 - 10.26]	NA	None	Age, sex, hypertension, cholesterol
Perez 2012	WMH rating scale	OR 1.10 [1.00 – 1.22]	NA	None	Age, sex, education, cognition
Steffens 2002	WMH rating	OR 1.33 [0.86 - 2.06]	NA	None	Age, sex, race, education, antidepressant medication
	scale				use, cognition, hypertension, coronary heart disease,
					apoE genotype, ADL
Teodorczuk	WMH	OR 1.36 [1.04 – 1.76]	NA	None	Age, sex, educational level, history of depression,
2010	volumetry	00.4.24 [4.06 4.44]		Name	cognition, history of stroke, hypertension
van Sloten	VVIVIH	OK 1.24 [1.06 – 1.44]	NA	None	Age, sex, education, smoking history, alconol intake,
2015	volumetry				anxiety, gait speed, nypertension, antinypertensive
					cognition
	Microbloods	OP 1 26 [0 09 1 96]	NA	Nono	cognition
	rating scale	OK 1.30 [0.98 – 1.80]	NA	None	
Versluis 2006	WMH	OR 0.70 [0.21 – 2.34]	NA	None	Age, sex
	Volumetry				

sICAM-1 (Soluble intercellular adhesion molecule-1), s-VCAM-1 (Soluble vascular cell adhesion molecule-1), GDS (Geriatric Depression Scale), SCID (Structured clinical interview for DSM-IV), CES-D (Center for Epidemiological Studies of Depression), DSM-IV (Diagnostic and Statistical Manual of Mental Disorders IV), MDRS (Montgomery–Åsberg Depression Rating Scale), HDRS (Hamilton Rating Scale for Depression), WMH (White matter hyperintensities), PWMH (Periventricular WMH), DWMH (Deep cortical WMH), AWMH (Anterior WMH), MINI (Mini International Neuropsychiatric Interview), MCI (Mild cognitive impairment), PHQ-9 (Patient health questionnaire-9), BDI (Beck Depression Index), CSVD (Cerebral small vessel disease), CVD (Cardiovascular disease), CKD (Chronic kidney disease), ACR (Albumin creatinin ratio), SMD (Standardized Mean Difference), NA (not applicable): the original data were used. * The unadjusted data were used and converted to odds ratios by use of the SMD. Odds ratios were calculated by use of the

following formula: SMD = (sqrt 3)/ π In OR

eReferences.

1. Dimopoulos N, Piperi C, Salonicioti A, et al. Elevation of plasma concentration of adhesion molecules in late-life depression. International journal of geriatric psychiatry. 2006;21(10):965-971.

2. Lesperance F, Frasure-Smith N, Theroux P, Irwin M. The association between major depression and levels of soluble intercellular adhesion molecule 1, interleukin-6, and C-reactive protein in patients with recent acute coronary syndromes. Am J Psychiatry. 2004;161(2):271-277.

3. Do DP, Dowd JB, Ranjit N, House JS, Kaplan GA. Hopelessness, depression, and early markers of endothelial dysfunction in U.S. adults. *Psychosomatic medicine*. 2010;72(7):613-619.

4. Tchalla AE, Wellenius GA, Sorond FA, Travison TG, Dantoine T, Lipsitz LA. Elevated circulating vascular cell Adhesion Molecule-1 (sVCAM-1) is associated with concurrent depressive symptoms and cerebral white matter Hyperintensities in older adults. BMC geriatrics. 2015;15:62.

5. Thomas AJ, Morris C, Davis S, Jackson E, Harrison R, O'Brien JT. Soluble cell adhesion molecules in late-life depression. *International psychogeriatrics / IPA*. 2007;19(5):914-920.

6. Tully PJ, Baumeister H, Martin S, et al. Elucidating the Biological Mechanisms Linking Depressive Symptoms With Type 2 Diabetes in Men: The Longitudinal Effects of Inflammation, Microvascular Dysfunction, and Testosterone. *Psychosomatic medicine*. 2016;78(2):221-232.

7. van Dooren FE, Schram MT, Schalkwijk CG, et al. Associations of low grade inflammation and endothelial dysfunction with depression - The Maastricht Study. *Brain, behavior, and immunity.* 2016.

8. van Sloten TT, Schram MT, Adriaanse MC, et al. Endothelial dysfunction is associated with a greater depressive symptom score in a general elderly population: the Hoorn Study. *Psychological medicine*. 2014;44(7):1403-1416.

