Human *CRMP4* mutation and disrupted *Crmp4* expression in mice are associated with ASD characteristics and sexual dimorphism

Atsuhiro Tsutiya^{1,6}, Yui Nakano², Emily Hansen-Kiss³, Benjamin Kelly³, Masugi Nishihara⁴, Yoshio Goshima⁵, Don Corsmeier³, Peter White³, Gail E. Herman³ and Ritsuko Ohtani-Kaneko^{1,2,7*}

- ¹Institute of Life Innovation Studies, Toyo University, 1-1-1 Itakura, Oura, Gunma 374-0193, Japan.
- ²Graduate School of Life Sciences, Toyo University, 1-1-1 Itakura, Oura, Gunma 374-0193, Japan.
- ³The Institute for Genomic Medicine, Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA.
- ⁴Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
- ⁵Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa Ward, Yokohama 236-0004, Japan.
- ⁶Clinical Proteomics and Molecular Medicine, St. Marianna University Graduate School of Medicine, Kawasaki, Japan.
- ⁷Research Center for Biomedical Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan.

Supplementary Information

History of the ASD patient

The patient weighed 3153 g at birth after a 39-week gestation and was born to a 28-year-old woman, gravida 2, para 1–2, with one previous miscarriage. This pregnancy was achieved by administration of Clomid and was complicated by maternal tobacco use, as well as weight loss of 12 lbs. Delivery was vaginal with vacuum assistance, and the baby was discharged home with his mother.

The family history is unremarkable. The patient has an older and a younger brother, both of whom are healthy with normal development, as are both parents. There is no known consanguinity. The patient had normal development until 3 years of age, during which there was a loss of language and social skills. He also developed unusual behaviours, including unusual obsessions and repetitive tapping of objects and making clicking noises. He attended a special needs preschool and repeated first grade. He has an individual education programme, receives speech therapy, and has been treated with Ritalin for attention-deficit/hyperactivity disorder.

At 8 years of age, the patient was assessed by an experienced psychologist using the Autism Diagnostic Observation Scale (ADOS) and received a score of 13 (Module 3), consistent with the diagnosis of ASD. The Autism Diagnostic Interview-Revised (ADI-R),) assessment, performed at 10 years of age, was also consistent with the ASD diagnosis. At 12 years of age, the patient received a full scale IQ standard score of 68 on the Stanford-Binet Intelligence Scale as part of CORA, falling into the 'mildly impaired' range (non-verbal IQ score, 82 and verbal IQ score, 57).

Previous genetic testing revealed a normal 46, XY male karyotype and normal results in DNA testing for Fragile X syndrome. As part of CORA, an oligonucleotide microarray was

2

performed (NimbleGen CGX-3) in 2011 that also showed no abnormalities. He underwent exome sequencing in the NCH Biomedical Genomics Core (BGC).

Whole-exome sequencing

Exome sequencing was performed on 72 simplex trios (affected and both parents). A total of 69 *de novo* damaging variants were confirmed, of which seven were considered pathogenic or likely pathogenic based on the predicted change in the protein and reports in the literature demonstrating that the gene is involved in human ASD and/or intellectual disability (G. Herman, personal communication).

DNA samples for exome sequencing were prepared from lymphoblastoid cell lines and were processed using the Agilent SureSelectXT Target Enrichment System for the Illumina Paired End Sequencing Protocol (Agilent Technologies, Santa Clara, CA, USA). DNA libraries prepared from the patient and both parents were captured using SureSelect Human All Exon v4 probes. Paired-end 100 base-pair reads were generated for exome-enriched libraries sequenced on the Illumina HiSeq 2000 (Illumina, San Diego, CA, USA) to an average depth of 74×. Secondary analysis was performed using Churchill, a pipeline at NCH, for the discovery of human genetic variation¹. A *de novo* variant of *CRMP4* found in the sequenced sample from the proband but not in the parents or siblings was confirmed by Sanger sequencing using DNA prepared directly from a sample of whole blood to avoid any possible cell-line artefacts. PCR was performed for exon 11 using the primers 5'-CAGGTCATGTTCCCCTGTCT-3' and 5'-ACGCTGCCAAGATCTTCAAC-3' to amplify a 402-bp fragment.

Crmp4 (pEGFP-Crmp4 vector) and Crmp4^{S540Y} (pEGFP- Crmp4^{S540Y}) expression vectors

For the pEGFP-*Crmp4* vector, a cDNA fragment containing the full-length coding region of the mouse *Crmp4* gene was inserted into the *Eco*RI and *Xho*I sites of the pEGFP-N vector (Clontech Laboratories, Inc., Mountain View, CA, USA). *Crmp4*^{S540Y} was made using the PrimSTAR mutagenesis kit (Takara Bio, Japan) according to the manufacturer's protocol using the WT *Crmp4* sequence as a template. The S540 in the mouse *Crmp4* is the homologous site of S541 in the human *CRMP4* sequence (NP_001278384.1). The following primers were used to amplify the mutant mouse sequence: forward, 5'- CACCAGT<u>AT</u>GTTGCCGAATACAACATC -3'; reverse, 5'- GGCAAC<u>AT</u>ACTGGTGGTTCTTGGCAGA -3', where the underlined base results in the missense variant. Both constructs were sequenced on an ABI PRISM 310 Genetic Analyzer (Perkin Elmer Cetus), and both confirmed the WT and mutant sequences with no additional base changes.

Real-time qRT-PCR

WT and *Crmp4*-KO mice of both sexes at 8 weeks of age (n = 4 each) were deeply anesthetised with pentobarbital (50 mg/kg, i.p.), and their brains were removed from the skull. The OB, cortex, hippocampus and raphe were dissected out. RNA extraction, reverse transcription, and real-time qRT-PCR were performed as previously reported². The primer pairs used are listed in Supplementary Table S3.

Supplementary References

- 1. Kelly, B. J. *et al.* Churchill: an ultra-fast, deterministic, highly scalable and balanced parallelization strategy for the discovery of human genetic variation in clinical and population-scale genomics. *Genome Biol* **16**, 6 (2015).
- Tsutiya A & Ohtani-Kaneko R. Postnatal alteration of collapsin response mediator protein 4 mRNA expression in the mouse brain. *J Anat.* 221, 341–351 (2012).

Supplementary Fig. S1. Novel object recognition test. During the familiarisation phase, two identical objects ('I' and 'II' in top panel) were located 12.5 cm away from the wall at the central width of the box (bottom panel). The mouse was then placed into the box, always facing the wall at the same position (dotted circle area in bottom panel) and allowed to freely explore for 10 min. Exploration of an object was defined as directing the nose to the object at a distance of less than 2 cm and/or touching it with the nose. After the test, the mouse was housed again. Object b was then replaced with a novel object ('III' in top panel), and the test phase was performed 60 min after the habituation phase. Each animal was placed at the same location (dotted circle area in bottom panel) and allowed to explore freely for 5 min. The total time spent exploring the two objects was measured during both the familiarisation and test phases. The preference index is the ratio of the amount of time spent exploring any one of the two objects (familiarisation phase) or the novel object (test phase) divided by the total time spent exploring both objects: $[II/(I + II)] \times 100$ in the familiarisation phase and $[III/(I + III)] \times 100$ in the test phase.

