
SUPPLEMENTARY INFORMATION

On the proportional abundance of species:

Integrating population genetics and community

ecology

Pablo A. Marquet1,2,3,4,5,*, Guillermo Espinoza1,6, Sebastian R.
Abades7, Angela Ganz6, and Rolando Rebolledo6,8

1Departamento de Ecoloǵıa, Facultad de Ciencias Biológicas,
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Católica de Chile, Alameda 340 C.P. 6513677, Santiago, Chile

5The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501,
USA
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We start by defining a general population model and its diffusion approximation.
To do so, we envision the situation where an observer is able to characterize the
state of an ecological system at a given scale in time and space (i.e. the focal system)
by measuring several parameters, in our case the important ones are:

• S or the number of species in the focal system.

• J or total number of individuals in the focal system.

• NJ(t) is the number of individuals of a given species during the time interval
[0, t], inside a focal community of size ≤ J .

Let us now define the proportion XJ(t) =
NJ(t)

J
that corresponds to a (random)

proportional abundance during ]0, t]. We are interested in the behavior of this
proportion when the size of the population J increases to infinity to find the law (or
the state of the open system), when the proportions will become probabilities. This
requires to rescale time t by J . Thus, for each total number of individual J we define

the rescaled proportional abundance process ZJ(t) =
NJ(Jt)

J
= XJ(Jt). According

to the Neutral Theory all species are indistinguishable, so that the expected value

of ZJ(t), is E(ZJ(t)) = E(
NJ(Jt)

J
), and represents the proportional abundance of

any species.
The dynamics of the population of a given species in the focal system will be

governed by generalized birth and death events (including speciation, immigration
and emigration) described by two rates bJ and dJ (birth and death of individuals),
while the interaction with the environment (unobserved dynamics) is driven by a
noise (a martingale). So, let J ≥ 1 and assume that the process (NJ(t), t ≥ 0) is a
birth and death process taking values in {1, . . . , J}.

The transition probabilities are given by

QJ(x, y) =


BJ(x) if y = x+ 1, 0 ≤ x ≤ J − 1 ,

1− (BJ(x) +DJ(x)) if y = x, 0 ≤ x ≤ J ,

DJ(x) if y = x− 1, 1 ≤ x ≤ J ,

0 otherwise.

(S1)

XJ(t) = NJ(t)/J is again a jump Markov process with states in {0, 1

J
,

2

J
, . . . , 1} ⊂

[0, 1], and we abuse the language by keeping the same notations for the transition

kernel: QJ(x, y) = BJ(x) if y = x+
1

J
, x ∈ {0, 1

J
, . . . , 1− 1

J
}, and so on. The dy-

namics of this process XJ is typically open: it concerns a main-system part defined
by an observable like the evolution rate of XJ ; and a noisy part which represents
the interaction of this system with the environment.

From the mathematical point of view, XJ can be decomposed as follows:

XJ(t) = XJ(0) + X̃J(t) +MJ(t), (S2)

2



where X̃J is the observable process (predictable, in mathematical terms), and MJ

is the noise process (a martingale).

The process X̃J is easily computed by means of the Markov property of XJ

(see (1)). That requires to introduce the filtration or history induced by XJ ,
given roughly by FJt obtained from σ(XJ(s); 0 ≤ s ≤ t) by customary Dellacherie
procedure for all t ≥ 0. We assume further that we choose a nice version of
XJ , that is right-hand continuous with left-hand limits. As a result, given any

measurable function f defined on [0, 1], the predictable compensator f̃ ◦XJ(t) of
f ◦XJ(t) = f(XJ(t)) is given by

f̃ ◦XJ(t) =∫ t

0

BJ(XJ(s−))

(
f(XJ(s−) +

1

J
)− f(XJ(s−))

)
ds

+

∫ t

0

DJ(XJ(s−))

(
f(XJ(s−)− 1

J
)− f(XJ(s−))

)
ds. (S3)

So that, if one applies the above formula to the identity function in [0, 1], one
obtains:

X̃J(t) =
1

J

∫ t

0

(BJ(XJ(s−))−DJ(XJ(s−)))ds. (S4)

This gives the main dynamics for the proportion of living individuals in the
population of size J .

