Supplementary Online Content

Giustino G, Harari R, Baber U, et al. Long-term safety and efficacy of new-generation drug-eluting stents in women with acute myocardial infarction: from the Women in Innovation and Drug-Eluting Stents (WIN-DES) Collaboration. *JAMA Cardiol*. Published online June 28, 2017. doi:10.1001/jamacardio.2017.1978

eTable 1. Characteristics of Included Randomized Controlled Trials.

eTable 2. Clinical Endpoint Definitions Used Across Randomized Controlled Trials.

eTable 3. Baseline Clinical and Angiographic Characteristics.

eReferences

eFigure. Kaplan-Meier curves for death, myocardial infarction or target lesion revascularization (1A), death, myocardial infarction or stent thrombosis (1B), definite or probable stent thrombosis (1C) and target lesion revascularization (1D) in women presenting with unstable angina, non-ST-elevation myocardial infarction or ST-elevation myocardial infarction.

This supplementary material has been provided by the authors to give readers additional information about their work.

Study	Year	Patients	Women	Stents used	Key inclusion criteria	Recommended DAPT Duration
RAVEL ¹	2002	238	58 (24)	Cypher, BMS	Stable CAD or UA, single de-novo lesion	2 months
SIRIUS ²	2003	1058	305 (29%)	Cypher, BMS	Stable CAD or UA, single de-novo lesion	3 months
E-SIRIUS ³	2003	352	103 (29%)	Cypher, BMS	Stable CAD or UA, single de-novo lesion	2 months
C-SIRIUS⁴	2004	100	31 (31%)	Cypher, BMS	Stable CAD or UA, single de-novo lesion	3 months
TAXUS I⁵	2003	61	7 (11%)	Taxus, BMS	Stable CAD or UA, single lesion	6 months
TAXUS II SR ⁶	2003	267	67 (25%)	Taxus, BMS	Stable CAD or UA, single de-novo lesion	6 months
TAXUS IV ⁷	2004	1314	367 (28%)	Taxus, BMS	Stable CAD or UA, single de-novo lesion	6 months
TAXUS V ⁸	2005	1156	353 (31%)	Taxus, BMS	Stable CAD or UA, single de-novo lesion	6 months
SIRTAX ⁹	2005	1012	231 (23%)	Cypher, Taxus	Stable CAD or UA, single de-novo lesion	12 months
ENDEAVOR II ¹⁰	2006	1197	283 (24%)	Endeavor, BMS	Stable CAD or UA, single de-novo lesion	3 months
ENDEAVOR III ¹¹	2006	436	133 (31%)	Endeavor, Cypher	Stable CAD or UA, single	3 months

eTable 1. Characteristics of Included Randomized Controlled Trials.

					de-novo lesion	
ENDEAVOR IV ¹²	2010	1548	500 (32%)	Endeavor, Taxus	Stable CAD or UA, single de-novo lesion	6 months
PROTECT ¹³	2012	8709	2061 (24%)	Endeavor, Cypher	Stable CAD or UA, single de-novo lesion	12 months
RESOLUTE AC ¹⁴	2010	2292	529 (23%)	Resolute, Xience	Stable CAD, UA, NSTEMI or STEMI	6 months
TWENTE ¹⁵	2012	1391	382 (27%)	Resolute, Xience	Stable CAD, UA or NSTEMI	12 months
SPIRIT II ¹⁶	2006	300	80 (27%)	Xience, Taxus	Stable CAD, UA or 2 de- novo lesions	6 months
SPIRIT III ¹⁷	2008	1002	314 (31)	Xience, Taxus	Stable CAD, UA or 2 de- novo lesions	6 months
SPIRIT IV ¹⁸	2010	3687	1189 (32)	Xience, Taxus	Stable CAD, UA or 3 de- novo lesions	12 months
COMPARE I ¹⁹	2010	1800	526 (29%)	Xience, Taxus	Stable CAD, UA, NSTEMI or STEMI	12 months
BASKET-PROVE ²⁰	2010	2314	565 (24%)	Xience, Cypher, BMS	Stable CAD, UA or acute MI, target vessel diameter ≥ 3.0 mm	12 months
EXCELLENT ²¹	2011	1443	512 (35%)	Xience, Promus, Cypher	Stable CAD, UA, NSTEMI	6 or 12 months*
RESET ²²	2012	3197	742 (23%)	Xience, Cypher	Stable CAD, UA, NSTEMI or STEMI	3 or 12 months*
PRODIGY ²³	2012	2013	473 (23%)	Xience, Promus,	Stable CAD, UA, NSTEMI	6 or 24 months*

