
Supplementary Figure 1: Measured variation of coupling strengths. a, Variation of coupling

constants (κ1 → black and κ2 → red) as a function of the wavelength of light. The solid lines are

linear fits. b, Variation of κ1/κ2 as a the function of wavelength of light. In the wavelength range

of interest (i.e. 700 − 790 nm), this ratio remains very close to the desired value of 0.5 (dashed

line) with a maximal deviation of ≈ ±0.05.
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Supplementary Figure 2: Schematic of a 2D diffusive photonic circuit (double chain). The

circuit consists of two parallel dissipatively coupled chains. Here, the squares represent reservoirs

(R), the circles are bosonic modes (the red circles indicate possible initial excitations).

Supplementary Figure 3: A diffusive photonic honeycomb lattice. When all the bosonic modes

in a hexagonal cell (indicated by the dashed line) have the same amplitude, the cell can support a

stationary, compacton-like state.
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Supplementary Figure 4: A diffusive square lattice. Stationary distributions of absolute values

of modal amplitudes for a 6 × 6 square lattice without (a) and with (c) additional losses at the

sites indicated by red crosses in the inset of (d). Eigenvalues (in the units of γ) of the systems

[Supplementary Eq. 18] without (b) and with (d) additional losses. Filled circles in the insets of

(b, d) denote the initial excitations.
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Supplementary Note 1: Experimental model

The coherent diffusive photonic circuits, considered in the main text, are described by the following

generic quantum master equation:

d

dt
ρ =

N∑
j=1

γj

(
2AjρA

†
j − ρA

†
jAj − A

†
jAjρ

)
, (1)

where ρ(t) is the density matrix and Aj denote the Lindblad operators for mode j. Quantities γj

are relaxation rates into corresponding reservoirs describing the coherence diffusion rate between

neighbouring waveguides. Supplementary Eq. (1) with the Lindblad operator withAj = aj−aj+1,

where aj (a†j) is the bosonic annihilation (creation) operator, follows from the usual model of

the unitary coupled tight-binding chain of linear waveguides with every second waveguide being

subjected to strong loss. The details of the derivation can be found, for example, in ref. 1. This

time evolution is modelled in the experiment by the arrays of coupled optical waveguides. The

reservoirs are realised by mutually coupling each pair of waveguides to a linear chain of further

waveguides as shown in Fig. 1 in the main text.

An interesting feature of the behaviour of light in these devices is the interchangeability between

propagation distance and wavelength. The effective time of evolution γt can be altered both by

changing the length of the waveguide block, or the wavelength of incident light. As the wavelength

is tuned, κ1 changes almost linearly to keep κ1/κ2 ≈ 0.5, maintaining the correct character of

dynamics. Notice that the dependence of diffusion rates, γj , on time changes neither the diffusive

character of the dynamics nor the asymptotic state provided that always γj(t) > 0.
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Supplementary Note 2: Measurement of evanescent coupling

As mentioned in the main text, the control of evanescent coupling is crucial for the experimental

realisation of the diffusive equaliser. In Supplementary Fig. 1 we present the measured variation

of κ1,2 as a function of the wavelength of incident light, λ. We fabricated two types of directional

couplers (each consisting of two evanescently coupled straight waveguides) which are the building

blocks of the photonic circuits shown in Fig. 1 (main text). For the first type, where the two

waveguides are at 45◦ angle, the coupling constant is κ1 and that for the second type (consisting of

two horizontally separated waveguides) is κ2. Measuring the light intensities at the output of these

30-mm-long directional couplers, κ1,2(λ) were calculated 2.

It was observed that for these couplers, the ratio of κ1,2 remains very close to the desired value of

0.5 with a maximum deviation of ≈ ±0.05.

Supplementary Note 3: Dynamics of the dissipatively coupled bosonic chain

Due to the linearity of Supplementary Eq. (1), the initial coherent states propagation through DCC

remain coherent states at any time moment of dynamics described by Supplementary Eq. (1).

