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Abstract: Background:
Gayal (Bos frontalis), also known as mithan or mithun, is a large and endangered semi-
domesticated bovine that has a limited geographical distribution in the hill-forests of
China, Northeast India, Bangladesh, Myanmar, and Bhutan. The chromosome number
of the gayal (2n=58) differs from gaur (Bos gaurus, 2n=56) and domesticated cattle
(Bos indicus and Bos taurus, 2n=60). Many questions in gayal such as origin,
population history as well as genetic basis regarding local adaptation remain largely
unresolved. De novo sequencing and assembly of whole gayal genome provides an
opportunity to address these issues.
Findings:
We report a high-depth sequencing, de novo assembly, and annotation of a female
gayal genome. Based on Illumina genomic sequencing platform, we have generated
350.38Gb raw data from 16 different insert size libraries. A total of 276.86Gb clean
data is retained after quality control. The assembled genome is about 2.85Gb with
scaffold and contig N50 sizes of 2.74Mb and 14.41kb, respectively. Repetitive
elements account for 48.13% of the genome. Gene annotation has yielded 26,667
protein-coding genes, of which 97.18% have been functionally annotated. BUSCO
assessment shows that our assembly captures 93% (3,183 of 4,104) of the core
eukaryotic genes, and 83.1% of vertebrate universal single-copy orthologs.
Conclusions:
We provide a comprehensive de novo genome of the gayal. This genetic resource is
integral for inferring the origin of gayal and performing comparative genomic studies to
improve understanding of the speciation and divergence of Bovine species.
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Abstract 

Background: 

Gayal (Bos frontalis), also known as mithan or mithun, is a large and endangered 

semi-domesticated bovine that has a limited geographical distribution in the 

hill-forests of China, Northeast India, Bangladesh, Myanmar, and Bhutan. The 

chromosome number of the gayal (2n=58) differs from gaur (Bos gaurus, 2n=56) and 

domesticated cattle (Bos indicus and Bos taurus, 2n=60). Many questions in gayal 

such as origin, population history as well as genetic basis regarding local adaptation 

remain largely unresolved. De novo sequencing and assembly of whole gayal genome 

provides an opportunity to address these issues. 

Findings:  

We report a high-depth sequencing, de novo assembly, and annotation of a female 

gayal genome. Based on Illumina genomic sequencing platform, we have generated 

350.38Gb raw data from 16 different insert size libraries. A total of 276.86Gb clean 

data is retained after quality control. The assembled genome is about 2.85Gb with 

scaffold and contig N50 sizes of 2.74Mb and 14.41kb, respectively. Repetitive 

elements account for 48.13% of the genome. Gene annotation has yielded 26,667 

protein-coding genes, of which 97.18% have been functionally annotated. BUSCO 

assessment shows that our assembly captures 93% (3,183 of 4,104) of the core 

eukaryotic genes, and 83.1% of vertebrate universal single-copy orthologs. 

Conclusions:  

We provide a comprehensive de novo genome of the gayal. This genetic resource is 

integral for inferring the origin of gayal and performing comparative genomic studies 

to improve understanding of the speciation and divergence of Bovine species. 

 

Keywords: Bos frontalis; Genome assembly; Annotation; Phylogeny    
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Data description 

Background 

The gayal is a large-sized endangered semi-domesticated bovine specie belonging to 

the family Bovidae, tribe Bovini, group Bovina, genus Bos and species Bos frontalis. 

It is also called mithan or mithun, which is distributed spanning east Bhutan through 

the Arunachal Pradesh in India to the Naga and Chin hills in the Arakan Yomarange 

region that defines the borders between India, Bangladesh, Myanmar, and China [1, 2]. 