				Endeavor, Taxus, BMS	or STEMI	
LEADERS ²⁴	2008 1707 430		430 (25%)	Riomatrix Cyphor	Stable CAD, UA, NSTEMI	12 months
LEADENS	2000	1707	430 (2370)	Biomatrix, Cypher	or STEMI	12 11011115
COMPARE II ²⁵	2013 2707 293	293 (26%)	Nobori, Xience, Promus	Stable CAD, UA, NSTEMI	12 months	
	2013	2013 2101 29	293 (2070)	Noboli, Alence, I Tollida	or STEMI	12 11011115
ISAR-TEST 4 ²⁶ 2	2009 2603 623 (24%)	Yukon, Xience, Cypher	Stable CAD, UA, NSTEMI	6 months		
		rakon, Alence, Cypher	or STEMI	0 months		

CAD: Coronary Artery Disease; BMS: Bare Metal Stent; NSTEMI: Non-ST segment Elevation Myocardial Infarction; STEMI: ST segment Elevation Myocardial Infarction; UA: Unstable Angina. Cypher and Cordis, Johnson & Johnson, Miami Lakes, FL, USA; Taxus, Boston Scientific, Natick, MA, USA; Xience, Abbott Vascular, Santa Clara, CA, USA; Promus, Boston Scientific; Endeavor, Medtronic, Santa Rosa, CA, USA; Resolute, Medtronic; Biomatrix, Biosensors, Newport Beach, CA, USA; Nobori, Terumo, Tokyo, Japan; Yukon, Translumina, Hechingen, Germany. *Patients were randomized to different DAPT durations.

Trial name	Myocardial infarction definition	Myocardial	Target lesion revascularization	Stent thrombosis
		infarction definition	definition	definition
		(old or new)		
RAVEL	Development of Q waves in ≥2		Revascularization for ischemia for	ARC criteria
	contiguous leads with elevated cardiac		a stenosis of the luminal diameter	
	enzymes or, in the absence of Q	Old	anywhere within the stent or within	
	waves, increase in the CK level		the 5-mm borders proximal or	
	≥2*ULN and increased level of CK-MB		distal to the stent.	
SIRIUS	Development of Q waves in ≥2		Revascularization for ischemia for	ARC criteria
	contiguous leads with elevated cardiac		a stenosis of the luminal diameter	
	enzymes or, in the absence of Q	Old	anywhere within the stent or within	
	waves, increase in the CK level		the 5-mm borders proximal or	
	≥2*ULN and increased level of CK-MB		distal to the stent.	
E-SIRIUS	Development of Q waves in ≥ 2		Revascularization for ischemia for	ARC criteria
	contiguous leads with elevated cardiac		a stenosis of the luminal diameter	
	enzymes or, in the absence of Q	Old	anywhere within the stent or within	
	waves, increase in the CK level		the 5-mm borders proximal or	
	≥2*ULN and increased level of CK-MB		distal to the stent.	
C-SIRIUS	Development of Q waves in ≥2		Revascularization for ischemia for	ARC criteria
	contiguous leads with elevated cardiac		a stenosis of the luminal diameter	
	enzymes or, in the absence of Q	Old	anywhere within the stent or within	
	waves, increase in the CK level		the 5-mm borders proximal or	
	≥2*ULN and increased level of CK-MB		distal to the stent.	

eTable 2. Clinical Endpoint Definitions Used Across Randomized Controlled Trials.