Supplementary Table S1. Statistical values from ANOVA for behavioural analysis. Significant results are indicated in bold.

T		Statistical mathed	F-statistics, degree of freedom,	of freedom, F-statistics, degree of freedom, and p-values for ANOVA (for each effect and interaction)								
		Statistical method	and p-values for ANOVA		Genotype		Sex			Genotype \times Sex		
	Distance			F(3,54) = 0.805, p = 0.497	F(1,54	4) = 0.472, <i>p</i> = 0.495		F(1,54) = 0.434, p = 0.513		F(1,54) = 1.269, p	= 0.265	
Open field	In zone center		Two-way ANOVA	F(3,54) = 1.066, p = 0.371	F(1.54) = 1.110, p = 0.297			F(1.54) = 1.082, p = 0.303			F(1.54) = 1.027, p = 0.315	
	Velocity			F(3,54) = 0.788, p = 0.506	F(1,54	(4) = 0.479, p = 0.492		F(1.54) = 0.393, p = 0.533		F(1.54) = 1.255, p	= 0.268	
	Time in open arm	s		F(3,39) = 0.625, p = 0.603	F(1,39	9) = 1.122, <i>p</i> = 0.296		F(1,39) = 0.308, p = 0.582		F(1,39) = 0.529, p	= 0.471	
	Time in closed ar	ms		F(3,39) = 0.204, p = 0.893	F(1,39	9) = 0.159, <i>p</i> = 0.692		F(1,39) = 0.444, p = 0.509		F(1,39) = 0.043, p	= 0.837	
Elevated plus maze	No. of entries to open arms		Two-way ANOVA	F(3,39) = 0.208, p = 0.891	F(1,39) = 0.013, p = 0.909			F(1,39) = 0.001, p = 0.979		F(1,39) = 0.606, p = 0.441		
	No. of entries to c	losed arms		F(3,39) = 1.736, p = 0.175	F(1,39	9) = 1.787, <i>p</i> = 0.190		F(1,39) = 3.967, <i>p</i> = 0.053		F(1,39) = 0.012, p = 0.912		
		Preference		F(3,52) = 0.697, p = 0.558	F(1,52	2) = 0.801, <i>p</i> = 0.372		F(1,52) = 0.616, p = 0.436		F(1,52) = 0.762, p	= 0.387	
Novel object	Familiarisation Total		Two-way ANOVA	F(3,52) = 0.065, p = 0.978	F(1,52) = 0.028, p = 0.868			F(1,52) = 0.038, p = 0.847		F(1,52) = 0.140, p	F(1,52) = 0.140, p = 0.709	
recognition	Preference		F(3,52) = 0.075, p = 0.973	F(1,52) = 0.014, p = 0.906			F(1,52) = 0.077, p = 0.782 F(1,52) = 0.1		F(1,52) = 0.143, p	= 0.707		
	lest	Total time	Iwo-way ANOVA	F(3,52) = 0.877, p = 0.459	F(1,52) = 1.172, p = 0.284			F(1,52) = 0.943, p = 0.336 F(1,52) = 0.224, p = 0.638			= 0.638	
					Genotype	Sex	Chamber	$Genotype \times Sex$	$Genotype \times Chamber$	$\mathbf{Sex}\times\mathbf{Chamber}$	$Genotype \times Sex \times Chamber$	
		Duration (s)		F(11,120) = 15.829, <i>p</i> < 0.001	F(1,120) = 0.000, p = 1.000	F(1,120) = 0.000, p = 1.000	F(2,120) = 81.648, <i>p</i> < 0.001	F(1,120) = 0.000, p = 1.000	F(2,120) = 1.484, p = 0.231	F(2,120) = 0.902, p = 0.409	F(2,120) = 2.078, p = 0.130	
	n field Distance n field In zone center Velocity Time in open arms ated plus maze el object gnition Test 6W feamiliarisation feat 6W re-chamber test 6W feamiliarisation feat feat feamiliarisation feat feamiliarisation feat feamiliarisation feat feat feat feat feat feat feat feat	No. of entries	Three-way ANOVA	F(7,80) = 0.334, p = 0.936	F(1,80) = 1.083, p = 0.301	F(1,80) = 0.523, p = 0.472	F(1,80) = 0.002, p = 0.961	F(1,80) = 0.452, p = 0.503	F(1,80) = 0.260, p = 0.611	F(1,80) = 0.102, p = 0.750	F(1,80) = 0.011, p = 0.917	
Three-chamber test		Sniffing (s)		F(7,80) = 4.410, p < 0.001	F(1,80) = 0.166, p = 0.685	F(1,80) = 0.043, p = 0.835	F(1,80) = 19.626, p < 0.001	F(1,80) = 0.195, p = 0.660	F(1,80) = 4.988, <i>p</i> = 0.028	F(1,80) = 5.299, p = 0.024	F(1,80) = 1.127, p = 0.292	
		Duration (s)		F(11,102)=21.618, <i>p</i> < 0.001	F(1.102) = 0.000, p = 1.000	F(1.102) = 0.000, p =1.000	F(2.102) = 101.6, p < 0.001	F(1.102) = 0.000, p = 1.000	F(2.102) = 5.904, <i>p</i> = 0.004	F(2.102) = 9.791, p < 0.001	F(2.102) = 0.532, p = 0.589	
	10W	No. of entries	Three-way ANOVA	F(7,68) = 0.609, p = 0.746	F(1,68) = 1.049, p = 0.309	F(1,68) = 1.152, p = 0.287	F(1,68) = 0.370, p = 0.545	F(1,68) = 0.039, p = 0.844	F(1,68) = 0.130, p = 0.719	F(1,68) = 0.064, p = 0.801	F(1,68) = 1.058, p = 0.307	
		Sniffing (s)		F(7,68) = 9.675, p < 0.001	F(1,68) = 4.128, p = 0.046	F(1,68) = 3.453, p = 0.067	F(1,68) = 26.493, p < 0.001	F(1,68) = 0.130, p = 0.720	F(1,68) = 13.125, p = 0.001	$\mathrm{F}(1,68) = 14.596, p < 0.001$	F(1,68) = 4.869, p = 0.031	
S			The man ANOVA	F(2,57) = 6.207 = -0.01		Genotype		Sex		Genotype × S	lex	
Social Interaction			Two-way ANOVA	F(3,37) = 0.207, p = 0.01	F(1,57) = 14.966, <i>p</i> < 0.001		F(1,57) = 1.120, p = 0.294		F(1,57) = 1.891, p	= 0.174	
Tube test			Din - mi-1 t t			Male WT vs. KO)			Female WT vs. KO		
I ube test			Binomiartest			<i>p</i> = 1.000 (Win, WT : KC	0 = 6 : 6)		<i>p</i> = 0.81	15 (Win, WT : KO = 8 : 10)		
						Genotype		Sex		Genotype × S	lex	
Food exploring	7W		The man ANOVA	F(3,54) = 1.785, p = 0.161	F(1,54	4) = 1.874, <i>p</i> = 0.177		F(1,54) = 3.416, p = 0.070		F(1,54) = 0.207, p	= 0.551	
	11W		Two-way ANOVA	F(3,47) = 0.961, p = 0.419	F(1,47) = 0.154, p = 0.697			F(1,47) = 0.505, p = 0.481		F(1,47) = 2.493, p = 0.121		
Hot plate			Two-way ANOVA	F(3,83) = 0.869, p = 0.461	F(1,8	3) = 2.119, <i>p</i> = 0.149		F(1,83) = 0.240, p = 0.625		F(1,83) = 0.186, p	= 0.668	
	Bedding		Three-way	Three-way ANOVA F(7,98) = 3.336, p = 0.003	Genotype	Sex	Bedding	$\mathbf{Genotype}\times\mathbf{Sex}$	$Genotype \times Bedding$	$\mathbf{Sex} \times \mathbf{Bedding}$	$Genotype \times Sex \times Bedding$	
			ANOVA		F(1,98) = 5.357, <i>p</i> = 0.023	F(1,98) = 0.001, p = 0.976	F(1,98) = 10.577, <i>p</i> = 0.002	F(1,98) = 4.129, <i>p</i> = 0.045	F(1,98) = 5.313, <i>p</i> = 0.023	F(1,98) = 0.000, p = 0.991	F(1,98) = 0.037, <i>p</i> = 0.848	
o v experiment			Three-way		Genotype	Sex	Temperature	Genotype × Sex	Genotype × Temperature	Sex × Temperature	$Genotype \times Sex \times Temperature$	
Temperature		emperature		F(11,128) = 3.931, p < 0.001	F(1,128) = 0.279, <i>p</i> = 0.599	F(1,128) = 0.367, p = 0.546	F(2,128) = 8.288, <i>p</i> < 0.001	F(1,128) = 0.426, p = 0.515	F(2,128) = 7.243, <i>p</i> = 0.001	F(2,128) = 1.689, p = 0.189	F(2,128) = 4.827, p = 0.010	

