
1 
 

Supplementary Online Material Part 1 

 

A Bayesian Approach for Summarizing and Modeling Time-Series 

Exposure Data with Left Censoring 

 

E. Andres Houseman1 and M. Abbas Virji2  
 
1Oregon State University, College of Public Health and Human Sciences, Corvallis, OR. 
2National Institute for Occupational Safety and Health, Respiratory Health Division, 
Morgantown, WV. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 
 

 

Supplementary Methods 

Bayesian Spline Model 

We assume that n  time-series iY , },...,1{ ni , have been collected, each series 

),,,( 21 iiTiii YYY Y  of varying length iT  and observed at a sequence of iT  times 

),,,( 21 iiTii ttt  .  Each measurement corresponds to one of m designated occupational tasks 

},,2,1{ mwir  , which are thought to be associated with measurement irY , where r  indexes 

measurement sequence.  In addition, each series may also correspond to a sequence of d –

dimensional covariates ),,,( 21 iiTiii xxxX  , d

ir Rx , assumed also to influence irY  through 

a fixed effects regression model.  We assume that iY  follows a Gaussian process wherein each 

irY  is a normally distributed random variable (potentially the log-transform of a raw 

concentration) having a time-specific mean ir  that absorbs all autocorrelation inherent in the 

stochastic process.  Specifically, we assume that the mean series ),,,(]E[ 21 iiTiiii   μY  

is a time-sample from a smooth curve that can be represented with a B-spline basis (Prautzsch 

et al 2002), a basis representation that is commonly used in non-parametric problems.  Each 

mean parameter ir is centered at a value ir~ , either a time-specific effect of task )(~
irir w    

[ )(w  representing task-specific mean parameters for tasks },,2,1{ mw  ], or more generally, 

βx
T)(~
iririr w  , which incorporates the additional effect of fixed covariates (with β a 

regression parameter fixed-effects).  Note that ir~ models the effect of task or other fixed 

characteristics, but does not involve terms that reflect within-series covariation; consequently,    

ir  incorporates an additional spline term representing a zero-mean stochastic process, 

)(~ T

iriirir tbζ  , where )(tb  is a k –dimensional vector of B-spline values dependent on 
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time t  and   previously chosen knots (to be discussed below), and 
iζ  is a series-specific k –

dimensional vector of spline coefficients that together with the spline basis 

T

1 )](,),([
iiTii tt bbB   fully determine the sequence iμ .  In simpler terms, )(T

iri tbζ  represents 

within-series covariation, )(tb  represents the mathematical basis used to characterize the 

family of potential stochastic processes that govern possible within-series covariation structures, 

and 
iζ  represents the coefficients that ultimately determine the specific stochastic process that 

governs the within-series covariation.  Furthermore, we model 
iζ  as a k –dimensional 

multivariate-normal random effect ),(~ 2

kkki MVN I0ζ  , where k0  is the k –dimensional zero 

vector, kI  is the kk   identity matrix and 2

  is a variance component parameter.  Finally, we 

assume an additional sequence ),,,( 21 iiTiii eee e  of independent errors, each element ire of 

which has a task-specific variance )(~]var[ 22

ireirir we   , so that 

)](,),(diag[]cov[ 2

1

2

iiTeieii ww   Λe , ultimately dependent upon m separate task-specific 

variance component parameters )(2 we .  Thus 
iririirir etY  )(~ T

bζ  and 

)()()(]~|var[ 2T2

ireiriririr wttY    bb , which demonstrates that the variance is task-

dependent and potentially non-constant across a series.  As a consequence,

iiiiTii i
ΛBBY  T2

1 ]~,,~|cov[    and, for two measurements corresponding to a single task 

w (say at times rt and st ), it follows that )()(]~,~|,cov[ T2

isirisirisir ttYY bb   and

)}()()(/{)()(]~,~|,[ 2T2T2 wttttYYcorr eisirisirisirisir    bbbb .  Note that this autocorrelation 

formula is similar to that for the intra-class correlation coefficient (ICC) in a hierarchical model 

setting, except for the presence of the )()( T

isir tt bb  coefficient that results from the spline basis.  