Consider the Glauber P -function for the density matrix, ρ(t), of the state describing the circuit:

ρ(t) =

∫
d2~αP (~α, ~α∗; t)|~α〉〈~α|, (2)

where |~α〉 =
∏

j |αj〉; |αj〉 is the coherent state of the j-th mode of the circuit and the amplitude

αj represents the j-th elements of the vector ~α. For the DCC with N + 1 modes and jth Lindblad
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operator represented as Aj = aj − aj+1, the solution for the P -function is obtained from the

following Fokker-Planck equation:

∂

∂t
P (~α, ~α∗; t) = (

N∑
j=1

γj(
∂

∂αj
αj −

∂

∂αj
αj+1 −

∂

∂αj+1

αj +
∂

∂αj+1

αj+1) + h.c.)P (~α, ~α∗; t) (3)

Due to the linearity of this equation, the solution can be represented as P (~α, ~α∗; t) = P (~α(t), ~α∗(t)),

where dynamics of amplitudes is described by Eq. (2) of the main text. It is instructive to represent

the initial state in terms of discrete superposition of coherent state projectors 3:

ρ(0) =
∑
∀k

pk
∏
∀j

|αjk〉〈αjk|j, (4)

where the index k labels a set of amplitudes {αk1, αk2 . . .}. The time-dependent Glauber function

corresponding to the initial state [Supplementary Eq. (4)] is given by Supplementary Eq. (1) as

P (~α, ~α∗; t) =
∑
∀k

pk
∏
∀j

δ(αj − αjk(t))δ(α∗j − α∗jk(t)), (5)

where amplitudes αjk(t) for the DCC are defined from Eq. (2) of the main text.

As follows from Supplementary Eq. (1), any density matrix which is function of operators Asum =

N+1∑
j=1

aj√
N+1

, A†sum, and the vacuum, ρvac =
∏
∀j
|0〉〈0|j , corresponds to a stationary state. These states

can be of a quite different nature. The stationary state can be just the pure product of coherent

states of individual modes with the same amplitude:

ρst = |Φst〉〈Φst|, |Φst〉 =
∏
∀j

|α〉j. (6)

However, it can also be quite exotic, for example, it can be a Schrödinger-cat entangled state with

|Φst〉 ∝
K∑
k=1

wk
∏
∀j
|αk〉j , where K is the number of different components in our cat-state and wk are
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scalar weights. The Gibbs state

ρst =
exp{−βA†sumAsum}

Tr{exp{−βA†sumAsum}}
(7)

also belongs to the stationary states of the system. This state has maximal entropy for the given

sum of the second-order coherences, 〈a†kal〉 (which is also conserved by the dynamics). As was

already mentioned, the stationary state can also be maximally entangled.

The DCC evolves toward a stationary state in a quite remarkable way. The initial state of the DCC

with N + 1 modes corresponding to the coherent state of all the chain modes, |Φ0〉 =
∏
∀j
|αj〉j ,

evolves to the product of coherent states with equal amplitudes, |Φt→∞〉 =
∏
∀j
|αsum〉j , where the

amplitude is the averaged sum of all the amplitudes, αsum =
∑
j

αj/(N + 1). Then an arbitrary

initial state of the DCC [Supplementary Eq. (4)] will be asymptotically reduced to the following

form:

ρst =
∑
∀k

pk

N+1∏
j=1

|ᾱk〉〈ᾱk|j (8)

with ᾱk = 1
N+1

N+1∑
j=1

αjk. Actually, the DCC drives the initial state to the symmetrical state over

all the modes. Note, that the smoothing action of DCC is preserved even for the case of different

decay rates, γj 6= 0. Stationary states do not depend on them.