9. Fischer MJ, Xie D, Jordan N, et al. Factors associated with depressive symptoms and use of antidepressant medications among participants in the Chronic Renal Insufficiency Cohort (CRIC) and Hispanic-CRIC Studies. *American journal of kidney diseases : the official journal of the National Kidney Foundation*. 2012;60(1):27-38.

10. Katon WJ, Lin EH, Russo J, et al. Cardiac risk factors in patients with diabetes mellitus and major depression. Journal of general internal medicine. 2004;19(12):1192-1199.

11. Nguyen TT, Wong TY, Islam FM, et al. Evidence of early retinal microvascular changes in patients with type 2 diabetes and depression. *Psychosomatic medicine*. 2010;72(6):535-538.

12. Ikram MA, Luijendijk HJ, Hofman A, et al. Retinal Vascular Calibers and Risk of Late-Life Depression: The Rotterdam Study. Am J Geriatr Psychiatry. 2010;18:5(May).

13. Aizenstein HJ, Andreescu C, Edelman KL, et al. fMRI correlates of white matter hyperintensities in

late-life depression. Am J Psychiatry. 2011;168(10):1075-1082.

14. Almeida JR, Alves TC, Wajngarten M, et al. Late-life depression, heart failure and frontal white matter hyperintensity: a structural magnetic resonance imaging study. *Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas / Sociedade Brasileira de Biofisica ... [et al.].* 2005;38(3):431-436.

15. Chatterjee K, Fall S, Barer D. Mood after stroke: a case control study of biochemical, neuro-imaging and socio-economic risk factors for major depression in stroke survivors. *BMC neurology*. 2010;10:125.

16. Chen Y, Chen X, Mok VC, Lam WW, Wong KS, Tang WK. Poststroke depression in patients with small subcortical infarcts. *Clinical neurology and neurosurgery*. 2009;111(3):256-260.

17. Colloby SJ, Vasudev A, O'Brien JT, Firbank MJ, Parry SW, Thomas AJ. Relationship of orthostatic blood pressure to white matter hyperintensities and subcortical volumes in late-life depression. *The British journal of psychiatry : the journal of mental science*. 2011;199(5):404-410.

18. Cyprien F, Courtet P, Poulain V, et al. Corpus callosum size may predict late-life depression in women: a 10-year follow-up study. *J Affect Disord*. 2014;165:16-23.

19. Dalby RB, Chakravarty MM, Ahdidan J, et al. Localization of white-matter lesions and effect of vascular risk factors in late-onset major depression. *Psychological medicine*. 2010;40(8):1389-1399.

20. de Groot JC, de Leeuw FE, Oudkerk M, Hofman A, Jolles J, Breteler MM. Cerebral white matter lesions and depressive symptoms in elderly adults. *Arch Gen Psychiatry*. 2000;57(11):1071-1076.

21. Delaloye C, Moy G, de Bilbao F, et al. Neuroanatomical and neuropsychological features of elderly euthymic depressed patients with early- and late-onset. *J Neurol Sci.* 2010;299(1-2):19-23.

22. Devantier TA, Norgaard BL, Poulsen MK, et al. White Matter Lesions, Carotid and Coronary Atherosclerosis in Late-Onset Depression and Healthy Controls. *Psychosomatics*. 2016;57(4):369-377.

23. Direk N, Perez HS, Akoudad S, et al. Markers of cerebral small vessel disease and severity of depression in the general population. *Psychiatry research*. 2016;253:1-6.

24. Dotson VM, Zonderman AB, Kraut MA, Resnick SM. Temporal relationships between depressive symptoms and white matter hyperintensities in older men and women. *International journal of geriatric psychiatry*. 2013;28(1):66-74.

25. Feng C, Fang M, Xu Y, Hua T, Liu XY. Microbleeds in late-life depression: comparison of early- and late-onset depression. *BioMed research international*. 2014;2014:682092.

26. Firbank MJ, O'Brien JT, Pakrasi S, et al. White matter hyperintensities and depression--preliminary results from the LADIS study. *International journal of geriatric psychiatry*. 2005;20(7):674-679.

27. Fujishima M, Maikusa N, Nakamura K, Nakatsuka M, Matsuda H, Meguro K. Mild cognitive impairment, poor episodic memory, and late-life depression are associated with cerebral cortical thinning and increased white matter hyperintensities. *Frontiers in aging neuroscience*. 2014;6:306.

28. Godin O, Dufouil C, Maillard P, et al. White matter lesions as a predictor of depression in the elderly: the 3C-Dijon study. Biological psychiatry. 2008;63(7):663-669.