If  )(22

ire w   for all tasks irw  in the series, then 
iiTii i

ΛY ]~,,~|cov[ 1    and all 

measurements are essentially uncorrelated, but if )(22 we    then two measurements 
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corresponding to the same task w will be correlated to the maximum degree allowed by the 

spline basis, )()()()(/)()( TTT

isisiririsir tttttt bbbbbb .  Thus, specific choices of the variance 

component parameters 2

  and )(2

ire w  allow for distinct levels of autocorrelation across tasks 

within a series, ranging from 0 to a maximum level allowed by the choice of basis functions, 

ultimately determined by the choice of knots.  Figure S2 (in supplementary online material part 

2) demonstrates the autocorrelation profiles for three different knot configurations and different 

relative magnitudes of 2

  and )(2 we  . 

 

Thus the fundamental model we propose for a given choice of splines and knots can be 

written succinctly as   

 

)}(),()({~ 2TT

ireiriiririr wtwNY  bζβx   and ),(~ 2

kkki MVN I0ζ  ,   (1) 

 

with free parameters β , 2

 , )(w , and )(2 we ,  ( },,2,1{ mw  ).  Note that the variance 

parameter )(2 we  governs the task-specific variation of the independent errors (i.e., innovations 

in classical time-series parlance), while the parameter 2

  governs the between-series 

variation.   While our proposed model is complicated to fit within a frequentist framework, it is 

relatively straightforward to fit this model in a Bayesian paradigm using standard software such 

as JAGS.  JAGS compiles a model described using a standardized language that supports 

flexible Bayesian model specification, together with data informing the model and initial guesses 

at values representative of the posterior distribution, and returns a Markov chain representing 

values sampled from the posterior distribution.  The fundamental principle used by JAGS is 

Gibbs Sampling, a well-known Markov-Chain-Monte-Carlo (MCMC) technique. 
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To complete the specification of the model in a Bayesian setting, it is necessary to 

specify prior distributions for the free parameters.  We propose using commonly accepted prior 

distributions as follows: ),(~ 2

,0 ddMVN I0β  , ),0(~)( 2

,0  Nw  , ),0(~ 22

  

 N , and 

),0(~)( 22

ee Nw  

 , where N  denotes the “half-normal” distribution, a normal distribution 

restricted to non-negative values, and 2

,0  , 2

,0  , 2

 , and 2

e  are hyper-parameters chosen in 

advance to produce relatively non-informative (“vague” or “flat”) distributions. Note that the 

priors of variance components are specified in terms of the inverse (i.e., the precision), and that 

the prior of each precision is specified as having a “half-normal” distribution instead of the 

common historic alternative, a gamma random variable; we propose this specification in order to 

circumvent a problem with the gamma prior wherein larger precision values (smaller variances) 

are given relatively high prior probability and thus corresponds to a somewhat informative prior 

distribution (Gelman 2006). The half-normal prior for variance components is becoming 

increasingly more common to avoid this problem. 

 

When there are a large number n  of profiles, it may be desirable to add an addition 

component of variation to account for “series” effects:  

 

 )}(),()({~ 2TT

ireiriiririir wtwaNY  bζβx  ,     (2) 

 

where ),0(~ 2

ai Na   is a series-specific random intercept and the variance component 2

a  has 

prior distribution specified in terms of its precision, ),0(~ 22

aa N  

  with hyper-parameter 2

a . If 

multiple instruments were used within a study and each series used a single instrument, then a 

series-specific fixed instrument effect might also be incorporated:  
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)}(,)()({~ 2TTT

ireiiriiririir wtwaNY  γzbζβx  ,    (3) 

 

where 
iz is a l -dimensional indicator vector (corresponding to 1l  instruments) encoding the 

instrument used for the specific series and γ  is a corresponding l -dimensional fixed-effects 

regression parameter whose prior distribution is specified as a non-informative normal 

distribution in a manner similar to that described for β . Additional series-specific fixed effects, 

such as production level effects that do not vary within a series, could be addressed by 

incorporating additional terms within 
iz .  Note that irx  and 

iz  are both fixed effects and could 

be combined into a single matrix, but we separate them here to emphasize the distinction 

between task-specific effects and potential exposure modifying factors or confounders.  Finally, 

if many individuals have been sampled on more than one occasion, so that several series may 

correspond to a single subject, then an additional subject-specific random effect could be added 

in a manner similar to the manner in which the series-specific intercept ia  was added.  In 

principle, complicated hierarchical relationships (e.g. subjects nested within positions nested 

within distinct employers) can flexibly be incorporated at this level. 