Supplementary Note 4: Two-arm distributor structure

The prerequisite of the distributing action considered here is the existence of several localised sta-

tionary states of the structure described by the master equation, Supplementary Eq. (1). For the
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sake of simplicity, we consider here pure stationary states. We call the state |χloc〉 “localised” if

exists some subset, {m}, of M<K systems of our dissipatively coupled photonic circuit such that∑
k∈{m}

〈χloc|a†kak|χloc〉>0, whereas for systems out of the subset {m}we have
∑

k/∈{m}
〈χloc|a†kak|χloc〉=

0. The most simple and obvious distributing action would be possible if the initial state of the struc-

ture, ρ0, is orthogonal to some localised stationary state, 〈χloc
j |ρ0|χloc

j 〉 = 0. Then the part of the

structure corresponding to subset {mj} will not be excited in the process of dynamics described

by Supplementary Eq. (1). For such a distributor to be non-trivial, sets corresponding to different

localised states, {mj}, have to be partially overlapping. The distributor can be realised even in the

case when the localised stationary states corresponding to different parts of the structure are not

mutually orthogonal.

Let us illustrate our consideration with the example of the slightly modified DCC. For the structure

depicted in Fig. 5a of the main text, modes in the arms are coupled pairwise, Aj = aj − aj+1 for

j = 1 . . . N −1, N +2 . . . 2N . For the central controlling node LN = aN −aR+aL−aN+1. From

the master equation, Supplementary Eq. (1), the equation similar to Eq. (2) of the main text can be

obtained for each arm. For four modes of the central node the equations are as follows:

d

dt
αN = −(γN + γN−1)αN + γN−1αN−1 + γN(αN+1 + αH − αL), (9)

d

dt
αR = −γN(αR − αN + αN+1 − αL), (10)

d

dt
αL = −γN(αL + αN − αN+1 − αH), (11)

d

dt
αN+1 = −(γN + γN+1)αN+1 + γN+1αN+2 + γN(αN − αH + αL). (12)

These equations describe 1D classical random walk. So, stationary states for arms decoupled from
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the central node would be vectors with equal elements, αj = α for j = 1 . . . N or j = N+1 . . . 2N

and arbitrary α. Also, there is a stationary state localised in two controlling modes, aR and aL, with

αR = αL and αj = 0, j = 1 . . . 2N . Obviously, for the whole structure, the equal distribution of

amplitudes in both arms αj = α for j = 1 . . . N and j = N+1 . . . 2N , and equal amplitudes in the

controlling modes, αR = αL is also the stationary state. Excitation of just one arm and one of the

controlling modes with equal amplitudes (i.e., for example, αj = α for j = 1 . . . N , αR = α and

αR = 0, αj = 0 for j = N + 1 . . . 2N ) is also a stationary state. By exciting control modes, aR

and aL in certain states, one can make an initial excitation of a particular mode propagate either to

the one arm, or to another, or to both arms simultaneously (see Fig. 5 in the main text). Notice, the

such a distributing action can be achieved catalytically, since, as it follows from Supplementary

Eq. (12), the coherence of two controlling modes are conserved, αR(t) + αL(t) = αR(0) + αL(0),

for any time-moment, t. In Fig. 5b, one can see an illustration of the distribution for the two-arm

structure shown in Fig. 5a.

Supplementary Note 5: Double chain and dissipative localisation

For the sake of generalisation, now we consider two parallel dissipatively coupled chains as shown

in Supplementary Fig. 2. The chain consists of squares, connected side by sides, so, the Lindblad

operator of j-th square is

Aj = aj,+ − aj,− + aj−1,+ − aj−1,−. (13)

We obtain the following set of equations for the coherent amplitudes:

d

dt
~αj = −γÔ(2~αj − ~αj−1 − ~αj+1), (14)
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where the matrix Ô has elements Ôj,k = (−1)j+k, j, k = 1, 2. The vector ~αj = [αj,+, αj,−]T .

