Upregulation of miR-181a impairs hepatic glucose and lipid homeostasis

SUPPLEMENTARY MATERIALS

Supplementary Figure 1: The insulin-related and lipid-related IR/Akt/GSK3 β and PARa/SREBP-1c signaling pathways. (A) Immunoblot analysis (left) and quantification (right) of insulin-stimulated phosphorylation of IR, Akt, GSK3 β protein levels in the liver of dairy cows with NAFLD (n = 20) and controls (n = 20). (B) Immunoblot analysis (left) and quantification (right) of SREBP-1c and PPAR α protein levels in the liver of dairy cows with NAFLD (n = 20) and controls (n = 20) and controls (n = 20). *P < 0.05, **P < 0.01. All experiments were repeated at least three times and representative results are shown.

Supplementary Figure 2: Expression of miR-181a in ob/ob mice. (A) The expression level of miR-181a in the serum of ob/ob (n = 7) and control (n = 7) mice. **(B)** The expression level of miR-181a in the liver of ob/ob (n = 7) and control (n = 7) mice. *P < 0.05, **P < 0.01. All experiments were repeated at least three times and representative results are shown.

Supplementary Figure 3: High NEFA concentrations impair insulin signaling and lipid metabolism *in vitro*. (A) Immunoblot analysis (left) and quantification (right) of insulin-stimulated phosphorylation of IR, Akt, GSK3β protein levels in hepatocytes. (B) Immunoblot analysis (left) and quantification (right) of SREBP-1c and PPAR α protein levels in hepatocytes. (C) TG content in hepatocytes. **P* < 0.05, ***P* < 0.01. All experiments were repeated at least three times and representative results are shown.

Supplementary Figure 4: Expression of miR-181a in dairy cow hepatocytes transfected with miR-181a mimics or inhibitors. P < 0.05, P < 0.01. All experiments were repeated at least three times and representative results are shown. (A) Hepatocytes were transfected with 10 nM miR-181a mimics or negative controls. (B) Hepatocytes were transfected with 50 nM miR-181a inhibitors or negative controls.

Supplementary Figure 5: The expression of SIRT1, PGC-1 α and Ac-PGC-1 α in the liver of ob/ob mice. (A) The mRNA expression level of SIRT1 in the liver of ob/ob (n = 7) and control (n = 8) mice. (B) Immunoblot analysis of SIRT1, PGC-1 α and acetylated PGC-1 α in the liver of ob/ob (n = 7) and control (n = 7) mice. *P < 0.05, **P < 0.01. All experiments were repeated at least three times and representative results are shown.

Supplementary Figure 6: The expression level of miR-181a in hepatocytes. Hepatocytes were divided into 3 groups as follows: a control group (transfected with 50 *nM* negative control), NEFA group (treated with 1.2 *mM* NEFA), and miR-181a + NEFA group (transfected with 50 *nM* miR-181a inhibitors and then treated with 1.2 *mM* NEFA). *P < 0.05, **P < 0.01. All experiments were repeated at least three times and representative results are shown.

Supplementary Figure 7: The expression levels lipid metabolism genes in hepatocytes. Hepatocytes were divided into 3 groups as follows: a control group (transfected with 50 nM negative control), NEFA group (treated with 1.2 mM NEFA), and miR-181a + NEFA group (transfected with 50 nM miR-181a inhibitors and then treated with 1.2 mM NEFA). *P < 0.05, **P < 0.01. All experiments were repeated at least three times and representative results are shown.

Supplementary Figure 8: Immunoblot analysis (left) and quantification (right) of SIRT1, PGC-1 α and acetylated PGC-1 α in hepatocytes. Hepatocytes were transfected with SIRT1 siRNA for 48 h and then harvested for WB. *P < 0.05, **P < 0.01. All experiments were repeated at least three times and representative results are shown.