The noise is (trivially) given by

MJ(t) = XJ(t)− 1

J

∫ t

0

(BJ(XJ(s−))−DJ(XJ(s−)))ds. (S5)

However, the important characteristics of this noise is provided by its “energy dis-
sipation”, which is the increasing process 〈MJ ,MJ〉 such that M2

J − 〈MJ ,MJ〉 is a
martingale (or the predictable compensator of the square of the noise, which is an
observable quantity). Using again the Markov property one finds

〈MJ ,MJ〉(t) =
1

J2

∫ t

0

(BJ(XJ(s−)) +DJ(XJ(s−)))ds. (S6)

The two processes (S4) and (S6) are essential to understand the approximation
of the dynamics by a diffusion when J → ∞ and one considers a large time scale
(Jt instead of t).

Let define ZJ(t) = XJ(Jt). Therefore, after an elementary change of variables
(u = s/J) in (S4), we obtain the predictable compensator of ZJ as

Z̃J(t) =
1

J

∫ Jt

0

(BJ(XJ(s−))−DJ(XJ(s−)))ds

=

∫ t

0

(BJ(ZJ(u−))−DJ(ZJ(u−)))du.
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Analogously, in (S6) the new time scale yields

〈MJ ,MJ〉(Jt) =
1

J

∫ t

0

(BJ(ZJ(u−)) +DJ(ZJ(u−)))du.

Theorem 1 Define ZJ(t) = XJ(Jt), for all J ≥ 1 and t ≥ 0. Assume ZJ(0) =
z ∈ [0, 1] fixed, and that there exists two continuous functions β, σ : [0, 1]→ R, with
σ(x) > 0, for all x ∈]0, 1[, β ∈ C1(]0, 1[), σ ∈ C2(]0, 1[), such that they satisfy in
addition the two following hypotheses:

(H1) For all T > 0, supt∈[0,T ] |(BJ(ZJ(t−)) − DJ(ZJ(t−))) − β(ZJ(t−))| → 0 in
probability;

(H2) For all T > 0, supt∈[0,T ] |
1

J
(BJ(ZJ(t−)) + DJ(ZJ(t−))) − σ2(ZJ(t−))| → 0

in probability, as J →∞.

Then, the process ZJ converges in distribution towards a diffusion process Z
which can be represented as

Z(t) = Z(0) +

∫ t

0

β(Z(s))ds+

∫ t

0

σ(Z(s))dWs, (t ≥ 0). (S7)

Moreover, Z(t) ∈ [0, 1] with probability 1 for all t ≥ 0. Z is a Feller process and its
semigroup (Tt)t≥0 acting on C([0, 1]) has a generator L given by

Lf(x) =
1

2
σ2(x)

d2

dx2
f(x) + β(x)

d

dx
f(x), (x ∈ R), (S8)

for any f ∈ C2(]0, 1[) ∩ C([0, 1]) such that f(0) = f(1) = 0. As a result, the dual
semigroup (T ∗t )t≥0 leaves the space L1([0, 1]) invariant, so that, in particular, given
any probability density ρ on [0, 1], its evolution ρt = T ∗t ρ satisfies the Chapman-
Kolmogorov (or Master Equation),

∂ρt(x)

∂t
= L∗ρt(x) =

1

2

d2

dx2
(
σ2(x)ρt(x)

)
− d

dx
(β(x)ρt(x)) . (S9)

Proof. This theorem is a direct consequence of Proposition III.2.4, pages 92-93
in (2) (see also a more general result in (3)).

One notes first that the process ZJ with states in [0, 1] almost surely, has van-
ishing jumps if J →∞, since supt |∆ZJ(t)| ≤ 1/J . Thus the first hypothesis in (2)
Proposition III.2.4, is satisfied.

In addition, given T > 0, it holds that

sup
t≤T
|
∫ t

0

(BJ(ZJ(s−))−DJ(ZJ(s−)))ds−
∫ t

0

β(ZJ(s))ds|

≤ T sup
t∈[0,T ]

|(BJ(ZJ(t−))−DJ(ZJ(t−)))− β(ZJ(t−))|.
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Similarly,

sup
t≤T
| 1
J

∫ t

0

(BJ(ZJ(s−)) +DJ(ZJ(s−)))ds−
∫ t

0

σ2(ZJ(s))ds|

≤ T sup
t∈[0,T ]

| 1
J

(BJ(ZJ(t−)) +DJ(ZJ(t−)))− σ2(ZJ(t−))|

So that, in both previous inequalities the left-hand terms converge to 0 in prob-
ability as J →∞ due to (H1) and (H2).

