Supplementary Information

Intracellular biomass flocculation as a key mechanism of rapid bacterial killing by cationic, amphipathic antimicrobial peptides and peptoids

Nathaniel P. Chongsiriwatana¹, Jennifer S. Lin², Rinki Kapoor³, Modi Wetzler², Jennifer A. C.

Rea¹, Maruti K. Didwania², Christopher H. Contag⁴ and Annelise E. Barron^{2*}

¹Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois; ²Department of Bioengineering, ³Biophysics Program, and ⁴Departments of Microbiology and Immunology, Pediatrics, and Radiology, Stanford University, Stanford, California

*Annelise E. Barron Associate Professor Department of Bioengineering, Stanford University Shriram Center, Room 229 443 Via Ortega Stanford, CA 94305 Phone: 650-946-8039 E-mail: aebarron@stanford.edu

Figure S1. Membrane depolarization of *B. subtilis* ATCC 6633 after 5-min. treatment, as monitored by diSC3-5 fluorescence. The data are representative of 3 independent experiments.

Figure S2. Transmission electron micrographs of *E. coli* bacteria treated with (**A**) 100 μ M peptoid **2**, (**B**) 100 μ M **1**_{achiral}, or (**C**) 10 μ M **1**-*N*sna_{6,12} for 1 hour.

Figure S3. Transmission electron micrographs of longitudinal sections of *E. coli* bacteria treated with 2 mM (A) pexiganan, (B) melittin, and (C) peptoid 1_{17mer} .

Figure S4. Transmission electron micrographs showing *E. coli* treated with sub-lethal concentrations (i.e. concentrations which killed none of the bacteria in each sample) of (**A**) 10 μ M melittin, (**B**) 10 μ M **1**_{achiral}, (**C**) 10 μ M **1**-*N*Lys_{5,11}, and (**D**) 10 μ M **1**-Pro₆.

Figure S5. Transmission electron micrographs of *E. coli* treated with 100 μ M peptoids (A) $\mathbf{1}_{17mer}$ and (B) $\mathbf{1}_{Nsna_{6,12}}$ for 1 hour.

Figure S6. Kinetics of antibacterial activities of (A) Peptoid 1, (B) $1-C13_{4mer}$, (C) Ciprofloxacin, (D) Tetracycline, (E) Pexiganan, and (F) LL-37 against bioluminescent *P. aeruginosa* from 0 - 100 μ M in LB at 37 °C. Flux represents number of photons emitted by bacteria per second. Reported values are average of three independent experiments with two replicates each.

Figure S7. Kinetics of antibacterial activities of (A) 1-11mer, (B) 1-achiral, (C) 1-Pro₉, and (D) Peptoid 2 against bioluminescent *P. aeruginosa* from 0 - 100 μ M in LB at 37 °C. Flux represents number of photons emitted by bacteria per second. Reported values are average of three independent experiments with two replicates each.