 

In many exposure assessment settings it is common to observe values that are left-

censored by LOD. Bayesian model fitting simplifies a faithful rendering of the left-censoring by 

seamlessly integrating over the left tail of the distributions given for irY  in models (1), (2), and 

(3).  We introduce notation for a truncated normal distribution ],)[,( 2 baN  , a normal 

distribution truncated to the interval ],[ ba  so that, for example, the half-normal distribution 

),( 2N  may be written alternatively as ],0)[,( 2 N .  Thus, in our simplest model 

corresponding to (1), a left censored value observed for subject i  at time irt  would be specified 
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as ],)}[(),()({~ 2TT   ireiriiririr wtwNY bζβx , where   represents the LOD. JAGS easily 

accommodates the specification of a truncated normal distribution. 

 

We note that the models proposed above require a specification of knots to construct the 

spline basis matrices )](,),([ 1 iiTii tt bbB  , and that the choice of knots impacts the maximum 

autocorrelation that can be modeled between two given time points. B-splines are piecewise 

polynomial functions (usually cubic and twice-differentiable) that are determined recursively 

from a set of pre-specified knots, including two boundary knots defining the functional domain 

over which the spline basis will be applied. The set of knots can be thought of as a grid that 

represents an anticipated level of curvature internal to the functional domain; in general, a 

denser set with larger number of knots supports a larger magnitude of curvature, so that 

stochastic processes with extremely “wiggly” realizations require a denser grid of knots.  Note, 

however, that a function with low-curvature can still be faithfully represented by a spline basis 

with a dense set of knots, so there is no effective penalty for a dense grid other than increased 

computation time. On the other hand, a dense grid of knots may lower the maximum 

autocorrelation possible to model for more widely separated times.  For the applications we 

describe below, each of which entailed 3 or 5-minute averages sampled during shifts lasting 

multiple hours and occurring around the clock, and for which every series occurred on a single 

calendar day, we chose a basis with boundary knots at the minimum and maximum sampling 

hour (where hour ranges from 0 to 24) and internal knots placed at 7.5 minute intervals. 

 

Finally, we remark on a detail of implementation that impacts the properties of the 

Markov chain returned by MCMC software such as JAGS. In order to obtain chains that have 

limited autocorrelation, it is necessary to use hierarchical centering in the model specification 

(Gelfand et al 1996). For example, model (3) is most naturally specified as  
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)}(,)()({~ 2TTT

ireiiriiririir wtwaNY  γzbζβx   and ),0(~ 2

ai Na  , 

 

together with the specification of the spline portion of the model ),(~ 2

kkki MVN I0ζ  .  

However, better results are obtained with the following equivalent formulation: 

 

)}(),()({~ 2TT

ireiriiririir wtwaNY  bζβx   and ),(~ 2T

aii Na γz . 

 

The principle of hierarchical centering may also apply to model (2), since the task-specific 

portion of the fixed-effects mean parameter ir~  could be absorbed into the regression model 

βx
T

ir
 by selecting a single task 0w  as reference and incorporating into 

irx the indicators for the 

non-reference tasks; in this formulation, model (2) is rewritten as  

  

)}(),({~ 2TT

ireiriiriir wtaNY bζβx   and )),((~ 2

0 ai wNa  , 

 

i.e., the random intercepts are centered at the mean of the reference task. 