Gayal has unique characters and appearances compared to gaur, cattle, and other 

bovine species [3]. These features include a bony dorsal ridge on the shoulder and 

white stocking on all four legs (Figure 1). It has been previously held that gayal was 

domesticated from gaur and/or from a hybrid descendant from crossing of domestic 

cattle (B. indicus or B. taurus) and wild gaur [2, 4, 5]. Karyotype analysis indicates 

that chromosome number, form, and configuration of gayal (2n=58) are different from 

gaur (B. gaurus, 2n=56) and domesticated cattle (B. indicus and B. taurus, 2n=60) [2, 

5-8]. Phylogenetic analyses in multiple studies based on mtDNA place gayal in 

conflicting clustering positions with respect to cattle, zebu and wild gaur [5, 9-12]. 

One of these studies even places gayal as a distinct and separate species/sub-specie 

[13]. On the other hand, whole genome resequencing indicates that gayal clusters 

more closely with the common ancestor of cattle and wild yak [5]. This suggests that 

gayal is likely a hybrid descending from crossing wild male gaur and female domestic 

cattle. However, these differences illustrate the existence of unresolved uncertainties 

regarding the origin of gayal. Further complication arises from findings showing that 
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hybridization of gayal with domestic cattle or gaur may produce fertile female 

offsprings, unfortunately the males are always infertile [2, 14].  

Research has revealed a high genomic divergence among bovine species [15, 16]. 

Consequently, mapping of resequencing data from one bovine species onto a 

reference genome of different specie creates avenues for biases and/or errors in 

sequence alignment and SNP calling procedures. To date, de novo genome assemblies 

for cattle (Bos taurus) [17], yak (Bos grunniens) [15], wisent (Bison bonasus) [18], 

North American bison (Bison bison)[19], zebu (Bos indicus) [20], and water buffalo 

(Bubalus bubalis) [21] have been published. This is a critical development towards 

reducing the challenges inherent in resequencing approaches, and creates great 

chances to refine the evolutionary history of bovine species. In this study, we report 

the draft genome assembly of gayal based on the Illumina genome sequencing 

platform. This valuable resource is an important input to the research of the origin and 

evolution of this endangered specie. 

Sample collection and sequencing 

We extracted total genomic DNA from skin fibroblast cell line of a female gayal 

(NCBI taxonomy ID: 30520, specimen ID: KCB201042, 2n=58) using Qiagen Blood 

and Tissue Kit (Qiagen, Valencia, CA) according to the manufacturer's instructions. 

The cells are maintained in the Cell Bank at Kunming Institute of Zoology (Figure 1). 
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A total of 17 paired-end genomic sequence libraries were constructed with a gradient 

insert size ranging from 180bp to 20kb, and then sequenced on Illumina HiSeq 2000 

platform according to the manufacturer’s instructions. For short insert size libraries 

(180bp, 250bp, 450bp, and 600bp), sequencing was performed at the 

Central Laboratory of Kunming Institute of Zoology with read lengths of 100bp. 

Sequencing of long insert size libraries (800bp, 2, 5, 10 and 20 kb) was conducted at 

BGI-Shenzhen with read lengths of 49bp, except for the 800bp insert size library, 

which were sequenced with a read length of 85bp. A total of 350.38Gb raw sequence 

data has been generated in our study (Additional file 1: Table S1). Before assembly, 

we performed strict quality control by removing poor quality reads and/or bases using 

scripts from SOAPec (version 2.02) [22]. Reads were shortened by 2bp at both head 

and tail. We dropped any read plus its paired end if it has more than 30 low-quality 

bases or more than 5% unknown base (usually denoted by N). Reads with 

duplications and adapters were also removed. We corrected for sequencing errors 

using the k-mer (13 used in this study) frequency method in SOAPec (version 2.02) 

[22]. After filtering and correction, we retained 276.86Gb high-quality sequences for 

genome assembly (Additional file 1: Table S2). 