Moreover, the hypotheses on β and σ imply that there is a unique solution in
distribution to the equation (S7) (see for instance (4), Corollary 4.29 and Theorem
5.7). As a result, Proposition III.2.4 in (2) fully applies. So that, the convergence
to the diffusion Z is proved. Moreover, since P(ZJ(t) ∈ [0, 1]) = 1, the convergence
in distribution implies that 1 = lim supP(ZJ(t) ∈ [0, 1]) ≤ P(Z(t) ∈ [0, 1]) ≤ 1, thus
Z(t) ∈ [0, 1] for all t ≥ 0, almost surely.

Finally, the coefficients β and σ of the diffusion are bounded, with bounded
derivatives, so that, the generator L applies each function of its core C2

c (]0, 1[) into
an element of the Banach space C([0, 1]). Therefore, by a density argument, Tt
maps C([0, 1]) into itself and it is norm-continuous. As a result, the semigroup is of
Feller type. Any integrable function of class C2(]0, 1[) is transformed by L∗ into an
element of L1([0, 1]), by a density argument again, T ∗t (L1([0, 1])) ⊂ L1([0, 1]), for
all t ≥ 0, finishing the proof.

It is worth noticing that the convergence in distribution mentioned in the above
theorem, means the convergence of the sequence of laws of the processes on the
space of their trajectories. As a result, any continuous functional F (ZJ) of the
trajectory of ZJ converges in distribution to F (Z).

Corollary 1 Consider the sequences BJ and DJ given by equations (5) and (6)
in the main text, where the functions bJ , dJ ∈ C1(]0, 1[) and cJ ∈ C2(]0.1[) satisfy
equations (7) and (8) in the main text.

Then, ZJ converges in distribution to a diffusion Z represented as

Z(t) = z +

∫ t

0

(b(Z(s)− d(Z(s)) ds+

∫ t

0

√
2c(Z(s))dWs. (S10)

Proof. Define β(x) = b(x)− d(x), where b and d are given by (7) in the main text.
Similarly, define σ2(x) = 2c(x), where c is obtained from (8) in the main text. A
simple computation yields,

BJ(x)−DJ(x) = β(x),

for all x ∈ [0, 1], so that (H1) is trivially satisfied. Moreover,

BJ(x) +DJ(x)

J
=

1

J
(bJ(x) + dJ(x) + 2cJ(x)) .
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Since bJ and dJ are bounded, limJ
1

J
(bJ(x) + dJ(x)) = 0. And equation (8) in

the main text implies that

BJ(x) +DJ(x)

J
→ σ2(x) = 2c(x),

as J →∞, uniformly in x ∈ [0, 1]. This implies in particular (H2) and the proof is
complete.

It is worth noticing that the distribution Pt of Z(t) represents the state of the
open ecological system at time t. This state has a density ρt, that is Pt(dx) =
ρt(x)dx, and it can be obtained from the process Z(t) as follows: Pt(Z(t) ∈]a, b])
is the limit of the frequency of trajectories of the process Z(t) visiting the interval
]a, b]. So that, these frequencies can be obtained by simulating the solutions to
(S10).

Derivation of the Beta distribution

The invariant density distribution of Z(t) is the solution of the equation (11) in
the main text. The choice of b, d, c according to equations (12), (13), (14) in the
main text

yields

γ
∂2

∂x2
(x(1− x)ρ∞(x))− ∂

∂x
((b0 − d0) + (b1 − d1)xρ∞(x)) = 0.

Noticing that b0−d0 = αγ and b1−d1 = (β−α)γ, the above equation is equivalent
to

∂2

∂x2
(x(1− x)ρ∞(x))− ∂

∂x
(α+ ((β − α)xρ∞(x)) = 0. (S11)

A straightforward computation shows that any function of the form

x 7→ Cxα−1(1− x)β−1

solves (S11). So that, choosing C = 1/B(α, β) (normalization constant) one obtains
the unique solution ρ∞(x) of (S11) which is a probability density on the real line.

In particular, the choice of coefficients (21), (22), (23) (see main text), with
p = 1/S, leads to

ρ∞(x) =
1

B(α, α(S − 1))
xα−1(1− x)α(S−1)−1, (S12)

where α = m
Sλ(1−m) and B(α, α(S − 1)) =

∫ 1

0

xα−1(1− x)α(S−1)−1.