 

Data Source 

We demonstrate our proposed analytical approach within the context of two exposure 

assessment scenarios. We have described the details of our primary data example in the main 

text. Here we provide the details for our smaller, secondary dataset: real-time exposure to 

nanoparticles collected during a walkthrough visit at an ultrafine titanium dioxide (TiO2) and 

lithium titanate (Li2TiO3 or LTO) manufacturing facility. Process samples were collected for 35 

hours over a two-day period using four area samplers: a Nanoparticle Surface Area Monitor 
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(NSAM) measuring alveolar-deposited surface area (size range: 0.01-1.0 μm) and three 

instruments measuring particle number concentration, a Scanning Mobility Particle Sizer 

(SMPS, size range: 0.01-0.5 µm), an Optical Particle Counter (OPC size range: 0.3 to >20 μm), 

and a Condensation Particle Counter (CPC, size range: 0.01-1.0 μm). Processes carried out on 

the sampling days were monitored and included the spray drying of a titanium tetrachloride 

solution, production of ultrafine lithium titanate, and spray drying a mixture of lithium hydroxide 

and uTiO2. Detailed information on tasks performed during sampling, which included receiving 

powder, preparing and scooping material, and shaking out baghouse, as well as information on 

ventilation use and the types of process enclosures was recorded in real-time over the sampling 

period. For data analysis, the averaging times of all the instruments was standardized to 3-

minutes intervals and the total number concentration was used for OPC and SMPS, which is the 

sum of all size bins. In this example, there were no measurements below the LOD, and the 

approach illustrates the summarization of real-time exposure data accounting for autocorrelation 

and non-stationary data, as well as summary exposures for tasks accounting for fixed effects of 

covariates such as process enclosure.  

 

Detailed Results for Secondary Data Example 

The smaller, secondary example involves the analysis of four nanoparticle datasets 

described above. Summary characteristics of these data sets appear in Table 1 of the main text. 

For each of the four nanoparticle data sets, we fit two models of type (1) described above (i.e., 

with no series or instrument effects), one for each of two covariates:  source enclosure [ 1d : 

no or some of the time (referent) | yes] and enclosure type [ 1d : 3-sided booth or sealing 

(referent) | none]. Each model was fit using JAGS implemented in the R package rjags (version 

3.4.0) run in R (version 3.2.2). The JAGS model used is described at the end of this document 

under Code for Example 2.    
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Table S4 (in supplementary online material part 2) provides posterior statistics for the 

NSAM model with the source enclosure covariate. Note that there was some variation in the 

posterior distributions of the task-specific standard deviation [ )(we ] parameters, and that 

these standard deviations were considerably smaller than the spline standard deviation 
 , 

indicating substantial autocorrelation within a series.  For each task, Figure S3 (in 

supplementary online material part 2) illustrates the autocorrelation profile across 30 minutes, 

based on the values )(we  and 
 , demonstrating in more direct terms the autocorrelation 

implied by the posterior parameter distributions.   

 

A complete set of results for all four nanoparticle measurements and both covariate 

models appears in Table S5 (in supplementary online material part 2). For each model, we have 

also included model fitting results from several frequentist methods (Table S6 in supplementary 

online material part 2), as well as plots that compare methods with respect to estimates, 

confidence intervals, and posterior statistics (Figure S4 in supplementary online material part 2). 

Naïve linear regression estimates (via OLS) were obtained using the R linear regression 

function lm; this method completely ignores autocorrelation within a series. Several LME models 

were also fit using the R LME function lme in the nlme library (version 3.1-117), including a 

model with a single random intercept for series (“RI”) as well as a model that assumes a CAR 

structure within each time series (“CAR”).  Finally, we fit ARMA models using the R function 

arima, with autoregressive and moving average parameters obtained by optimizing the Akaike 

Information Criterion (AIC). Note that in the Supplement, in order to more tractably compare with 

frequentist results, we have transformed our alpha parameters into parameters that more 

conventionally reflect regression-based estimates, with the “Prep Scooping” task chosen as 

referent (so that the intercept term represents the mean for the “Prep Scooping” task) and task-

specific regression parameters corresponding to differences in mean between task and 
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reference. This was very simple to achieve by applying the required linear transformation to 

each posterior sample.   