29. Greenwald BS, Kramer-Ginsberg E, Krishnan KR, Ashtari M, Auerbach C, Patel M. Neuroanatomic localization of magnetic resonance imaging signal hyperintensities in geriatric depression. Stroke. 1998;29(3):613-617.

30. Grool AM, Gerritsen L, Zuithoff NP, Mali WP, van der Graaf Y, Geerlings MI. Lacunar infarcts in deep white matter are associated with higher and more fluctuating depressive symptoms during three years follow-up. *Biol Psychiatry*. 2013;73(2):169-176.

31. Gudmundsson LS, Scher AI, Sigurdsson S, et al. Migraine, depression, and brain volume: the AGES-Reykjavik Study. *Neurology*. 2013;80(23):2138-2144.

32. Hannestad J, Taylor WD, McQuoid DR, et al. White matter lesion volumes and caudate volumes in late-life depression. *International journal of geriatric psychiatry*. 2006;21(12):1193-1198.

33. Iosifescu DV, Papakostas GI, Lyoo IK, et al. Brain MRI white matter hyperintensities and one-carbon cycle metabolism in non-geriatric outpatients with major depressive disorder (Part I). *Psychiatry research*. 2005;140(3):291-299.

34. Janssen J, Hulshoff Pol HE, Lampe IK, et al. Hippocampal changes and white matter lesions in earlyonset depression. Biol Psychiatry. 2004;56(11):825-831.

35. Janssen J, Hulshoff Pol HE, Schnack HG, et al. Cerebral volume measurements and subcortical white matter lesions and short-term treatment response in late life depression. *International journal of geriatric psychiatry*. 2007;22(5):468-474.

36. Jorm AF, Anstey KJ, Christensen H, et al. MRI hyperintensities and depressive symptoms in a community sample of individuals 60-64 years old. *Am J Psychiatry*. 2005;162(4):699-705.

37. Kieseppa T, Mantyla R, Tuulio-Henriksson A, et al. White matter hyperintensities and cognitive performance in adult patients with bipolar I, bipolar II, and major depressive disorders. *European psychiatry : the journal of the Association of European Psychiatrists.* 2014;29(4):226-232.

38. Kohler S, Thomas AJ, Lloyd A, Barber R, Almeida OP, O'Brien JT. White matter hyperintensities, cortisol levels, brain atrophy and continuing cognitive deficits in late-life depression. *The British journal of psychiatry : the journal of mental science*. 2010;196(2):143-149.

39. Krishnan MS, O'Brien JT, Firbank MJ, et al. Relationship between periventricular and deep white matter lesions and depressive symptoms in older people. The LADIS Study. *International journal of geriatric psychiatry*. 2006;21(10):983-989.

40. Kumar A, Bilker W, Jin Z, Udupa J. Atrophy and high intensity lesions: complementary neurobiological mechanisms in late-life major depression. *Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology*. 2000;22(3):264-274.

41. Lavretsky H, Zheng L, Weiner MW, et al. The MRI brain correlates of depressed mood, anhedonia, apathy, and anergia in older adults with and without cognitive impairment or dementia. *International journal of geriatric psychiatry*. 2008;23(10):1040-1050.

42. Lee SH, Payne ME, Steffens DC, et al. Subcortical lesion severity and orbitofrontal cortex volume in geriatric depression. Biol Psychiatry. 2003;54(5):529-533.

43. Lin HF, Kuo YT, Chiang IC, Chen HM, Chen CS. Structural abnormality on brain magnetic resonance imaging in late-onset major depressive disorder. *The Kaohsiung journal of medical sciences*. 2005;21(9):405-411.

44. MacFall JR, Taylor WD, Rex DE, et al. Lobar distribution of lesion volumes in late-life depression: the Biomedical Informatics Research Network (BIRN). *Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology*. 2006;31(7):1500-1507.

45. Murray AD, Staff RT, McNeil CJ, et al. Depressive symptoms in late life and cerebrovascular disease: the importance of intelligence and lesion location. *Depression and anxiety*. 2013;30(1):77-84.

46. Nys GM, van Zandvoort MJ, van der Worp HB, de Haan EH, de Kort PL, Kappelle LJ. Early depressive symptoms after stroke: neuropsychological correlates and lesion characteristics. *J Neurol Sci.* 2005;228(1):27-33.

47. Olesen PJ, Gustafson DR, Simoni M, et al. Temporal lobe atrophy and white matter lesions are related to major depression over 5 years in the elderly. *Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology*. 2010;35(13):2638-2645.