Supplementary Table S2.

Statistical *p*-values from multiple comparisons (PLSD, Bonferroni, Sidak, and Tukey HSD) for behavioural studies. Significant results are indicated in bold.

Test		Subject	Composison	<i>p</i> -values from multiple comparison			
Test		Subject	Comparison	PLSD	Bonferroni	Sidak	Tukey HSD
	Duration	Male KO	Stranger vs. Object	0.001	0.034	0.033	0.025
		Male WT	Stranger vs. Object	0.008	0.226	0.203	0.133
Three chamber test (6W)	G	Male KO	Stranger vs. Object	0.560	1.000	1.000	0.999
	Shifting	Female WT	Stranger vs. Object	<0.001	0.009	0.009	0.007
		Female KO	Stranger vs. Object	0.005	0.131	0.123	0.084
		Male KO	Stranger vs. Object	0.009	0.577	0.440	0.255
	Duration	Female WT	Stranger vs. Object	<0.001	0.009	0.009	0.007
		Male WT	Stranger vs. Object	<0.001	0.012	0.012	0.010
I free chamber test (10 w)	S: 65	Male KO	Stranger vs. Object	0.041	1.000	0.692	0.438
	Sniffing	Female WT	Stranger vs. Object	<0.001	<0.001	<0.001	<0.001
		Female KO	Stranger vs. Object	<0.001	0.003	0.003	0.003
		Male	WT vs. KO	<0.001	0.002	0.002	0.002
Social interaction test		Female	WT vs. KO	0.093	0.556	0.442	0.328
		Male WT	Familiar vs. Unfamiliar	0.015	0.433	0.354	0.223
		Male KO	Familiar vs. Unfamiliar	0,560	1.000	1.000	0.999
	Bedding	Female WT	Familiar vs. Unfamiliar	0.007	0.188	0.172	0.115
		Female KO	Familiar vs. Unfamiliar	0.671	1.000	1.000	1.000
		Male Unfamiliar	WT vs. KO	0.002	0.061	0.059	0.044
UV experiment		Male WT	19℃ vs. 9℃	<0.001	<0.001	<0.001	<0.001
		Male KO	19°C vs. 9°C	0.037	1.000	0.916	0.617
	T (Female WT	19°C vs. 9°C	0.004	0.240	0.213	0.132
	remperature	Female KO	19°C vs. 9°C	0.026	1.000	0.822	0.513
		Male 9°C	WT vs. KO	0.001	0.078	0.075	0.051
		ко 9°С	Male vs. Female	0.011	0.745	0.527	0.308

Supplementary Table S3.

Statistical *p*-values from multiple comparison (PLSD, Bonferroni, Sidak, and Tukey HSD) for gene expression analysis. Significant results are indicated in bold.

Durain region	Cana	Comparison	<i>p</i> -values from multiple comparison					
Brain region	Gene	Comparison	PSLD	Bonferroni	Sidak	Tukey HSD		
	GluR2	Female WT vs. KO	0.019	0.115	0.110	0.079		
		Male WT vs. KO	0.010	0.057	0.056	0.041		
	VGluT1	Female WT vs. KO	<0.001	0.001	0.001	0.001		
		WT male vs. female	0.003	0.021	0.020	0.016		
	VGluT2	KO male vs. female	0.014	0.087	0.083	0.061		
	C (D ())	Female WT vs. KO	<0.001	<0.001	<0.001	<0.001		
OВ	GABAAa1	KO male vs. female	<0.001	<0.001	<0.001	<0.001		
		Female WT vs. KO	<0.001	0.001	0.001	0.001		
	GABAAy2	KO male vs. female	0.006	0.039	0.038	0.029		
		Female WT vs. KO	0.002	0.012	0.012	0.009		
	GABABRI	KO male vs. female	0.029	0.174	0.162	0.114		
		Female WT vs. KO	<0.001	0.003	0.003	0.002		
	VGAT	KO male vs. female	0.012	0.073	0.071	0.052		
		Male WT vs. KO	0.009	0.053	0.051	0.038		
	NcamI	Female WT vs. KO	0.007	0.039	0.039	0.029		
		Male WT vs. KO	0.014	0.082	0.079	0.057		
	GluRI	KO male vs. female	0.015	0.088	0.085	0.062		
Hippocampus	GluR2	Male WT vs. KO	0.015	0.092	0.089	0.063		
	GABAAa1	KO male vs. female	0.031	0.186	0.172	0.121		
	GABABR1	KO male vs. female	0.034	0.204	0.187	0.132		
	GABAAy2	Feale WT vs. KO	0.003	0.016	0.016	0.012		
		WT male vs. Female	0.012	0.072	0.070	0.051		
	GABABRI	Male WT vs. KO	0.014	0.083	0.080	0.058		
Cortex	Norm	Male WT vs. KO	0.003	0.020	0.019	0.015		
	INCAMI	Female WT vs. KO	0.002	0.010	0.010	0.008		
	Nordhowin	Male WT vs. KO	0.002	0.012	0.012	0.009		
	<i>in-caanerin</i>	Female WT vs. KO	<0.001	<0.001	<0.001	<0.001		