 

In general, frequentist estimates were similar to, but not identical with, estimates from 

our proposed model. In particular, some regression parameters that were significant by 

frequentist methods corresponded in our proposed model to credible intervals that contained 

zero. For example, source enclosure coefficients for NSAM were significant in the ARMA model 

but corresponded to credible intervals containing zero in our proposed model; the OPC 

“Scooping LiOH” coefficient was significant in the OLS model but the corresponding credible 

interval from our model did contain zero. On the other hand, many coefficients for which our 

credible intervals did not contain zero corresponded to frequentist coefficients that did contain 

zero. This was true for many CAR coefficients, whose confidence intervals were extremely wide 

compared with other methods. Note also that the frequentist standard deviation estimates did 

not in general match the posterior distributions of the )(we  parameters of our proposed 

model, although in the case of OLS and CAR, they are not even directly comparable, since they 

represent the scale of errors that are assumed to be autocorrelated and hence do not represent 

the scale of independent errors. For NSAM, Figure S3 (in supplementary online material part 2) 

illustrates that the total posterior standard deviation estimates ( )()()( 2T2 wtt e bbζ , 

incorporating both levels of error) were slightly less than the OLS, RI and CAR standard 

deviation estimates. Finally, note that the frequentist models do not allow for task-dependent 

variance components. It’s worth remarking that all frequentist models other than ARMA 

demonstrated significant autocorrelation in errors, as evidenced by Durbin-Watson test for serial 

autocorrelation.  
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For all four nanoparticle measurements and for the source enclosure covariate model, 

Figure S5 (in supplementary online material part 2) shows plots of observed measurements irY  

by expected value ir along with a 95% credible intervals for ir .  Corresponding plots for 

enclosure type covariate model (not shown) were almost identical.  These plots demonstrate 

good fit of the proposed model to the data.  As an example of how our proposed model fits the 

autocorrelated data within a time series, Figure S6 (in supplementary online material part 2) 

shows the observed data for a single series iY  (March 16, 2006 NSAM sampling of Baghouse 

location, shown in black), overlaid with the mean profile iμ ; the posterior mean of iμ  is shown in 

red, while 100 samples from the posterior distribution of iμ  are shown in yellow.  Essentially, the 

red curve represents the realization of a smooth stochastic process modeled by the spline term, 

while differences between the black and red curves represent the independent error process. 

 

 

As a final note, we assessed convergence of the MCMC chains by applying the Gelman 

and Rubin convergence diagnostic (available in the R package coda) to two independent chains 

for each data analysis performed. The convergence statistic, R̂ , should be close to one, 

preferably less than 1.2 or (a more stringent criterion) less than 1.1.  As it was not possible to 

use all variables in the multivariate chain to calculate R̂ , we assessed convergence only for the 

α variables, i.e. those governing the task-specific means.  For the primary example, 01.1ˆ R .  

In the secondary example, R̂  ranged between 1.01 and 1.07 for all but one analysis, SMPS 

with the covariate Enclosure Type: None, which resulted in 19.1ˆ R .  The slightly worse 

convergence for this data set was likely the result of collinearity between the covariate and 

some of the tasks. 
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Simulations 

We conducted several simulation experiments to investigate the properties of the 

proposed method when applied with a frequentist interpretation.  For each experiment, we used 

posterior statistics obtained from the NSAM model (with covariate enclosure type) as the basis 

of the simulation experiment, using posterior means for regression coefficients and posterior 

medians for variance components (see Table S5 in supplementary online material part 2).  For 

simplicity, we omitted the enclosure type regression coefficient.  For each simulated data set 

within each experiment, we kept the same number of measurements (168) and profiles (3), with 

identical times in each series.  For two sets of experiments, we assumed six separate values of 

LOD: }50,40,30,25,20,0{ .  Note that the same spline basis functions were used to generate 

a non-stationary sequence of errors.  For each value of   we simulated 500 data sets, fit our 

proposed method (with 2500 burn-in samples, subsequently obtaining a chain of length 20,000 

and thinning by 10), and fit three frequentist methods:  OLS, CAR, and ARMA, as described 

above in the Examples section, with the value of below-detection data set to half the LOD (on 

the original scale before applying the logarithmic transform).   