Despite being only a slight modification of the simplest DCC, the doubled chain has a number

of drastically different features. First of all, any vector of coherent amplitudes, ~αj , with equal

upper (+) and lower (−) components is the stationary localised state. Then, initial excitation of

any lattice site (say, αj,+ = x) gives rise to the stationary state consisting of two-site localised

state αj,+ = αj,− = x/2 plus delocalised state αk,+ = (−1)j−kx/2N , αk,− = (−1)j−k+1x/2N ,

where N is the number of systems in each chain. It is interesting that the double chain can serve

as an analogous filter. If both the lower and upper chains are excited, the stationary result in each

site would be half of the sum of the lower and upper initial amplitudes. Also, localised states are

robust. Additional losses on sites out of the localisation region do not affect the localised states.

However, they do affect the de-localised stationary states driving them to the vacuum.

Such localisation phenomena can hold also for infinite perfectly periodic dissipatively coupled

photonic lattices. Let us assume Lindblad operators of the following form

Aj =
∑
k∈{nj}

xjkak. (15)

where {nj} denotes a set of modes coupled to the same dissipative reservoir; xjk are scalar weights

describing such a coupling. To avoid trivial localised states, we assume that there are no isolated

sets, and for any {nj} there is a set {nl} such that the intersection, {nj}∩{nl}, j 6= l, is not empty,

but unequal to any of {nj}. Additionally, for the ideally periodic structures, we assume that any

operator, ak, belongs to at least two different sets, and any set transforms to other set by translation

along lattice vectors, ~ei. Obviously, for any localised stationary state we have Ajρloc = 0 ∀j.

From Supplementary Eq. (15) it follows that any localised state occupies at least two sites of the
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structure. An example of the honeycomb lattice allowing for dissipative localisation is shown in

Supplementary Fig. 3 and briefly discussed in the main text.

To demonstrate basic features of dissipative localisation, let us consider here a simple example of

a square lattice (see insets in Supplementary Fig. 4). Denoting the sites in the upper left corner of

each square as (j, k), we obtain the following Lindblad operators for such a lattice:

Aj,k = aj,k + aj+1,k + aj,k+1 + aj+1,k+1. (16)

The equations for the amplitudes, Supplementary Eqs. (1,16), then read:

d

dt
αj,k = −γj,k〈Aj,k〉 − γj+1,k+1〈Aj+1,k+1〉, (17)

d

dt
αj+1,k = −γj,k〈Aj,k〉 − γj+1,k−1〈Aj+1,k−1〉. (18)

As can be seen from Supplementary Eqs. (17, 18), the minimal localised states for an infinite

square lattice of Supplementary Fig. 4 involve at least four sites (for example, the localised state

can be in the set {m} = {(j + 1, k), (j + 2, k), (j + 1, k + 1), (j + 2, k + 1)}). An example of the

localised state composed of coherent states is

|Ψloc〉 = |α〉j+1,k| − α〉j+2,k

|α〉j+2,k+1| − α〉j+1,k+1

∏
j,k/∈{m}

|0〉j,k. (19)

Any closed contour including either 0, 2 or 4 sites of every square can host a localised state. A

finite lattice can also support localised edge states with even, as well as odd, number of sites.

For example, the three-site edge state in the upper left corner of the lattice shown in the inset of

Supplementary Fig. 4 can have the coherent state with amplitudes 2α in (1, 1) and states with the

amplitudes −α in sites (2, 1) and (1, 2).
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Localised states of a dissipatively coupled lattice can be arbitrarily extended. A state can propagate

through the lattice exciting localised states in several cells. To illustrate the basic features of such

propagation, let us consider the dynamics of just a single unit cell of the square lattice [just one

Aj,k of Supplementary Eq. (16)]. One has

~a(t→∞) = (1− S/4)~a(0), (20)

where the vector of time-dependent modal amplitudes is ~a(t) = [α1,1(t), α1,2(t), α2,1(t), α2,2(t)]
T

and S is the matrix of units. Supplementary Eq. (20) shows that the final result is an initial state

minus the result of complete symmetrisation of it over the cell. A similar process occurs for the

complete lattice. Symmetrical parts propagate. Curiously, this process is described by the classical

two-dimensional random walk. Let us introduce variables λm,n(t) = (−1)m+n〈Am,n(t)〉. For