TAXUS I	Development of Q waves in ≥2		Revascularization for ischemia for	ARC criteria
	contiguous leads with CK and CK-MB		a stenosis of the luminal diameter	
	levels elevated above normal	Old	anywhere within the stent or within	
			the 5-mm borders proximal or	
			distal to the stent.	
TAXUS II SR	Development of Q waves in ≥2		Revascularization for ischemia for	ARC criteria
	contiguous leads or, in the absence of		a stenosis of the luminal diameter	
	Q waves, increase in the CK level	Old	anywhere within the stent or within	
	≥2*ULN and increased level of CK-MB		the 5-mm borders proximal or	
			distal to the stent.	
TAXUS IV	Development of Q waves in ≥2		Revascularization for ischemia for	ARC criteria
	contiguous leads or, in the absence of		a stenosis of the luminal diameter	
	Q waves, increase in the CK level	Old	anywhere within the stent or within	
	≥2*ULN and increased level of CK-MB		the 5-mm borders proximal or	
			distal to the stent.	
TAXUS V	Development of Q waves in ≥2		Revascularization for ischemia for	ARC criteria
	contiguous leads or, in the absence of		a stenosis of the luminal diameter	
	Q waves, increase in the CK level	Old	anywhere within the stent or within	
	≥2*ULN and increased level of CK-MB		the 5-mm borders proximal or	
			distal to the stent	
SIRTAX	Development of Q waves in ≥2		Revascularization for ischemia for	ARC criteria
	contiguous leads or, in the absence of	Old	a stenosis of the luminal diameter	
	Q waves, increase in the CK level	Olu	anywhere within the stent or within	
	≥2*ULN and increased level of CK-MB		the 5-mm borders proximal or	

© 2017 American Medical Association. All rights reserved.

	or troponin I		distal to the stent	
ENDEAVOR II	Development of Q waves in ≥2		Revascularization for ischemia for	ARC criteria
	contiguous leads or, in the absence of		a stenosis of the luminal diameter	
	Q waves, increase in the CK level	Old	anywhere within the stent or within	
	≥2*ULN and increased level of CK-MB		the 5-mm borders proximal or	
			distal to the stent	
ENDEAVOR III	Development of Q waves in ≥2		Revascularization for ischemia for	ARC criteria
	contiguous leads with elevated cardiac		a stenosis of the luminal diameter	
	enzymes or, in the absence of Q	Old	anywhere within the stent or within	
	waves, increase in the CK level		the 5-mm borders proximal or	
	≥2*ULN and increased level of CK-MB		distal to the stent	
ENDEAVOR IV	Development of Q waves in ≥2		Revascularization for ischemia for	ARC criteria
	contiguous leads with elevated cardiac		a stenosis of the luminal diameter	
	enzymes or, in the absence of Q	Old	anywhere within the stent or within	
	waves, increase in the CK level		the 5-mm borders proximal or	
	≥2*ULN and increased level of CK-MB		distal to the stent	
				ARC criteria
PROTECT	II Universal Definition (Thygesen K et		Revascularization for ischemia for	ARC criteria
	al. Circulation 2007): Periprocedural		a stenosis of the luminal diameter	
	MI: cardiac biomarkers increase		anywhere within the stent or within	
	≥3*ULN Spontaneous: Typical rise and	New	the 5-mm borders proximal or	
	fall of cardiac biomarkers (preferably		distal to the stent	
	troponin) with at least 1 value >URL			
	and at least 1 of the following:			

symptoms, ST-T changes at ECG, pathological Q waves, or imaging evidence of ischemia **RESOLUTE AC** Extended historical definition (Vranckx et al. Eurointervention 2010). In summary: development of Q waves in ≥2 contiguous leads and elevated cardiac enzymes or, in the absence of Q waves, increase in the CK level ≥2*ULN and increased level of CK-MB or troponin. In patients with acute MI at baseline: if cardiac biomarkers still raising new chest pain of ischemia equivalent and rise in cardiac biomarkers >50% previous level; if cardiac biomarkers have returned to normal, CK level ≥2*ULN. TWENTE Extended historical definition (Vranckx et al. Eurointervention 2010). In summary: development of Q waves in ≥2 contiguous leads and elevated cardiac enzymes or, in the absence of Q waves, increase in the CK level ≥2*ULN and increased level of CK-MB

Revascularization for ischemia for ARC criteria a stenosis of the luminal diameter anywhere within the stent or within the 5-mm borders proximal or distal to the stent

New

New

Revascularization for ischemia for
a stenosis of the luminal diameter
anywhere within the stent or within
the 5-mm borders proximal or
distal to the stentARC criteria