Name and the state of sta			F	-statistics, degree of freedom, a	nd p-values for two-way ANO	VА				Expre	ssion levels		
Base of the second s	Brain region	Genes		For each factor and interaction		Fold di	ferences	Male		Female			
onionalOpeope<				Genotype	Sex	Genotype × Sex	WT vs. Crmp4-KO (Crmp4-KO/WT)	Male vs. Female (Female/Male)	WT	Crmp4-KO	WT	Crmp4-KO	
0nt $0nt$ <t< td=""><td>Olfactory bulb</td><td>Crmp4</td><td></td><td>Not pe</td><td>rformed</td><td></td><td>Not performed</td><td>1.102</td><td>2.578 ± 0.145</td><td>ND</td><td>2.958 ± 0.099</td><td>ND</td></t<>	Olfactory bulb	Crmp4		Not pe	rformed		Not performed	1.102	2.578 ± 0.145	ND	2.958 ± 0.099	ND	
pin pin<		GluR1	F(3,12) = 0.131, p = 0.940	F(1,12) = 0.218, p = 0.649	F(1,12) = 0.173, p = 0.685	F(1,12) = 0.001, p = 0.976	1.102	1.090	0.861 ± 0.255	0.959 ± 0.040	0.949 ± 0.211	1.034 ± 0.205	
0.92 10.3 $10.$		DIR	F(3,8) = 1.166, p = 0.381	F(1,8) = 3.097, p = 0.116	F(1,8) = 0.003, p = 0.961	F(1,8) = 0.398, p = 0.546	1.895	1.018	0.263 ± 0.118	0.395 ± 0.178	0.195 ± 0.068	0.474 ± 0.064	
μm_{1} $\mu m_{1} m_{1} m_{2} m_{1} m_{1} m_{1} m_{2} m_{2} m_{1} m_{1} m_{2} m_{2} m_{2} m_{1} m_{2} m_{2$		D2R	F(3,8) = 0.871, n = 0.495	F(1,8) = 0.236, p = 0.640	F(1,8) = 2.369, p = 0.162	F(1,8) = 0.007, p = 0.938	1.144	1.542	0.300 ± 0.084	0.346 ± 0.018	0.466 ± 0.206	0.531 ± 0.049	
Mr. $r(x) = r(x) = $		5HT14	F(3,12) = 0.625, n = 0.612	F(1,12) = 0.847, n = 0.375	F(1,12) = 0.684, n = 0.424	F(1,12) = 0.344, n = 0.569	1.277	0.804	0.550 ± 0.143	0.789 ± 0.236	0.511 ± 0.100	0.564 ± 0.123	
ShTHB P = 0.44 P = 0.44 B = 0.01 M = 0.01 M = 0.01 P = 0.01 M = 0.01 M = 0.01 P = 0.01 M = 0.01 M = 0.01 M = 0.01 M = 0.01HB D = 0.01 M = 0.01 M = 0.01 M = 0.01HB D = 0.01 M = 0.01 M = 0.01 M = 0.01HB D = 0.01 M = 0.01 M = 0.01 M = 0.01HB D = 0.01 M = 0.01 M = 0.01 M = 0.01HB D = 0.01 M = 0.01 M = 0.01 M = 0.01HB D = 0.01 M = 0.01 M = 0.01 M = 0.01HB D = 0.01 M = 0.01 M = 0.01 M = 0.01HB D = 0.01 M = 0.01 M = 0.01 M = 0.01HB D = 0.01 M = 0.01 M = 0.01 M = 0.01HB D = 0.01 M = 0.01 M = 0.01 M = 0.01HB D = 0.01 M = 0.01 M = 0.01 M = 0.01HB D = 0.01 M = 0.01 M = 0.01 M = 0.01 M = 0.01 M = 0.01 M = 0.01 M = 0.01 		5HT ₂₄	F(3,12) = 1.418, p = 0.286	F(1,12) = 0.017, p = 0.898	F(1,12) = 2.742, p = 0.124	F(1,12) = 1.494, p = 0.245	0.938	2.374	0.110 ± 0.067	0.295 ± 0.115	0.596 ± 0.302	0.368 ± 0.070	
EditedPDS2+200 $p = 0.24$ PDS2+200 $p = 0.24$ PDS2+200 $p = 0.24$ 244 = 0.412004 = 0.01 <th< td=""><td></td><td>5HT7</td><td>p = 0.230 F(3,8) = 0.143,</td><td>F(1,8) = 1.617, p = 0.239</td><td>F(1,8) = 4.821, p = 0.059</td><td>F(1,8) = 0.772, p = 0.405</td><td>1.425</td><td>1.869</td><td>0.612 ± 0.111</td><td>0.716 ± 0.017</td><td>0.959 ± 0.102</td><td>1.524 ± 0.503</td></th<>		5HT7	p = 0.230 F(3,8) = 0.143,	F(1,8) = 1.617, p = 0.239	F(1,8) = 4.821, p = 0.059	F(1,8) = 0.772, p = 0.405	1.425	1.869	0.612 ± 0.111	0.716 ± 0.017	0.959 ± 0.102	1.524 ± 0.503	
Important Particle Particle Nat performed		GABAAβ2	p = 0.474 F(3,12) = 1.629, n = 0.235	F(1,12) = 2.730, p = 0.124	F(1,12) = 0.215, n = 0.651	F(1,12) = 1.942, p = 0.189	1.216	1.056	2.784 ± 0.302	2.872 ± 0.317	2.464 ± 0.481	3.509 ± 0.218	
bit FRUE FRUE <th< th=""><th>Hippocampus</th><th>Crmp4</th><th><i>p</i> = 0.235</th><th>p 0.124 Not pe</th><th>rformed</th><th>p 0.107</th><th>Not performed</th><th>0.879</th><th>0.700 ± 0.060</th><th>ND</th><th>0.615 ± 0.042</th><th>ND</th></th<>	Hippocampus	Crmp4	<i>p</i> = 0.235	p 0.124 Not pe	rformed	p 0.107	Not performed	0.879	0.700 ± 0.060	ND	0.615 ± 0.042	ND	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		VGluT2	F(3,12) = 0.666,	F(1,12) = 0.936,	F(1,12) = 0.901,	F(1,12) = 0.161,	0.847	1 175	0.779 ± 0.056	0.700 ± 0.077	0.963 ± 0.196	0 775 ± 0 164	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		DIR	p = 0.589 F(3,9) = 3.546,	p = 0.352 F(1,9) = 3.611,	p = 0.361 F(1,9) = 3.156,	p = 0.695 F(1,9) =4.288,	1 290	0 789	0.674 ± 0.118	0.660 ± 0.044	0.368 ± 0.016	0.683 ± 0.014	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		D2R	p = 0.061 F(3,8) = 0.215,	p = 0.090 F(1,8) = 0.216,	p = 0.109 F(1,8) = 0.176,	p = 0.068 F(1,8) = 0.253,	1 169	1 153	0.132 ± 0.053	0 130 + 0 009	0.128 + 0.016	0 174 + 0 079	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		5117	