γj ≡ γ > 0, ∀j. From Supplementary Eqs. (17, 18) it follows that

d

dt
λm,n = −4γλm,n + γ

(
λm+1,n + λm−1,n + λm,n−1 + λm,n+1

)
. (21)

Similar heat-like propagation of coherences was found recently in dissipatively coupled 1D spin

chains 1. An illustration of the stationary distribution arising from the initial excitation of just one

mode is given in Supplementary Fig. 4a. In Supplementary Fig. 4b, a spectrum of the equation

matrix for Supplementary Eqs. (17, 18) is given. The plateau of zero eigenvalues is separated from

the non-zero eigenvalues with the gap of γ. Supplementary Eq. (21) points also to the existence of

delocalised stationary modes given by the condition 〈Am,n〉 = (−1)m+nα.

Despite coupling to neighbour sites, the stationary localised state is completely impervious to

additional loss even on sites adjacent to those where the stationary state is localised. It can be
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seen even for the simplest example of the single-cell system. Taking the equation matrix Eq. (18)

with two sites subjected to additional loss with the rate γ as −γ(S − diag(1, 1, 0, 0)), one gets

~a(t → ∞) = O~a(0), where the only non-zero elements of the matrix O are O3,3 = O4,4 = 0.5

and O3,4 = O4,3 = −0.5. Again, the result is the initial vector minus its symmetrisation, but

only for the modes untouched by the additional loss. A similar effect holds for a larger lattice. In

Supplementary Fig. 4c one can see an example of a localised state in the region free of additional

loss arising from the initial excitation of just one initial mode. The inset in the Supplementary

Fig. 4d shows sites affected by additional individual loss with rate γ. Supplementary Fig. 4d shows

eigenvalues of the equation matrix Eq. (17, 18) for this case. Only two localised states survive for

the case, and the gap between the zero plateau and decaying modes are closed; there are modes

with decay rates much less than γ.

Naturally, the localised stationary state can be entangled. The simplest example of the entangled

states for the minimal localised states of the infinite square lattice of Supplementary Fig. 4a up to

the normalization factor is

|Ψloc〉 = |α〉j+1,k| − α〉j+2,k|α〉j+2,k+1| − α〉j+1,k+1

+ | − α〉j+1,k|α〉j+2,k| − α〉j+2,k+1|α〉j+1,k+1 (22)

which for |α| > 0 is entangled since an averaging over any mode included in this equation gives a

mixed state. Up to the normalization factor, the reduced state of any three modes is given by

ρ3 = |ψ+
3 〉〈ψ+

3 |+ |ψ−3 〉〈ψ−3 |+ e−2|α|
2

(|ψ+
3 〉〈ψ−3 |+ |ψ−3 〉〈ψ+

3 |), (23)

where |ψ±3 〉 = | ± α〉l| ∓ α〉m| ± α〉n, and indexes l,m, n number three modes remained after
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averaging over the fourth one.

Another example of the localised state is the state with just a single photon distributed over several

lattice sites, such as

|Ψloc〉 =
∑
k∈{n}

(−1)l|1〉k, (24)

where the index l numbers modes along the closed contour connecting all the sites belonging to

the set {n} where the state is localised; the state |1〉k corresponds to the photon in k-th mode and

the vacuum in all other modes. The same localisation regions as for the coherent modal states

are possible for both the perfect and finite lattices. For example, the upper-left corner state of

the lattice presented in Supplementary Fig. 4a is |Ψloc〉 = 2|1〉1 − |1〉2 − |1〉3. The states of

Supplementary Eq. (24) are entangled. Amount of entanglement is proportional to the number

of systems in the localised state. For example, the generalised Schmidt number for the state of

Supplementary Eq. (24) is 2(N − 1), N being the number of sites 4. Notice that existence of

the localised state, Supplementary Eq. (24), points to the possibility of dissipative compacton-like

localisation in fermionic lattices, too.
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