SPIRIT II	or troponin. In patients with acute MI at baseline: if cardiac biomarkers still raising new chest pain of ischemia equivalent and rise in cardiac biomarkers >50% previous level; if cardiac biomarkers have returned to normal, CK level ≥2*ULN. Development of Q waves in ≥2		Revascularization for ischemia for	ARC criteria
	contiguous leads or, in the absence of Q waves, a typical rise and fall of CK- MB (if non-procedural/spontaneous MI, CK-MB >2 times upper limit of normal; if post PCI, CK-MB >3 times upper limit of normal; if post CABG, CK-MB >5 times upper limit of normal)	New	a stenosis of the luminal diameter anywhere within the stent or within the 5-mm borders proximal or distal to the stent	
SPIRIT III	Development of Q waves in ≥2 contiguous leads with elevated cardiac enzymes or, in the absence of Q waves, increase in the CK level ≥2*ULN and increased level of CK-MB	New	Revascularization for ischemia for a stenosis of the luminal diameter anywhere within the stent or within the 5-mm borders proximal or distal to the stent	ARC criteria
SPIRIT IV	Development of Q waves in ≥2 contiguous leads with elevated cardiac enzymes or, in the absence of Q waves, increase in the CK level	New	Revascularization for ischemia for a stenosis of the luminal diameter anywhere within the stent or within the 5-mm borders proximal or	ARC criteria

	≥2*ULN and increased level of CK-MB		distal to the stent	
COMPARE	Periprocedural MI (in patients without		Revascularization for ischemia for	ARC criteria
	acute MI at baseline): any elevation in		a stenosis of the luminal diameter	
	concentrations of CK ≥2*ULN and		anywhere within the stent or within	
	increase in CK-MB or troponin.		the 5-mm borders proximal or	
	Spontaneous MI: typical rise and fall of	Nous	distal to the stent	
	troponin or CK-MB with at least one of	New		
	the following: ischemic symptoms,			
	development of pathological Q waves,			
	ischemic ECG changes, or			
	pathological findings of an acute MI			
BASKET-	Typical rise and fall of cardiac		Target vessel Revascularization	ARC criteria
PROVE	biomarkers (preferably troponin) with at		was used	
	least 1 value >URL and at least 1 of	Nous		
	the following: symptoms, ST-T	New		
	changes at ECG, pathological Q			
	waves, or recent angioplasty.			
EXCELLENT	Academic Research Consortium		Revascularization for ischemia for	ARC criteria
	criteria (Cutlip DE et al. Circulation		a stenosis of the luminal diameter	
	2007) In summary:		anywhere within the stent or within	
	Periprocedural MI: troponin >3*URL or	New	the 5-mm borders proximal or	
	CK-MB>3*URL if baseline cardiac		distal to the stent	
	biomarkers <url. or<="" stable="" td=""><td></td><td></td><td></td></url.>			
	decreasing values on 2 samples			

	followed by 20% increase if baseline			
	cardiac biomarkers >URL.			
	Spontaneous MI: troponin >URL or			
	CK-MB >URL			
RESET	Periprocedural MI: CK-MB ≥3*ULN or		Revascularisation for ischemia for	ARC criteria
	CK ≥3*ULN in the absence of CKMB		a stenosis of the luminal diameter	
	measurement.		anywhere within the stent or within	
	Spontaneous MI: Academic Research	New	the 5-mm borders proximal or	
	Consortium criteria (Cutlip DE et al.		distal to the stent	
	Circulation 2007), troponin >URL or			
	CK-MB >URL			
		New		ARC criteria
PRODIGY	II Universal Definition (Thygesen K et		Target vessel Revascularisation	ARC criteria
	al. Circulation 2007): Periprocedural		was used	
	MI: cardiac biomarkers increase			
	≥3*ULN Spontaneous: Typical rise and			
	fall of cardiac biomarkers (preferably	New		
	troponin) with at least 1 value >URL	New		
	and at least 1 of the following:			
	symptoms, ST-T changes at ECG,			
	pathological Q waves, or imaging			
	evidence of ischemia			
LEADERS	Development of Q waves in ≥2	New	Revascularization for ischemia for	ARC criteria
	contiguous leads or, in the absence of		a stenosis of the luminal diameter	

© 2017 American Medical Association. All rights reserved.