 

Figure S7 (in supplementary online material part 2) displays boxplots of the percent of 

left-censored values by LOD over the 500 data sets simulated for each LOD in each set of 

simulations.  Figure S8 (in supplementary online material part 2) shows the root-mean-square-

error (RMSE) of frequentist estimates or frequentist interpretations of Bayesian posterior 

statistics for the intercept (i.e. “Prep Scooping” reference task) and four other coefficients 

representing differences between task-specific mean and reference task.  Figure S9 (in 

supplementary online material part 2) shows the percent coverage of the 95% credible interval 

or the nominally 95% confidence interval for the same coefficients.  Note that lower-than-

nominal coverage indicates bias in estimation of coefficients or standard errors, while higher-
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than-nominal coverage indicates statistical inefficiency.  Finally, Figure S10 (in supplementary 

online material part 2) shows boxplots of the ratio of standard error (or posterior standard 

deviation) to simulation standard deviation, representing the level of bias in estimating the 

sampling standard deviation of the estimate or posterior statistic interpreted as an estimate.  It is 

evident from the RMSE plots in Figure S8 (in supplementary online material part 2) that our 

proposed method is more efficient than the competing methods, generating the lowest values of 

RMSE in every case.  The percent coverage plots shown in Figure S8 (in supplementary online 

material part 2) demonstrate more accurate coverage from our proposed method than from OLS 

(whose coverage is too low at low values of   and sometimes too high at high values of  ), 

from CAR (which tended to have higher-than-nominal coverage and thus potentially leading to 

statistical inefficiency), and from ARMA, which failed to achieve nominal coverage in a variety of 

ways.  The boxplots of ratios shown in Figure S10 (in supplementary online material part 2) 

reinforce the bias and efficiency point, showing biased estimates of sampling standard 

deviations for all frequentist methods.  In general, it was difficult for frequentist methods to 

accurately estimate variation using an erroneous error model.  As expected, this was especially 

true for OLS, which almost always underestimated the sampling standard deviations.  Note that 

our method resulted in lower-than-nominal coverage (about 90%) for two tasks that had small 

sample size, but the other methods also performed poorly for those tasks (with either unstable 

or higher-than-nominal coverage). 

 

In the final set of simulations, we set 0  (no below-detection values) but generated 

the error sequence using an AR(1) or AR(2) model, in order to examine the robustness of our 

method when the true data-generating mechanism followed a more conventional error model.  

We fit four AR(1) models, with autocorrelation parameters 0.10, 0.25, 0.50, and 0.75 

respectively, and fit three AR(2) models, with autocorrelation vectors (0.25,-0.50), (0.50, -0.25), 

and (0.50,-0.50).  Figures S11, S12, and S13 (in supplementary online material part 2) display 
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results.  RMSE values were about the same for all methods (except OLS in some cases); in 

terms of interval coverage our proposed method performed about as well as CAR and ARIMA in 

the AR(2) models and in the AR(1) models with lower autocorrelation, but tended to break down 

at the highest level of autocorrelation (0.75).  We surmise that the reason for this is that the 

dense placement of knots was inconsistent with the high levels of autocorrelation, leading to an 

insufficiently high value for the maximum possible autocorrelation that could be modeled; the 

remedy, in such a situation, would be to use a sparser set of knots. 

 

Code for Example 2: 

We used the JAGS model to analyze the four nanoparticle datasets defined as follows: 

model{ 

  tauZ ~ dnorm(0,1.0E-6)T(0,1.0E10) # 1/sigma^2 for spline coefficients 

 

  for(j in 1:m){# Number of tasks 

    tauE[j] ~ dnorm(0,1.0E-6)T(0,1.0E10) # 1/sigma^2 for tasks 

  } 

 

  for(j in 1:mm1){# Number of tasks minus one 

    alpha[j] ~ dnorm(0,0.01) # Task coefficients 

  } 

 

  for(l in 1:d){ # Number of additional covariates 

    beta[l] ~ dnorm(0,0.0001)  # Coefficients for additional covs 

  } 

 

  for(i in 1:n){ # number of profiles (series) 

    for(h in 1:k){ # number of basis vectors 

      zeta[i,h] ~ dnorm(0, tauZ) # spline coefficients 
    } 

  } 

 

  # Model specification for above-DL measurements 

  for(r in 1:numSamplesDetect){ # number of measurements above DL 

    # Series error process 

    muTimedep[r] <- inprod(B[r,1:k],zeta[idSeries[r],1:k]) 

 

    # Task mean 

    muTask[r] <-  alpha[idTask[r]] 

 