p = 0.883 F(3,12) = 1.365,	p = 0.655 F(1,12) = 2.665,	p = 0.686 F(1,12) = 1.424,	p = 0.629 F(1,12) = 0.005,	1 202	1.212	0.836 ± 0.303	1 326 ± 0 328	1.241 ± 0.170	1.602 ± 0.170	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		5117 14	p = 0.301 F(3,11) = 1.657,	p = 0.129 F(1,11) = 0.059,	p = 0.256 F(1,11) = 4.094,	p = 0.943 F(1,11) = 0.512,	1.505	0.277	0.136 ± 0.062	0.102 + 0.0228	1.241 ± 0.170	0.048 + 0.010	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		5H124	p = 0.233 F(3,8) = 1.211,	p = 0.813 F(1,8) = 0.781,	p = 0.068 F(1,8) = 1.004,	p = 0.489 F(1,8) = 1.849,	1.117	0.377	0.136 ± 0.062	0.183 ± 0.067	0.071 ± 0.038	0.048 ± 0.019	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		5HT7	p = 0.366 F(3.12) = 0.416	p = 0.403 F(1.12) = 0.216	p = 0.346 F(1.12) = 0.992	p = 0.211 F(1.12) = 0.040	1.373	1.435	0.297 ± 0.057	0.241 ± 0.085	0.255 ± 0.061	0.517 ± 0.200	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		GABAAβ2	p = 0.745 F(3.12) = 0.306	p = 0.650 F(1.12) = 0.475	p = 0.339 F(1.12) = 0.357	p = 0.845 F(1.12) = 0.357	0.916	1.223	0.281 ± 0.012	0.244 ± 0.044	0.328 ± 0.095	0.314 ± 0.045	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$GABAA\gamma 2$	p = 0.758 p = 0.502	p = 0.504 F(1,12) = 0.107	p = 0.561 F(1.12) = 0.011	p = 0.561 F(1.12) = 0.401	1.096	0.917	0.193 ± 0.012	0.229 ± 0.042	0.193 ± 0.026	0.194 ± 0.020	
NamePGamPG125P		VGAT	p = 0.688	p = 0.665	p = 0.359	p = 0.539	1.047	0906	0.302 ± 0.017	0.296 ± 0.053	0.255 ± 0.016	0.287 ± 0.014	
Cence Compd L182 0.615 ± 0.059 ND 0.727 ± 0.058 ND GlakI $\frac{P_{0.0}}{P_{-0.155}}$ $\frac{P_{0.0}}{P_{-0.085}}$ $\frac{P_{0.0}}{P_{-0.095}}$ $\frac{P_{0.05}}{P_{0.095}}$ $\frac{P_{0.05}}{P_{0.095}}$ $\frac{P_{0.05}}{P_{0.095}}$ $\frac{P_{0.05}}{P_{0.095}}$ $\frac{P_{0.05}}{P_{0.095}}$ $\frac{P_{0.05}}{P_{0.095}}$ $\frac{P_{0.05}}{P_{0.095}}$ $\frac{P_{0.05}}{P_{0.05}}$ $\frac{P_{0.05}}{P_{0.055}}$ $P_$		Ncam1	F(3,12) = 1.535, p = 0.256	F(1,12) = 2.512, p = 0.139	F(1,12) = 2.077, p = 0.175	F(1,12) = 0.014, p = 0.906	1.084	1.076	0.082 ± 0.041	0.141 ± 0.071	1.035 ± 0.159	1.318 ± 0.223	
GluRIF(3,8) = 2.287, F(1,8) = 0.547, F(1,8) = 4.394, F(1,8) = 1.291, p = 0.099 p = 0.2030.8541.5740.294 ± 0.0310.162 ± 0.0230.339 ± 0.0560.379 ± 0.104GluR2F(1,0) = 1.874, F(1,0) = 0.004, F(1,0) = 1.455, F(1,0) = 1.3410, p = 0.925p = 0.0951.0060.8600.392 ± 0.0590.319 ± 0.0190.267 ± 0.0150.345 ± 0.035VGhT1F(1,12) = 1.79, P = 0.126p = 0.226p = 0.0421.0041.0111.085 ± 0.0081.084 ± 0.0041.091 ± 0.0091.101 ± 0.004DIRF(3,8) = 0.403, P = 0.226F(1,8) = 0.048, F(1,8) = 1.163, P = 0.323p = 0.3121.0050.9431.932 ± 0.4511.467 ± 0.4761.362 ± 0.1511.845 ± 0.567D2RF(3,8) = 1.369, P = 0.330, P = 0.339P = 0.537P = 0.326P = 0.137P = 0.326P = 0.1481.2881.7090.746 ± 0.0340.483 ± 0.2070.709 ± 0.2421.393 ± 0.587JHT_{44}F(3,8) = 1.789, F(1,8) = -1.013, P = 0.223P = 0.323P = 0.0941.3670.7790.168 ± 0.0290.222 ± 0.0140.126 ± 0.0230.179 ± 0.079JHT_{44}F(3,8) = 0.015, P = 0.233P = 0.021, P = 0.036P = 0.9380.9770.9690.953 ± 0.1100.953 ± 0.1110.944 ± 0.2310.902 ± 0.096JHT_{44}F(3,8) = 0.023, P = 0.036F(1,12) = 1.392, P = 0.036P = 0.8880.9770.9690.953 ± 0.1100.944 ± 0.2310.902 ± 0.096JHT_{44}F(3,8) = 0.023, P = 0.366P = 0.938P = 0.841P = 0.8890.9770.9690.953 ± 0.1100.944 ± 0.2310.	Cortex	Crmp4		Not pe	rformed		Not performed	1.182	0.615 ± 0.059	ND	0.727 ± 0.058	ND	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		GluR1	F(3,8) = 2.287, p = 0.155	F(1,8) = 0.547, p = 0.481	F(1,8) = 4.394, p = 0.069	F(1,8) = 1.921, p = 0.203	0.854	1.574	0.294 ± 0.031	0.162 ± 0.023	0.339 ± 0.056	0.379 ± 0.104	
F(3,12) = 1.719, P = 0.216F(1,12) = 1.631, P = 0.226F(1,12) = 2.822, P = 0.115F(1,12) = 0.663, P = 0.4221.0041.0111.085 ± 0.0081.084 ± 0.0441.091 ± 0.0091.101 ± 0.004D1RF(3,3) = 0.403, P = 0.55F(1,3) = 0.0048, P = 0.55F(1,3) = 1.163, P = 0.3121.0050.9431.932 ± 0.4511.467 ± 0.4761.362 ± 0.1511.845 ± 0.567D2RF(3,3) = 1.369, P = 0.320F(1,3) = 0.048, P = 0.320F(1,3) = 2.099, P = 0.2281.2881.7090.746 ± 0.0340.483 ± 0.2070.709 ± 0.2421.393 ± 0.587HT_{L1}F(3,5) = 1.789, P = 0.227F(1,3) = 0.143, P = 0.217F(1,3) = 0.304, P = 0.253F(1,3) = 0.009, P = 0.9341.2881.7090.746 ± 0.0340.483 ± 0.2070.709 ± 0.2421.393 ± 0.587HT_{L2}F(3,5) = 0.815, P = 0.227F(1,3) = 0.143, P = 0.217F(1,3) = 0.304, P = 0.253F(1,3) = 0.009, P = 0.9841.3670.7790.168 ± 0.0290.128 ± 0.1581.742 ± 0.4071.208 ± 0.138HT_{2}F(3,5) = 0.021, P = 0.521F(1,3) = 0.021, F(1,2) = 0.770, 0.9770.9690.953 ± 0.110.944 ± 0.2310.902 ± 0.096GABA4A2F(3,12) = 1.800, F(1,12) = 0.779, 0.7840.8740.169 ± 0.0290.149 ± 0.0160.165 ± 0.0140.113 ± 0.008GABA4A2F(3,12) = 0.792, F(1,12) = 0.779, 0.7840.8301.2970.077 ± 0.0170.668 ± 0.0130.105 ± 0.0260.683 ± 0.010<		GluR2	F(3,10) = 1.874, p = 0.198	F(1,10) = 0.004, p = 0.948	F(1,10) = 1.455, p = 0.255	F(1,10) = 3.410, p = 0.095	1.006	0.860	0.392 ± 0.059	0.319 ± 0.019	0.267 ± 0.015	0.345 ± 0.035	