	Q waves, increase in the CK level		anywhere within the stent or within	
	≥2*ULN and increased level of CK-MB		the 5-mm borders proximal or	
	or troponin I		distal to the stent	
COMPARE-2	Periprocedural MI (in patients without		Revascularization for ischemia for	ARC criteria
	acute MI at baseline):any elevation in		a stenosis of the luminal diameter	
	concentrations of CK ≥2*ULN and		anywhere within the stent or within	
	increase in CK-MB or troponin.		the 5-mm borders proximal or	
	Spontaneous MI: typical rise and fall of	Nierre	distal to the stent	
	troponin or CK-MB with at least one of	New		
	the following: ischemic symptoms,			
	development of pathological Q waves,			
	ischemic ECG changes, or			
	pathological findings of an acute MI			
ISAR-TEST 4	Periprocedural MI: CK-MB (or CK)		Revascularization for ischemia for	ARC criteria
	≥3*ULN and at least 50% over the		a stenosis of the luminal diameter	
	most recent pre-PCI levels, or the		anywhere within the stent or within	
	development of new ECG changes		the 5-mm borders proximal or	
	consistent with MI and CK-MB (CK)		distal to the stent	
	elevation >ULN at 2 measurements for	New		
	patients with stable angina pectoris or			
	NSTE-ACS and falling or normal CK-			
	MB (CK) levels. Recurrent chest pain			
	lasting .30 min with either new ECG			
	changes consistent with second MI or			

next CK-MB (CK) level at least 8–12 h after PCI elevated at least 50% above the previous level was considered procedure-related MI for patients presenting with elevated CK-MB (CK) level prior to PCI. Spontaneous MI: any CK-MB increase with or without the development of Q-waves on ECG.

ARC: Academic Research Consortium; CK: Creatine-Kinase; ECG = Electrocardiogram; MI: Myocardial Infarction; URL: Upper Reference Limit.

eTable 3. Baseline Clinical and Angiographic Characteristics.

	Overall	UA	NSTEMI	STEMI	P-value	
	(N=4373)	(N=2197)	(N=2197) (N=1397)		F-value	
Age (Years)	66.81 ± 11.28	67.01 ± 10.89	66.49 ± 11.27	66.82 ± 12.34	0.42	
BMI (kg/m²)	27.47 ± 5.45	27.81 ± 5.66	27.44 ± 5.28	26.47 ± 5.01	<0.0002	
Risk factors						
Diabetes mellitus	1229 (28.1%)	712 (32.4%)	377 (27.0%)	140 (18.0%)	<0.0002	
IDDM	386 (31.4%)	211 (29.6%)	139 (36.9%)	36 (25.7%)	0.02	
Hypertension	3067 (70.1%)	1695 (77.2%)	942 (67.4%)	430 (55.2%)	< 0.000	
Hypercholesterolemia	2638 (60.3%)	1519 (69.1%)	802 (57.4%)	317 (40.7%)	<0.000	
Serum creatinine (mg/dl)	0.91 ± 0.59	0.90 ± 0.53	0.91 ± 0.63	0.90 ± 0.66	0.92	
Smoking	1385 (31.7%)	565 (25.8%)	515 (36.9%)	305 (39.2%)	<0.000	
Family history of CAD	1517 (35.4%)	745 (35.0%)	510 (36.9%)	262 (34.2%)	0.37	
Clinical history						
Previous MI	807 (18.5%)	427 (19.5%)	311 (22.3%)	69 (8.9%)	< 0.000	
Previous PCI	693 (15.9%)	514 (23.4%)	127 (9.1%)	52 (6.7%)	< 0.000	