 

De novo assembly of gayal genome 

In order to have a basic knowledge about the genome size and attributes of the gayal 

genome, we performed a 17-mer analysis using clean sequences from 180 and 600bp 

insert size libraries. We extracted the 17-mer sequences using sliding windows with a 
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size of 17bp and steps of 1 from the paired-end reads, and calculated the frequency of 

each 17-mer. Three peaks are observed (at 23X, 45X, and 88X), indicating high 

heterozygosity. The genome size for gayal is estimated to be 3.7Gb (Additional file 1: 

Table S3; Figure 2).  

We then performed de novo assembly of gayal genome by Platanus (version 2.0) 

[23] in three steps: contig construction, scaffolding, and gap filling. To construct 

contigs based on short insert size libraries (180, 250, 450, 600 and 800bp), we used 

Platanus (version 2.0) [23], which includes a series of procedures such as constructing 

de Bruijn graph, clipping tips, merging bubbles, and removing low coverage links. In 

the scaffolding step, reads from both small and large insert libraries were mapped to 

contig sequences to construct scaffolds using distance information from read pairs. An 

additional local assembly of reads, with one end of a read pair uniquely aligned to a 

contig and the other end located within the gap, was performed using GapCloser 

(version 1.12) [22]. These processes yielded a final draft gayal genome assembly with 

a total length of 2.85Gb, contig N50 of 14.4 kb, and scaffold N50 of 2.74Mb (Table 

1). The assembled genome size is similar to that reported for cattle [24] and yak [15]. 

To assess the completeness of the assembled gayal genome, we performed BUSCO 

analysis [25] by searching against the arthropod benchmarking universal single-copy 

orthologs (BUSCOs, version 2.0). Analyses show that 85.2% and 7.8 % of the 4,104 

expected vertebrata genes are identified as complete and partial, respectively. A total 

of 291 genes are considered missing in our assembly. Of the expected complete 

vertebrata genes, 3434 and 60 are identified as single copy and duplicated BUSCOS 
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respectively (Table 2). Our newly assembled gayal genome has a slightly lower 

completeness compared to genomes of yak [15], wisent [18], bison [19], zebu [20], 

and buffalo [21] (Table 2). 

 

Annotation of genomic repeat sequences in gayal genome 

To search for the repeated sequences in gayal genome, including tandem repeats (TE), 

interspersed repeats, and transposable elements (e.g., LINE, SINE, LTR, DNA 

transposons), we leveraged both de novo and homolog-based methods as used in 

previous publications [26, 27]. For the homolog-based methods, we used 

RepeatMasker and RepeatProteinMask (http://repeatmasker.org/) to search against the 

known Repbase TE library (RepBase21.01) [28] and TE protein database, 

respectively. In the de novo method, Piler [29] and RepeatModeler 

(http://www.repeatmasker.org/) are used to generate a de novo gayal repeat library, 

which is subsequently used by Repeat-Masker to annotate repeats. TRF [30] is then 

employed to predict tandem repeats. The combined results show that a total of 1.37Gb 

non-redundant repetitive sequences are identified in the gayal genome, which account 

for 48.13% of the whole genome. The most predominant elements are the long 

interspersed nuclear elements (LINEs), which account for 40.43% (1.15Gb in total) of 

the genome (Table 3; Additional file 1: Table S4, Figure S1, Figure S2). 

 

Gayal genome gene structure prediction 

For gene structure prediction, we combined both de novo and homolog-based 
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approaches to predict protein-coding genes in the gayal genome. In homolog-based 

method, gene sets from Bos taurus [17], Canis familiaris [31], Homo sapiens 

(ENSEMBL 80), Sus scrofa [32], Rattus norvegicus (ENSEMBL 80), and Ovis aries 

[33] were used as queries to search against gayal genome (Additional file 1: Table 

S5). As for the de novo based method, AUGUSTUS [34], Genescan [35], and 

GlimmerHMM [36] were used as engines to predict gene models. We then merged the 

gene prediction results derived from both homolog and de novo based methods using 

GLEAN [37] to generate a consensus gene set. In total, we have identified 26,667 

protein coding genes with mean of 3.27 exons for each gene (Table 4; Additional file 