DIR $F(3,8) = 0.403$, $p = 0.755$ $F(1,8) = 0.096$, $p = 0.985$ $F(1,8) = 1.163$, $p = 0.333$ $p = 0.312$ 1.005 0.943 1.932 ± 0.451 1.467 ± 0.476 1.362 ± 0.151 1.845 ± 0.567 D2R $F(3,8) = 1.369$, $p = 0.320$ $F(1,8) = 0.396$, $p = 0.547$ $F(1,8) = 1.701$, $p = 0.228$ $F(1,8) = 0.09$, $p = 0.944$ 1.288 1.709 0.746 ± 0.034 0.483 ± 0.207 0.709 ± 0.242 1.393 ± 0.587 $3HT_{14}$ $F(3,8) = 1.389$, $p = 0.227$ $p = 0.134$ $p = 0.914$ 0.396 1.241 1.010 ± 0.071 1.369 ± 0.158 1.742 ± 0.407 1.208 ± 0.138 $5HT_{14}$ $F(3,8) = 0.815$, $p = 0.521$ $p = 0.255$ $p = 0.901$ 0.936 1.241 1.010 ± 0.071 1.369 ± 0.158 1.742 ± 0.407 1.208 ± 0.138 $5HT_{14}$ $P(3,8) = 0.815$, $p = 0.521$ $p = 0.255$ $p = 0.901$ 0.936 1.241 1.010 ± 0.071 1.369 ± 0.158 1.742 ± 0.407 1.208 ± 0.138 $5HT_{14}$ $P(3,8) = 0.815$, $p = 0.525$ $P = 0.512$ $p = 0.984$ 1.367 0.779 0.168 ± 0.029 0.222 ± 0.014 0.126 ± 0.023 0.179 ± 0.079 $5HT_{14}$ $F(3,8) = 0.028$, $p = 0.993$ $P = 0.811$ $p = 0.889$ $p = 0.877$ 0.969 0.953 ± 0.155 0.953 ± 0.111 0.944 ± 0.231 0.902 ± 0.096 $6ABAAaI$ $F(3,12) = 1.880$, $p = 0.512$ $P = 0.295$ $P = 0.398$ $P = 0.874$ 0.874 0.169 ± 0.029 0.149 ± 0.016 0.165 ± 0.014 0.113 ± 0.008		VGluT1	F(3,12) = 1.719, p = 0.216	F(1,12) = 1.631, p = 0.226	F(1,12) = 2.892, p = 0.115	F(1,12) = 0.663, p = 0.442	1.004	1.011	1.085 ± 0.008	1.084 ± 0.004	1.091 ± 0.009	1.101 ± 0.004	
D2R $F(3,8) = 1.369, p = 0.320, p = 0.547, p = 0.228, p = 0.194, p = 0.217, p = 0.115, p = 0.253, p = 0.091, 0.936, p = 0.994, 1.367, 0.779, 0.168 \pm 0.029, 0.222 \pm 0.014, 0.126 \pm 0.023, 0.179 \pm 0.079, p = 0.521, p = 0.521, p = 0.360, p = 0.984, p = 0.984, p = 0.984, p = 0.951, p = 0.521, p = 0.360, p = 0.984, p = 0.984, p = 0.984, p = 0.953, p = 0.994, p = 0.521, p = 0.360, p = 0.984, p = 0$		DIR	F(3,8) = 0.403, p = 0.755	F(1,8) = 0.000, p = 0.985	F(1,8) = 0.048, p = 0.833	F(1,8) = 1.163, p = 0.312	1.005	0.943	1.932 ± 0.451	1.467 ± 0.476	1.362 ± 0.151	1.845 ± 0.567	
F(1,8) = 1.789, $p = 0.227$ F(1,8) = 0.143, $p = 0.253$ F(1,8) = 3.703, $p = 0.051$ 0.9361.2411.010 ± 0.0711.369 ± 0.1581.742 ± 0.4071.208 ± 0.138SHT11F(1,8) = 1.789, $p = 0.227$ F(1,8) = 0.143, $p = 0.253$ F(1,8) = 3.703, $p = 0.051$ 0.9361.2411.010 ± 0.0711.369 ± 0.1581.742 ± 0.4071.208 ± 0.138SHT11F(3,8) = 0.021, $p = 0.521$ F(1,8) = 0.021, $p = 0.834$ F(1,8) = 0.021, $p = 0.888$ 0.9770.9690.953 ± 0.1110.944 ± 0.2310.992 ± 0.096GABAAalF(3,12) = 1.880, $p = 0.813$ F(1,12) = 0.770, $p = 0.895$ 0.7790.7840.8740.169 ± 0.0290.149 ± 0.0160.165 ± 0.0140.113 ± 0.008GABAAalF(3,12) = 1.880, $p = 0.187$ F(1,12) = 0.770, $p = 0.521$ 0.8740.8740.169 ± 0.0290.149 ± 0.0160.165 ± 0.0140.113 ± 0.008GABAAA2F(3,12) = 0.739, $p = 0.521$ F(1,12) = 0.749, $p = 0.311$ F(1,12) = 0.138, $p = 0.717$ 0.8301.2970.077 ± 0.017		D2R	F(3,8) = 1.369, p = 0.320	F(1,8) = 0.396, p = 0.547	F(1,8) = 1.701, p = 0.228	F(1,8) = 2.009, p = 0.194	1.288	1.709	0.746 ± 0.034	0.483 ± 0.207	0.709 ± 0.242	1.393 ± 0.587	
Product $F(3,2) = 1.521$ $F(1,8) = 0.541$ $F(1,8) = 1.502$ $F(1,8) = 0.944$ $F(1,8) = 0.001$ $5HT_{24}$ $F(3,8) = 0.021$ $p = 0.350$ $p = 0.984$ 1.367 0.779 0.168 ± 0.029 0.222 ± 0.014 0.126 ± 0.023 0.179 ± 0.079 $5HT_7$ $F(3,8) = 0.021$ $F(1,8) = 0.021$ $F(1,12) = 0.79$ $O.168 \pm 0.029$ $O.222 \pm 0.014$ $O.126 \pm 0.023$ $O.179 \pm 0.079$ $F(3,12) = 1.580$ $F(1,12) = 0.021$ $F(1,12) = 0.770$ $O.784$ $O.774$ $O.774 = 0.077 \pm 0.077 \pm 0.017$ $O.688 \pm 0.013$ $O.105 \pm 0.026$ $O.883 \pm 0.010$ $F(3,12) = 0.792$ $F(1,12) = 0.749$ <th c<="" td=""><td></td><td>5HT14</td><td>F(3,8) = 1.789, n = 0.227</td><td>F(1,8) = 0.143, p = 0.715</td><td>F(1,8) = 1.520, p = 0.253</td><td>F(1,8) = 3.703, p = 0.091</td><td>0.936</td><td>1.241</td><td>1.010 ± 0.071</td><td>1.369 ± 0.158</td><td>1.742 ± 0.407</td><td>1.208 ±0.138</td></th>	<td></td> <td>5HT14</td> <td>F(3,8) = 1.789, n = 0.227</td> <td>F(1,8) = 0.143, p = 0.715</td> <td>F(1,8) = 1.520, p = 0.253</td> <td>F(1,8) = 3.703, p = 0.091</td> <td>0.936</td> <td>1.241</td> <td>1.010 ± 0.071</td> <td>1.369 ± 0.158</td> <td>1.742 ± 0.407</td> <td>1.208 ±0.138</td>		5HT14	F(3,8) = 1.789, n = 0.227	F(1,8) = 0.143, p = 0.715	F(1,8) = 1.520, p = 0.253	F(1,8) = 3.703, p = 0.091	0.936	1.241	1.010 ± 0.071	1.369 ± 0.158	1.742 ± 0.407	1.208 ±0.138