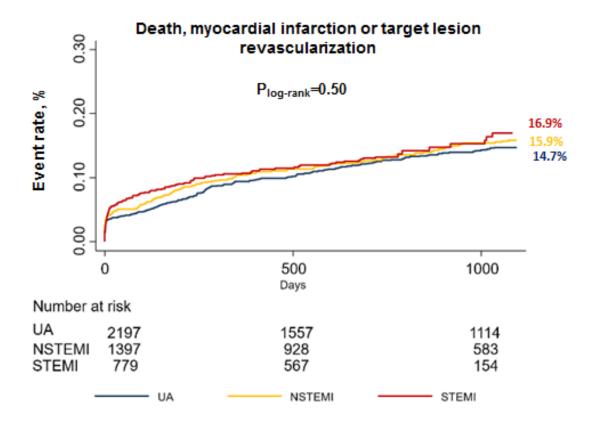
Previous CABG	196 (4.5%)	143 (6.5%)	43 (3.1%)	10 (1.3%)	<0.0001
Stent generation					0.32
Early-generation DES	1608 (36.8%)	832 (37.9%)	498 (35.6%)	278 (35.7%)	
New-generation DES	2765 (63.2%)	1365 (62.1%)	899 (64.4%)	501 (64.3%)	
Angiographic Characteristics					
Multivessel disease	1148 (30.5%)	591 (30.6%)	387 (30.4%)	170 (29.9%)	0.94
Number of lesions treated	1.33 ± 0.66	1.27 ± 0.59	1.45 ± 0.76	1.29 ± 0.62	<0.0001
Number of DES implanted	1.58 ± 0.97	1.49 ± 0.88	1.72 ± 1.09	1.58 ± 0.94	<0.0001
Mean stent diameter (mm)	3.00 ± 0.39	3.00 ± 0.40	2.96 ± 0.39	3.10 ± 0.38	<0.0001
Total stent length (mm)	30.96 ± 20.48	28.98 ± 18.24	33.90 ± 23.56	31.96 ± 20.47	<0.0001
LVEF (%)	52.45 ± 17.81	56.14 ± 16.84	47.58 ± 20.47	47.72 ± 11.58	<0.0001
Type B2/C lesion	2176 (65.2%)	1167 (62.7%)	674 (64.1%)	335 (78.8%)	<0.0001
Moderate/severe calcifications	661 (24.0%)	370 (23.0%)	256 (28.4%)	35 (14.4%)	<0.0001
At least 1 bifurcation lesion	231 (14.9%)	157 (18.2%)	50 (12.2%)	24 (8.6%)	<0.0001

Results reported as n (%) or mean ± standard deviation. BMI: Body Mass Index; DES: Drug-Eluting Stent; UA: Unstable Angina; NSTEMI: Non-ST segment Elevation Myocardial Infarction; STEMI: ST segment Elevation Myocardial Infarction;

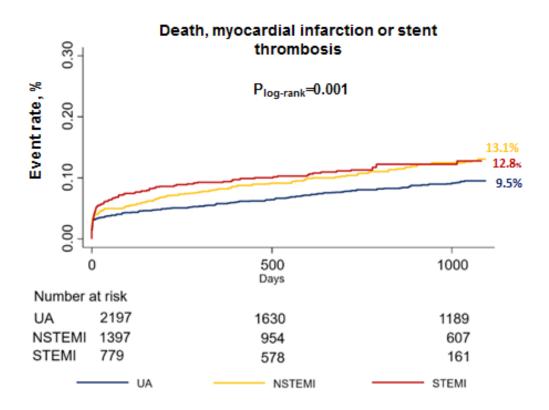
CAD: Coronary Artery Disease; IDDM: Insulin-Dependent Diabetes Mellitus; MI: Myocardial Infarction; PCI: Percutaneous Coronary Intervention; CABG: Coronary Artery By-pass Graft.