Supplementary Figure 9: Overexpression of miR-181a or knockdown of SIRT1 impairs glucose and lipid metabolism *in vivo*. (A) Relative miR-181a expression levels in the livers of mice injected with Ago-181a (n = 8) or Ago-NC (n = 8). (B) Random blood glucose levels of mice injected with Ago-181a (n = 7) or Ago-NC (n = 7) or Ad-shRNA NC (n = 8) or Ad-shRNA SIRT1 (n = 8). (C) The glycogen contents in the liver of mice injected with Ago-181a (n = 7) or Ago-NC (n = 7) or Ad-shRNA NC (n = 8) or Ad-shRNA SIRT1 (n = 8). (C) The glycogen contents in the mice injected with Ago-181a (n = 7) or Ago-NC (n = 7) or Ad-shRNA NC (n = 8) or Ad-shRNA SIRT1 (n = 8). (D) Liver TG contents in the mice injected with Ago-181a (n = 7) or Ago-NC (n = 7) or Ad-shRNA NC (n = 8) or Ad-shRNA SIRT1 (n = 8). (P) Liver TG contents in the mice injected with Ago-181a (n = 7) or Ago-NC (n = 7) or Ad-shRNA NC (n = 8) or Ad-shRNA SIRT1 (n = 8). (P) Liver TG contents in the mice injected with Ago-181a (n = 7) or Ago-NC (n = 7) or Ad-shRNA NC (n = 8) or Ad-shRNA SIRT1 (n = 8). (P) Liver TG contents in the mice injected with Ago-181a (n = 7) or Ago-NC (n = 7) or Ad-shRNA NC (n = 8) or Ad-shRNA SIRT1 (n = 8). (P) Liver TG contents in the mice injected with Ago-181a (n = 7) or Ago-NC (n = 7) or Ad-shRNA NC (n = 8) or Ad-shRNA SIRT1 (n = 8). (P) Liver TG contents in the mice injected with Ago-181a (n = 7) or Ago-NC (n = 7) or Ad-shRNA NC (n = 8) or Ad-shRNA SIRT1 (n = 8). (P) Liver TG contents in the mice injected at least three times and representative results are shown.

Variables	Control (n=15)	NAFLD (n=25)
Age (years)	47.2 ± 4.94	46.23 ± 8.45
Females/males	8/7	15/10
BMI (kg/m ²)	22.59 ± 1.47	$29.88 \pm 1.3^{**}$
NEFA (mM)	0.29 ± 0.08	$0.96 \pm 0.1^{**}$
Glucose (<i>mM</i>)	4.61 ± 0.46	$5.87 \pm 0.44^{**}$
Insulin (mU/L)	4.78 ± 0.52	$11.00 \pm 1.89^{**}$
HbA _{1c} (%)	4.96 ± 0.61	7.83 ±0.8**
HbA _{1c} (mmol/mol)	30.6 ± 6.67	$62.08 \pm 8.76^{**}$
HOMA-IR	0.97 ± 0.14	$2.84 \pm 0.41^{**}$
TG (<i>mM</i>)	1.18 ± 0.25	$2.34 \pm 0.35^{**}$
ALT (IU/L)	22 ± 4.31	$63.62 \pm 8.21^{**}$
AST (IU/L)	18.50 ± 3.26	$51.08 \pm 5.08^{**}$
γ-GT (IU/L)	25.3 ± 5.02	$91.84 \pm 5.68^{**}$

Sunnlementary	Table 1.	Basic	description	of the	subjects	(mean -	+ SD)
Supplementary	Table 1.	Dasic	uescription	or the	subjects	(incan -	- SDJ

*p < 0.05 and **p < 0.01 compared with control. BMI, Body mass index; HbA_{1c}, Hemoglobin A_{1c}; HOMA-IR, homeostasis model assessment of insulin resistance; TG, triglyceride; ALT, alanine aminotransferase; AST, aspartate transaminase; γ -GT, gamma-glutamyl transpeptidase.

Variables	Control (n=20)	NAFLD (n=20)
Body weight (Kg)	562.26 ± 18.81	$590.51 \pm 15.82^{**}$
Body condition scores	2.59 ± 0.14	$3.25 \pm 0.25^{**}$
NEFA (<i>mM</i>)	0.27 ± 0.09	$1.14 \pm 0.2^{**}$
Glucose (<i>mM</i>)	3.82 ± 0.23	$4.33 \pm 0.27^{**}$
Insulin (mU/L)	15.29 ± 1.08	$22.19 \pm 1.67^{**}$
ALT (IU/L)	20.81 ± 2.71	$36.80 \pm 4.46^{**}$
AST (IU/L)	42.85 ± 3.4	$103.87 \pm 10.98^{**}$
γ-GT (IU/L)	19.59 ± 2.97	$28.26 \pm 1.79^{**}$

Supplementary Table 2: Basic description of the dairy cows with NAFLD and controls (mean ± SD)

*p<0.05 and **p<0.01 compared with healthy cows. NEFA, non-esterified fatty acids; ALT, Alanine aminotransferase; AST, Aspartate transaminase; γ -GT, gamma-glutamyl transpeptidase.

Supplementary Table 3: Primers for Real-time PCR

See Suppleementary File 1