P 0.01P 0.01P 0.01P 0.01 $5HT_7$ $F(3,8) = 0.021$ $p = 0.993$ $p = 0.021$ $p = 0.888$ $p = 0.88$ $p = 0.841$ $F(1,8) = 0.021$ $p = 0.889$ 0.977 0.969 0.953 ± 0.105 0.953 ± 0.111 0.944 ± 0.231 0.902 ± 0.096 $GABAAa1$ $p = 0.993$ $p = 0.888$ $p = 0.888$ $p = 0.025$ $F(1,12) = 0.770$ $p = 0.295$ 0.784 0.874 0.169 ± 0.029 0.149 ± 0.016 0.165 ± 0.014 0.113 ± 0.008 $GABAA\beta2$ $F(3,12) = 1.792$ $p = 0.521$ $F(1,12) = 0.749$ $p = 0.246$ $F(1,12) = 0.138$ $p = 0.717$ 0.830 1.297 0.077 ± 0.017 0.068 ± 0.013 0.105 ± 0.026 0.083 ± 0.010 $VGAT$ $F(3,12) = 2.826$ $p = 0.071$ $F(1,12) = -1.120$ $p = 0.311$ $F(1,12) = 3.445$ $p = 0.088$ 0.808 1.121 0.597 ± 0.039 0.383 ± 0.026 0.534 ± 0.062 0.546 ± 0.080 Raphe $SERT$ $F(3,10) = 1.175$ $F(1,10) = 0.437$ $F(1,10) = 0.0427$ $F(1,10) = 0.062$ $F(1,10) = 0.062$ $F(1,10) = 0.063$ 0.918 0.438 ± 0.070 0.590 ± 0.109 0.438 ± 0.093 0.506 ± 0.183		5HT24	F(3,8) = 0.815, n = 0.521	F(1,8) = 1.502, n = 0.255	F(1,8) = 0.944, n = 0.360	F(1,8) = 0.000, p = 0.984	1.367	0.779	0.168 ± 0.029	0.222 ± 0.014	0.126 ± 0.023	0.179 ± 0.079	
$F(1,2) = 1.88$ $F(1,2) = 3.673$ $F(1,2) = 1.98$ $F(1,2) = 0.770$ $P = 0.070$ $P = 0.079$ $P = 0.295$ $P = 0.398$ 0.784 0.874 0.169 ± 0.029 0.149 ± 0.016 0.165 ± 0.014 0.113 ± 0.008 <i>GABAAA</i> 2 $F(3,12) = 0.792$ $P = 0.079$ $P = 0.295$ $P = 0.398$ 0.784 0.874 0.169 ± 0.029 0.149 ± 0.016 0.165 ± 0.014 0.113 ± 0.008 <i>GABAAB2</i> $F(3,12) = 0.792$ $P = 0.079$ $P = 0.295$ $P = 0.717$ 0.830 1.297 0.077 ± 0.017 0.068 ± 0.013 0.105 ± 0.026 0.083 ± 0.010 <i>VGAT</i> $F(3,12) = 2.826$ $F(1,12) = -1.120$ $F(1,2) = -3.445$ 0.808 1.121 0.597 ± 0.039 0.383 ± 0.026 0.553 ± 0.062 0.546 ± 0.080 <i>VGAT</i> $p = 0.0711$ $p = 0.081$ $p = 0.073$ $F(1,10) = 0.063$ 1.251 0.918 0.438 ± 0.070 0.590 ± 0.109 0.438 ± 0.093 0.506 ± 0.183 Raphe <		5HT7	F(3,8) = 0.028, p = 0.093	F(1,8) = 0.021, p = 0.888	F(1,8) = 0.043, p = 0.841	F(1,8) = 0.021, p = 0.889	0.977	0.969	0.953 ±0.105	0.953 ± 0.111	0.944 ± 0.231	0.902 ± 0.096	
p p <td></td> <td>GABAAal</td> <td>F(3,12) = 1.880, n = 0.187</td> <td>F(1,12) = 3.673 p = 0.079</td> <td>F(1,12) = 1.198, p = 0.295</td> <td>F(1,12) = 0.770, n = 0.398</td> <td>0.784</td> <td>0.874</td> <td>0.169 ±0.029</td> <td>0.149 ± 0.016</td> <td>0.165 ± 0.014</td> <td>0.113 ± 0.008</td>		GABAAal	F(3,12) = 1.880, n = 0.187	F(1,12) = 3.673 p = 0.079	F(1,12) = 1.198, p = 0.295	F(1,12) = 0.770, n = 0.398	0.784	0.874	0.169 ±0.029	0.149 ± 0.016	0.165 ± 0.014	0.113 ± 0.008	
$p - 0.521$ $p - 0.640$ $p - 0.643$ $p - 0.643$ $p - 0.663$ $p - 0.800$ $p - 0.800$ $p - 0.810$ 0.438 ± 0.070 0.590 ± 0.109 0.438 ± 0.093 0.506 ± 0.183 Raphe SERT F(1.0) - 0.0437, F(1.0) - 0.062, F(1.0) - 0.063, F(1.0) - 0.063, F(1.0) - 0.064, F(1.0) - 0.06		GABAAβ2	p = 0.187 F(3,12) = 0.792, r = 0.521	F(1,12) = 0.749, p = 0.404	F(1,12) = 1.489, p = 0.246	F(1,12) = 0.138, p = 0.717	0.830	1.297	0.077 ± 0.017	0.068 ± 0.013	0.105 ± 0.026	0.083 ± 0.010	
$\frac{p - 0.064}{Raphe} \frac{p - 0.01}{SERT} \frac{p - 0.01}{F(3,10) = 1.175}, \frac{F(1,10) = 0.062}{F(1,0) = 0.062}, \frac{F(1,10) = 0.063}{F(1,0) = 0.063}, \frac{1.251}{P(1,0) = 0.063}, \frac{0.438 \pm 0.070}{P(1,0) = 0.019}, \frac{0.438 \pm 0.093}{P(1,0) = 0.019}, \frac{0.506 \pm 0.183}{P(1,0) = 0.019}$		VGAT	p = 0.521 F(3,12) = 2.826,	F(1,12) = 3.913, p = 0.071	F(1,12) = 1.120, r = 0.211	F(1,12) = 3.445, p = 0.088	0.808	1.121	0.597 ± 0.039	0.383 ± 0.026	0.553 ± 0.062	0.546 ± 0.080	
	Raphe	SERT	p = 0.084 F(3,10) = 1.175,	p = 0.071 F(1,10) = 0.437,	p = 0.511 F(1,10) = 0.062,	p = 0.088 F(1,10) = 0.063,	1.251	0.918	0.438 ± 0.070	0.590 ± 0.109	0.438 ± 0.093	0.506 ± 0.183	