<u>eReferences</u>

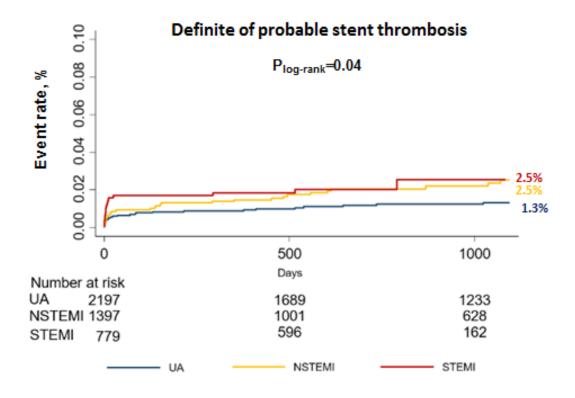
- Morice MC, Serruys PW, Sousa JE, et al. A randomized comparison of a sirolimuseluting stent with a standard stent for coronary revascularization. *N Engl J Med.* Jun 6 2002;346(23):1773-1780.
- Moses JW, Leon MB, Popma JJ, et al. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. *N Engl J Med.* Oct 2 2003;349(14):1315-1323.
- Schofer J, Schluter M, Gershlick AH, et al. Sirolimus-eluting stents for treatment of patients with long atherosclerotic lesions in small coronary arteries: double-blind, randomised controlled trial (E-SIRIUS). *Lancet.* Oct 4 2003;362(9390):1093-1099.
- 4. Schampaert E, Cohen EA, Schluter M, et al. The Canadian study of the sirolimus-eluting stent in the treatment of patients with long de novo lesions in small native coronary arteries (C-SIRIUS). *J Am Coll Cardiol.* Mar 17 2004;43(6):1110-1115.
- **5.** Grube E, Silber S, Hauptmann KE, et al. TAXUS I: six- and twelve-month results from a randomized, double-blind trial on a slow-release paclitaxel-eluting stent for de novo coronary lesions. *Circulation.* Jan 7 2003;107(1):38-42.
- Colombo A, Drzewiecki J, Banning A, et al. Randomized study to assess the effectiveness of slow- and moderate-release polymer-based paclitaxel-eluting stents for coronary artery lesions. *Circulation.* Aug 19 2003;108(7):788-794.
- Stone GW, Ellis SG, Cox DA, et al. A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. N Engl J Med. Jan 15 2004;350(3):221-231.
- Stone GW, Ellis SG, Cannon L, et al. Comparison of a polymer-based paclitaxel-eluting stent with a bare metal stent in patients with complex coronary artery disease: a randomized controlled trial. *Jama*. Sep 14 2005;294(10):1215-1223.
- **9.** Windecker S, Remondino A, Eberli FR, et al. Sirolimus-eluting and paclitaxel-eluting stents for coronary revascularization. *N Engl J Med.* Aug 18 2005;353(7):653-662.
- 10. Fajadet J, Wijns W, Laarman GJ, et al. Randomized, double-blind, multicenter study of the Endeavor zotarolimus-eluting phosphorylcholine-encapsulated stent for treatment of native coronary artery lesions: clinical and angiographic results of the ENDEAVOR II trial. *Circulation.* Aug 22 2006;114(8):798-806.
- **11.** Kandzari DE, Leon MB, Popma JJ, et al. Comparison of zotarolimus-eluting and sirolimus-eluting stents in patients with native coronary artery disease: a randomized controlled trial. *J Am Coll Cardiol.* Dec 19 2006;48(12):2440-2447.