1: Figure S3). The lengths of genes, CDS, introns, and exons in gayal are comparable 

to the genomes used for homolog-based predictions (Additional file 1: Figure S3). In 

addition, we also predicted the non-coding RNA genes in gayal genome. We used 

blast to search rRNA against Human rRNA database, and tRNAscan-SE [38] to 

search tRNA in the genome sequences. We also used blast to search miRNA and 

snRNA via Rfam (release 11.0) database [39]. In total, our predictions reveal 2,357 

ribosomal RNA (rRNA), 29,821 transfer RNA (tRNA), 16,305 microRNAs (miRNA), 

and 1,380 snRNA genes in the gayal genome (Additional file 1: Table S5). 

 

Functional annotation of protein-coding genes 

Gene function annotation referrers to searching functional motifs, domains, and 

possible biological process by aligning translated gene coding sequences to known 

databases such as SwissProt and TrEMBL [40], NT database (from NCBI), Gene 
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Ontology (GO), and Kyoto Encyclopaedia of Genes and Genomes (KEGG) [41]. We 

have annotated all the protein coding genes identified in this study to retrieve 

functional terms according to InterPro, KEGG, and GO terms. Overall, 81.74% 

(21,798), 54.56% (14,550), and 66.39% (17,704) genes show enrichment in InterPro, 

KEGG, and GO respectively. In total, 25,916 protein-coding genes (97.18%) were 

successfully annotated for conserved functional motifs and functional terms 

(Additional file 1: Table S6). 

 

Phylogenetic analysis and divergence time estimation 

To investigate the phylogenic position of gayal, we retrieved nucleotide and 

protein data for cattle (Bos taurus) [17], yak (Bos grunniens) [15], wisent (Bison 

bonasus) [18], bison (Bison bison) [19], zebu (Bos indicus) [20], and buffalo (Bubalus 

bubalis) [21] from the NCBI database. Gene ortholog relationships of gayal and other 

bovine species were identified by reciprocal blast searching with e-value of 1e-7. 

Genes with alternative splicing variants were represented by the longest transcript. 

Multiple sequence alignment of the genes within one copy gene sets were performed 

using MUSCLE program [42]. Aligned sequences were trimmed to remove 

potentially unreliably aligned regions and gaps using Gblocks [43]. Alignments with 

lengths shorter than 100bp were also discarded. Four-fold degenerate sites were 

extracted and concatenated into a supergene. Modeltest [44] was used to select the 

best substitution model. MrBayes [45] and RaxML [46] software were used to 

reconstruct the evolutionary relationships between species, and MEGA5 [47] used to 
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view the tree. From these analyses, gayal clusters with the common ancestor of cattle 

and zebu (Figure 3). Further, MCMCTREE program, implemented in PAML[48] 

package, was used to estimate divergence times. The JC69 model and correlated rates 

molecular clock (clock=3) were used in the calculation. Calibration time for the 

common ancestor of buffalo and cattle obtained from the TimeTree database 

(http://www.timetree.org/) was used to calibrate the divergence time estimation. This 

analysis estimates that gayal diverged from cattle and zebu approximately 5.1 million 

year ago (Figure 4). 

 

In conclusion, we avail a de novo assembly of the gayal genome and describe its 

genetic attributes. Our analyses also demonstrate that together with the genomes of 

other bovine species, the new gayal genome supports investigations concerning the 

origin, evolutionary histories, and local adaptation of gayal. This resource is also 

important for the future conservation of this species. In addition, the de novo gayal 

genome adds to the list of the available bovine genomes, boosting capacity for 

assessing introgression and incomplete lineage sorting (ILS) among the bovine 

species, and inferring their effects on the species tree. Future comprehensive 

comparative analyses of these genomes will improve understanding of the formation 

and speciation of bovine species. 