    # Effect of other covariates 

    muExtra[r] <- inprod(x[r,1:d], beta[1:d]) 

 

    # Expected value of measurement 

    mu[r] <-  muTimedep[r] + muTask[r]  + muExtra[r] 
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    Y[r] ~ dnorm(mu[r], tauE[idTask[r]]) 

  } 

} 

 
We remark that in JAGS, the normal distribution is specified in terms of precision (inverse of 
variance) rather than by variance, and that prior distributions for variance components are also 
specified in terms of precision parameters using a half-normal distribution symbolized by the 

string “dnorm(0,1.0E-6)T(0,1.0E10)”.  We also note that since series length iT   varied 

across series, it was necessary to use an indexing scheme where each individual measurement 

irY  (the natural logarithm of the measured value) was related back to its parent series i  through 

the vector idSeries, i.e. the value of idSeries corresponding to ),( irir tY  is simply i , and that 

the measurement data were passed into JAGS in one long vector “Y”.  Thus, the model 

definition also required the total number of measurements numSamples  


n

i iT
1

.  Similarly, 

specific tasks were identified by the vector idTask.  To use the model, we saved it in a text file 

(e.g. nano.jags) and supplied it to the rjags function jags.model along with the data and initial 

values: 
 

theSampler <- jags.model("nano.jags", dataList, initList) 

 

The data object dataList was a list of the following named elements, corresponding to data 

objects defined in the model:    numSamples, n, m, k, d, idSeries, idTask, Y, x, and B.  Note 

that the   kT
n

i i  1
matrix B, which contained the spline basis functions evaluated at the 

sampling time points, was constructed using the b-spline function bs available in the R package 

splines (version 3.1.0). The initial values object initList was a list with exactly one element 

(corresponding to one intended Markov chain), which itself was a list having the following 

named elements, corresponding to parameters that complete the model definition:  alpha, beta, 

zeta, tauZ, and tauE.  Initial values for alpha and beta were obtained via ordinary least 

squares (OLS) linear regression; although the m –length vector tauE represents a distinct error 

precision parameter for each task, it was initialized as an m –length vector, each of whose 

entries was the inverse of the single variance parameter obtained from OLS. The kn  matrix 

zeta, containing the spline coefficients, was initialized to the zero matrix, and the spline 

precision parameter tauZ
 

2    was initialized to a moderately large value, 10.  We pre-

sampled 10,000 iterations to “burn-in” the chain, i.e. initialize it so that the values we store for 
subsequent analysis are assured to arise from the stationary Markov-chain that represents the 
posterior distributions of the parameters of interest: 
 
update(theSampler, 1000) 

 
Finally, we collect the desired posterior samples.  In this case, we collect 1000 samples from a 
chain of length 50,000, thinning by 50 (i.e. saving only once every 50 iterations) in order to 
reduce autocorrelation of values within the chain: 
 
results <- coda.samples(theSampler, c("alpha","beta","zeta","tauZ","tauE"),  

 50000, thin=50) 

 

The object results is a list of length equal to the length of the initial values list initList (one 

in this case), with a potentially separate chain for each set of initial values.  The chain stored in 
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the first element of results  was used to compute posterior statistics.  Although the Bayesian 

paradigm is based on statistical principles that are fundamentally distinct from those upon which 
the more commonly understood frequentist paradigm is based, notably the concept that 
unknown parameters are treated as random rather than fixed quantities, Bayesian posterior 
statistics are often informally interpreted in a manner similar to their more common frequentist 
statistcs:  the posterior mean and median are often interpreted as parameter estimates, the 
posterior standard deviation is often interpreted as a standard error, and the posterior 2.5Th and 
97.5th percentiles are often interpreted as (respectively) upper and lower limits of a 95% 
confidence interval (although formally the confidence interval is based on frequentist concepts 
and instead the term credible set is used in Bayesian contexts).  Note that posterior statistics for 

the variance parameters are obtained simply by first transforming the tau parameters (e.g. 
  

is the inverse square-root of tauZ).   