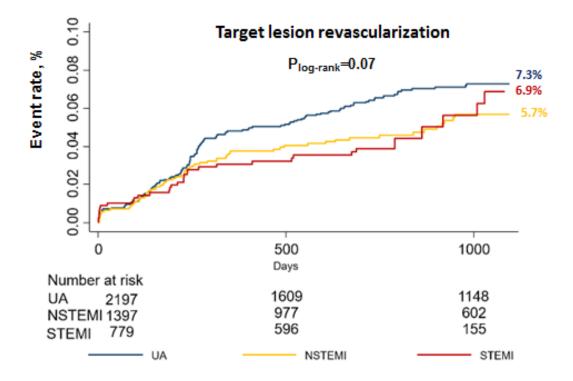

- Leon MB, Mauri L, Popma JJ, et al. A randomized comparison of the Endeavor zotarolimus-eluting stent versus the TAXUS paclitaxel-eluting stent in de novo native coronary lesions 12-month outcomes from the ENDEAVOR IV trial. *J Am Coll Cardiol.* Feb 9 2010;55(6):543-554.
- Camenzind E, Wijns W, Mauri L, et al. Stent thrombosis and major clinical events at 3 years after zotarolimus-eluting or sirolimus-eluting coronary stent implantation: a randomised, multicentre, open-label, controlled trial. *Lancet.* Oct 20 2012;380(9851):1396-1405.
- **14.** Serruys PW, Silber S, Garg S, et al. Comparison of zotarolimus-eluting and everolimuseluting coronary stents. *N Engl J Med.* Jul 8 2010;363(2):136-146.
- 15. von Birgelen C, Basalus MW, Tandjung K, et al. A randomized controlled trial in secondgeneration zotarolimus-eluting Resolute stents versus everolimus-eluting Xience V stents in real-world patients: the TWENTE trial. *J Am Coll Cardiol.* Apr 10 2012;59(15):1350-1361.
- **16.** Serruys PW, Ruygrok P, Neuzner J, et al. A randomised comparison of an everolimuseluting coronary stent with a paclitaxel-eluting coronary stent:the SPIRIT II trial. *EuroIntervention.* Nov 2006;2(3):286-294.
- Stone GW, Midei M, Newman W, et al. Comparison of an everolimus-eluting stent and a paclitaxel-eluting stent in patients with coronary artery disease: a randomized trial. *Jama*. Apr 23 2008;299(16):1903-1913.
- **18.** Stone GW, Rizvi A, Newman W, et al. Everolimus-eluting versus paclitaxel-eluting stents in coronary artery disease. *N Engl J Med.* May 6 2010;362(18):1663-1674.
- Kedhi E, Joesoef KS, McFadden E, et al. Second-generation everolimus-eluting and paclitaxel-eluting stents in real-life practice (COMPARE): a randomised trial. *Lancet.* Jan 16 2010;375(9710):201-209.
- **20.** Kaiser C, Galatius S, Erne P, et al. Drug-eluting versus bare-metal stents in large coronary arteries. *N Engl J Med.* Dec 9 2010;363(24):2310-2319.
- 21. Park KW, Chae IH, Lim DS, et al. Everolimus-eluting versus sirolimus-eluting stents in patients undergoing percutaneous coronary intervention: the EXCELLENT (Efficacy of Xience/Promus Versus Cypher to Reduce Late Loss After Stenting) randomized trial. J Am Coll Cardiol. Oct 25 2011;58(18):1844-1854.
- **22.** Kimura T, Morimoto T, Natsuaki M, et al. Comparison of everolimus-eluting and sirolimus-eluting coronary stents: 1-year outcomes from the Randomized Evaluation of

Sirolimus-eluting Versus Everolimus-eluting stent Trial (RESET). *Circulation.* Sep 4 2012;126(10):1225-1236.


- Valgimigli M, Campo G, Monti M, et al. Short- versus long-term duration of dualantiplatelet therapy after coronary stenting: a randomized multicenter trial. *Circulation*. Apr 24 2012;125(16):2015-2026.
- 24. Windecker S, Serruys PW, Wandel S, et al. Biolimus-eluting stent with biodegradable polymer versus sirolimus-eluting stent with durable polymer for coronary revascularisation (LEADERS): a randomised non-inferiority trial. *Lancet.* Sep 27 2008;372(9644):1163-1173.
- **25.** Smits PC, Hofma S, Togni M, et al. Abluminal biodegradable polymer biolimus-eluting stent versus durable polymer everolimus-eluting stent (COMPARE II): a randomised, controlled, non-inferiority trial. *Lancet.* Feb 23 2013;381(9867):651-660.
- 26. Byrne RA, Kastrati A, Kufner S, et al. Randomized, non-inferiority trial of three limus agent-eluting stents with different polymer coatings: the Intracoronary Stenting and Angiographic Results: Test Efficacy of 3 Limus-Eluting Stents (ISAR-TEST-4) Trial. *Eur Heart J.* Oct 2009;30(20):2441-2449.

eFigure 1. Kaplan-Meier curves for death, myocardial infarction or target lesion revascularization (2A), death, myocardial infarction or stent thrombosis (2B), definite or probable stent thrombosis (2C) and target lesion revascularization (2D) in women presenting with unstable angina, non-ST-elevation myocardial infarction or ST-elevation myocardial infarction. NSTEMI: Non-ST Elevation Myocardial Infarction; STEMI: ST Elevation Myocardial Infarction; UA: Unstable Angina.


eFigure 1A.


eFigure 1B.

eFigure 1C.

eFigure 1D.