 

Availability of supporting data 

The genome sequencing raw reads were deposited in the NCBI SRA database, project 
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ID: PRJNA387130. The assembly and annotation of the gayal genome are also 

available in the GigaScience GigaDB database. All supplementary figures and tables 

are provided in Additional file 1. 
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Figure Legends: 

Figure 1. A picture showing a female gayal (Bos frontalis, provided by Kai-Xing Qu). 

Figure 2. 17-mer frequency distribution of sequencing reads. 

Figure 3. Phylogenetic trees of gayal and other bovine species. (A) Tree constructed 

based on maximum likelihood method, (B) Tree constructed using Bayesian 

inference. 

Figure 4. Divergence time estimated between gayal and other bovine species.  

 

Tables: 

Table 1. Statistics of the completeness of the hybrid de novo assembly of Bos frontalis 

genome 

 

  

 Terms 

Contig Scaffold 

Size number Size number 

N90 2,461 211577 158,610 1357 

N80 5,335 140237 1,060,177 800 

N70 8,109 99930 1,668,147 587 

N60 11,044 71764 2,170,469 437 

N50 14,405 50585 2,737,757 320 

Max length 208,099   13,764,521   

Total length 2,669,378,334   2,848,570,279   

Total number   583373   460,059 

Average length 4575   6,191   

Number>=500bp   394757   116481 

Number>=1000bp   300178   53989 

Number>=2000bp   229796   19915 

Number>=5000bp   146493   5387 
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Table 2. Statistics of the completeness of the assembled genomes for Bos frontalis and 

close related species by BUSCO (version 2) 

 

Species Terms Complete(C)  
Complete and 

single-copy (S)  

Complete and 

duplicated  (D)  

Fragmented  

(F) 
Missing (M)  

gayal 

Number 3494 3434 60 319 291 

Proportion 85.14% 83.67% 1.46% 7.77% 7.09% 

zebu 

Number 3698 3644 54 158 248 

Proportion 90.11% 88.79% 1.32% 3.85% 6.04% 

wisent 

Number 3794 3763 31 180 130 

Proportion 92.45% 91.69% 0.76% 4.39% 3.17% 

yak 

Number 3841 3809 32 138 125 

Proportion 93.59% 92.81% 0.78% 3.36% 3.05% 

buffalo 

Number 3817 3780 37 142 145 

Proportion 93.01% 92.11% 0.90% 3.46% 3.53% 

bison 

Number 3779 3735 44 165 160 

Proportion 92.08% 91.01% 1.07% 4.02% 3.90% 
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Table 3. Statistics of repeats in Bos frontalis genome. 

 

Type 
Repeat Size （bp） 

% of genome 

Trf 17,696,175 0.62  

Repeatmasker 868,885,926 30.50 

Proteinmask 265,003,148  9.30  

De novo 917,371,710 32.20  

Total 1,371,023,312 48.13 

 

Table 4. General statistics of predicted protein-coding genes. 

 

Gene set Total 
Exon 

number 

CDS 

length 

(bp) 

mRNA 

length 

(bp) 

Exons 

per gene 

Exon 

length 

(bp) 

Intron 

length 

(bp) 

Homolog 

Bos taurus 19,666 141,323 1,325 20,618 7.19 184 3,118 

Canis familiaris 17,627 121,986 1,323 20,802 6.92 191 3,290 

Homo sapiens 24,783 146,172 1,108 17,567 5.89 187 3,360 

Sus scrofa 20,283 121,282 1,142 16,288 5.97 191 3,041 

Rattus norvegicus 17,988 117,965 1,277 19,469 6.55 194 3,273 

Ovis aries 20,947 147,367 1,287 20,973 7.03 183 3,261 

De novo 

AUGUSTUS 41,227 180,664 1,127 22,786 4.38 257 6,403 

GlimmerHMM 27,067 104,294 874 5,433 3.85 226 1,597 

Genescan 46,598 297,828 1,321 36,828 6.39 206 6,585 

Glean 26,667 87,392 1,156 4,996 3.27 352 1,686 
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