Supplementary Table S4. Gene expressions without significant differences among groups in adults

Target genes	Primer sequence (5'-3')							
	Forward	Reverse	size (bp)					
Crmp4	GGTACAGAGCCTCAGCAAGG	TTATCCCCATTTCCAGCATC	200					
VGluT1	TGGGTTTCTGTATCAGCTTTG	TGTGCTGTTGTTGACCATGGACACG	74					
VGluT2	CGTGAAGAATGGCAGTATGTCTTC	TGAGGCAAATAGTGCATAAAATATGACT	81					
GluR1	CCCTTTACAACGTGGAGGAA	GAACAAGGGCGTCTCTTCTG	152					
GluR2	ACGAGTGGCACACTGAGGAA	GCACCCAAGGAAAACCAGAG	103					
GAD67	CTCAGGCTGTATGTCAGATGTTC	AAGCGAGTCACAGAGATTGGTC	111					
VGAT	CCATTGGCATCATCGTGTT	CCAGTTCATCATGCAGTGGAA	101					
GABAAal	AAGGACCCATGACAGTGCTC	CAGAGTGCCATCCTCTGTGA	149					
GABAAβ2	AACGCCTTCCATCATTGTTC	ATCACCACTCCACGACATCA	148					
GABAAy2	AGTGTTTGGATGGCAAGGAC	AGGAGTCCATTTTGGCAATG	111					
GABABR1	TCTGGTTGTGCTCTTTGTGC	TCCTCATTGTTGTTGGTGGA	111					
DAT	CCAGCAATTCAGTGATGACATC	CAGCATAGCCGCCAGTACAG	69					
DIR	CTCCTGATGGAACACCATTG	GCTTAGCCCTCACGTTCTTG	119					
D2R	TGCCATTGTTCTTGGTGTG	AGAGGACTGGTGGGATGTTG	98					
5HT _{1A}	CAAGACGGTCAAGAAGGTGG	CACTACCTGGCTGACCATTC	101					
5HT _{2A}	TTCGGGCTACAGGATGATTC	TGATGGTTAGGGGGGATGAAA	112					
5HT ₇	TGCGGTAAGCACACTACAGC	CACAAAGCCTAGACGGGAAG	135					
SERT	TGCCTTTTATATCGCCTCCTAC	CAGTTGCCAGTGTTCCAAGA	123					
Ncam1	TGTCAAGTGGCAGGAGATGC	GGCGTTGTAGATGGTGAGGGT	138					
N-cadherin	AGCGCAGTCTTACCGAAGG	TCGCTGCTTTCATACTGAACTTT	101					
β -actin	GCTACAGCTTCACCACCACA	TCTCCAGGGAGGAAGAGGAT	123					

Supplementary Table S5. Real-time qRT-PCR primer sequences