48. Paranthaman R, Greenstein AS, Burns AS, et al. Vascular function in older adults with depressive disorder. *Biol Psychiatry*. 2010;68(2):133-139.

49. Saavedra Perez HC, Direk N, Hofman A, Vernooij MW, Tiemeier H, Ikram MA. Silent brain infarcts: a cause of depression in the elderly? *Psychiatry research*. 2013;211(2):180-182.

50. Potter GG, Blackwell AD, McQuoid DR, et al. Prefrontal white matter lesions and prefrontal task impersistence in depressed and nondepressed elders. *Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology*. 2007;32(10):2135-2142.

51. Sheline YI, Price JL, Vaishnavi SN, et al. Regional white matter hyperintensity burden in automated segmentation distinguishes late-life depressed subjects from comparison subjects matched for vascular risk factors. *Am J Psychiatry*. 2008;165(4):524-532.

52. Shimony JS, Sheline YI, D'Angelo G, et al. Diffuse microstructural abnormalities of normal-appearing white matter in late life depression: a diffusion tensor imaging study. *Biol Psychiatry*. 2009;66(3):245-252.

53. Steffens DC, Krishnan KR, Crump C, Burke GL. Cerebrovascular disease and evolution of depressive symptoms in the cardiovascular health study. *Stroke*. 2002;33(6):1636-1644.

54. Steffens DC, Helms MJ, Krishnan KR, Burke GL. Cerebrovascular disease and depression symptoms in the cardiovascular health study. *Stroke*. 1999;30(10):2159-2166.

55. Tang WK, Chen YK, Lu JY, et al. White matter hyperintensities in post-stroke depression: a case control study. *J Neurol Neurosurg Psychiatry*. 2010;81(12):1312-1315.

56. Taylor WD, MacFall JR, Payne ME, et al. Greater MRI lesion volumes in elderly depressed subjects than in control subjects. *Psychiatry research*. 2005;139(1):1-7.

57. Taylor WD, MacFall JR, Payne ME, et al. Orbitofrontal cortex volume in late life depression: influence of hyperintense lesions and genetic polymorphisms. *Psychological Medicine*, 2007, 37, 1763–1773.

58. Teodorczuk A, Firbank MJ, Pantoni L, et al. Relationship between baseline white-matter changes and development of late-life depressive symptoms: 3-year results from the LADIS study. *Psychological medicine*. 2010;40(4):603-610.

59. Tudorascu DL, Rosano C, Venkatraman VK, et al. Multimodal MRI markers support a model of small vessel ischemia for depressive symptoms in very old adults. *Psychiatry research*. 2014;224(2):73-80.

60. Tupler LA, Krishnan KR, McDonald WM, Dombeck CB, D'Souza S, Steffens DC. Anatomic location and laterality of MRI signal hyperintensities in late-life depression. *Journal of psychosomatic research*. 2002;53(2):665-676.

61. van Sloten TT, Sigurdsson S, van Buchem MA, et al. Cerebral Small Vessel Disease and Association With Higher Incidence of Depressive Symptoms in a General Elderly Population: The AGES-Reykjavik Study. *Am J Psychiatry*. 2015;172(6):570-578.

62. van Uden IW, van Norden AG, de Laat KF, et al. Depressive Symptoms and Amygdala Volume in Elderly with Cerebral Small Vessel Disease: The RUN DMC Study. *J Aging Res.* 2011;2011:647869.

63. Vardi N, Freedman N, Lester H, et al. Hyperintensities on T2-weighted images in the basal ganglia of patients with major depression: cerebral perfusion and clinical implications. *Psychiatry research*.

2011;192(2):125-130.

64. Vardi N, Freedman N, Lester H, et al. Hyperintensities on T2-weighted images in the basal ganglia of patients with major depression: cerebral perfusion and clinical implications. *Psychiatry research*. 2011;192(2):125-130.

65. Versluis CE, van der Mast RC, van Buchem MA, et al. Progression of cerebral white matter lesions is not associated with development of depressive symptoms in elderly subjects at risk of cardiovascular disease: The PROSPER Study. *International journal of geriatric psychiatry*. 2006;21(4):375-381.

66. Videbech P, Ravnkilde B, Fiirgaard B, et al. Structural brain abnormalities in unselected in-patients with major depression. *Acta psychiatrica Scandinavica*. 2001;103(4):282-286.

67. Wu RH, Feng C, Xu Y, Hua T, Liu XY, Fang M. Late-onset depression in the absence of stroke: associated with silent brain infarctions, microbleeds and lesion locations. *International journal of medical sciences*. 2014;11(6):587-592.