Remark. Under the neutrality hypothesis, the number of living individuals N i(t)
of the species i have the same probability distribution at time t ≥ 0, for i = 1, . . . , S
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and these variables are independent. So that, let denote by N(t) any of the above
variables. Since 0 ≤ ZJ(t) = N(tJ)/J ≤ 1 for all t ≥ 0, the sequence (ZJ(t))J∈N is
uniformly integrable for all t. Therefore, the convergence in distribution of ZJ to
Z yields

lim
J→∞

[
E
(
N(tJ)

J

)]
= E(Z(t)) =

∫ 1

0

xρt(x)dx, (S13)

where ρt is the solution to the Master Equation. Also, under the Neutrality Hy-
pothesis one has the following approach to compute the probability of finding a
species with n individuals at time tJ .

pn,J = P(NJ(tJ) = n)

= P(n ≤ NJ(tJ) < n+ 1)

= P
(
n

J
≤ NJ(tJ)

J
<
n+ 1

J

)
= P

(
n

J
≤ ZJ(t) <

n+ 1

J

)
. (S14)

For J large enough, P
(
n
J ≤ ZJ(t) < n+1

J

)
is approached by P

(
n
J ≤ Z(t) < n+1

J

)
,

and then letting t→∞, the above expression becomes equivalent to∫ n+1
J

n
J

1

B(α, α(S − 1))
xα−1(1− x)α(S−1)−1dx. (S15)

And, similarly,

lim
t→∞

lim
J→∞

E(
NJ(tJ)

J
) =

∫ 1

0

1

B(α, α(S − 1))
xα(1− x)α(S−1)−1dx. (S16)

Finally, as it has been the tradition in neutral theory we can derive the typical
species abundance distribution (SAD), or expected number of species having n
individuals in the focal community. That is, the probability of occurrence of that
event is given by (S14). Since the species are independent and identical, we have
a binomial distribution with parameters (S, pn,J), so that its mean value is simply
Spn,J . Therefore, it can be approached for J large enough by

SP
(
n

J
≤ Z(t) <

n+ 1

J

)
,

and letting t→∞ this is asymptotically equivalent to

S

∫ n+1
J

n
J

1

B(α, α(S − 1))
xα−1(1− x)α(S−1)−1dx, (S17)

which is our approximation to the SAD 〈φn〉. That is

〈φn〉 ∼
S

JB(α, α(S − 1))

(n
J

)α−1 (
1−

(n
J

))α(S−1)−1
(S18)
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Table S 1: Fit of the discrete Beta distribution (eqn. 28) to fifteen plant and
animal communities. Data for communities 1-6 comes from (5), 7-9 from (6) 10
from (7), 11-12 from (8) and 13-15 from (9). The estimation of α and β was done
by optimisation based on the Nelder-Mead method implemented in the maximum
likelihood function mle2, included in library bbmle for R. For each community, the
Volkov model was simulated using function volkov included in library untb for R.
Observed richness (S) and total abundance (J) were directly calculated from data
and passed to the function as arguments. On the other hand, parameters theta
and m required by this function were estimated using software tetame (10, 11).
Comparison between observed and predicted frequency distribution were done using
Pearson's correlation (P).

Community S J α β Pbeta PV olkov

1 Sinharaja 167 16936 0.2498 41.4681 0.915 0.931

2 Pasoh 678 26554 0.3868 261.8361 0.978 0.980

3 Korup 308 24591 0.2783 85.4508 0.945 0.947

4 Yasuni 821 17546 0.4872 399.4592 0.967 0.967

5 Lambir 1004 33175 0.4290 430.3299 0.987 0.988

6 Barro Colorado Island 225 21457 0.2773 62.1195 0.897 0.897

7 Hangklip 247 23756 0.2538 62.4335 0.927 0.361

8 Cederberg 247 11561 0.3025 74.4123 0.849 0.899

9 Zuurberg 114 8806 0.3709 41.9154 0.415 0.409

10 Terborgh 245 1663 0.9877 493.8225 0.854 0.948

11 Fisher Butterflies 501 3306 0.9877 493.8225 0.891 0.986

12 Fisher Lepidoptera 180 2020 0.6976 124.8675 0.905 0.950

13 Dornelas Indo Pacific 450 3779 0.6427 288.5521 0.840 0.903

14 Dornelas Papua New Guinea 403 2520 0.8557 344.0041 0.864 0.939

15 Dornelas Solomon Islands 268 1201 1.1268 300.8495 0.834 0.940
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Figure S 1: Estimation of the alpha parameter of the Beta distribution Eq. (27) in
the main text, using different number of trajectories of the stochastic process Z(t)
from Eq.(24) in the main text
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Figure S 2: Estimation of the beta parameter of the Beta distribution Eq. (27) in
the main text, using different number of trajectories of the stochastic process Z(t)
from Eq.(24) in the main text
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Figure S 3: Bivariate representation of the estimated values of α and β using
different number of trajectories as explained in Figures S1,2
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