 
 
Code for Example 1 
  
The following code displays several modifications: 
 
model{ 

  tauZ ~ dnorm(0,1.0E-6)T(0,1.0E10) # 1/sigma^2 for spline coefficients 

  tauA ~ dnorm(0,1.0E-6)T(0,1.0E10) # 1/sigma^2 for series random intercept 

  alpha0 ~ dnorm(0,0.01) # Reference task mean (intercept) 

 

  for(j in 1:m){# Number of tasks 

    tauE[j] ~ dnorm(0,1.0E-6)T(0,1.0E10) # 1/sigma^2 for tasks 

  } 

 

  for(j in 1:mm1){# Number of tasks minus one 

    alpha[j] ~ dnorm(0,0.01) # Task coefficients 

  } 

 

  for(i in 1:n){ # number of profiles (series) 

    for(h in 1:k){ # number of basis vectors 

      zeta[i,h] ~ dnorm(0, tauZ) # spline coefficients 
    } 

    a[i] ~ dnorm(alpha0, tauA) 

  } 

 

  # Model specification for above-DL measurements 

  for(r in 1:numSamplesDetect){ # number of measurements above DL 

    # Series error process 

    muTimedep[r] <- inprod(B[r,1:k],zeta[idSeries[r],1:k])  

 

    # Task mean 

    muTask[r] <-  inprod(Wmod[r,1:mm1],alpha[1:mm1]) 

 

    # Expected value of measurement 

    mu[r] <-  a[idSeries[r]] + muTimedep[r] + muTask[r] 

 

    Y[r] ~ dnorm(mu[r], tauE[idTask[r]]) 

  } 

 

  # Model specification for below-DL measurements 

  for(r in 1:numSamplesND){# number of measurements below DL 
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    # As above 

    muTimedepND[r] <- inprod(BND[r,1:k],zeta[idSeriesND[r],1:k]) 

    muTaskND[r] <-  inprod(WmodND[r,1:mm1],alpha[1:mm1]) 

    muND[r] <-  a[idSeriesND[r]] + muTimedepND[r] + muTaskND[r] 

 

    # Note that YND data are passed in as NA (missing) 

    #   but will be imputed by the model 

    YND[r] ~ dnorm(muND[r], tauE[idTaskND[r]]) 

 

    # Detection index (enforces the constraint that YND < DETECTIONLIMT) 

    isDetectND[r] ~ dinterval( YND[r] ,  DETECTLIMIT) 

  } 

} 

 

First, note that no covariates have been introduced into this model, so that code referring to x 

and beta have been deleted.  Next, note that a more typical regression parameterization has 

been used to represent the task mean portion of the model, so that the intercept alpha0 

corresponds to the mean of the reference task and now alpha corresponds to mm1 = 1m  

regression parameters representing mean differences from the reference task; the 

corresponding covariate matrix is denoted as Wmod.  Additional code for the random intercept a 

has been introduced, with the principle of hierarchical centering applied in the specification of 
the random intercept distribution. Finally, and most importantly, the below detection data have 

been separated from the above-detection data, with data elements  numSamples, idSeries, 

idTask, Y, B, muTimedep, muTask, and mu having been duplicated with “ND” counterparts.  An 

additional data element isDetectND appears in the loop corresponding to the below-detection 

data.  When passed as data to the jags.model function, it is simply a zero vector of length 

numSamplesND; and it corresponds to a vector YND of NA’s the same length.  The zeroes in 

isDetectND and the NAs in YND, together with the JAGS distribution dinterval specifications, 

indicate that the value YND[r]is known only to lie below the value DETECTLIMIT, i.e. is left-

censored by DETECTLIMIT.  The reason for the separation is that it is now very easy to initialize 

the variable YND at a vector of assumed fixed values (e.g. half of the LOD), so that the sampler 

can more easily find the stationary distribution.  Without the separation, initialization becomes 
very difficult because JAGS does not easily facilitate the initialization of missing values mixed 
together with observed values in the same data object.  Finally, we specify more informative 

priors for alpha0 and alpha in order to prevent absurdly small values from being sampled for 

the missing data in YND. 

 
We also fit a model that adjusts for instrument-specific effects along the lines of model (3) by 

replacing the distribution specification for the intercept a with the following: 

 
    a[i] ~ dnorm(a0[i], tauA) 

    a0[i] <- alpha0 + inprod(Z[i,1:l], gamma[1:l]) 
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