Figure S1

Figure S3

5'-r(GUAUGUCUAGACUGAA)-3' 5'-r(UCAACAUCAGUCUGAUAAGCUA)-3' 3'-d(CATACAGATCTGACTT)-5' 3'-r(CAUACAGAUCUGACUU)-5' 3'-r(AGUUGUAGUCAGACUAUUCGAU)-5'

5'-r(GUAU**GUCUAGAC**UGAA)-3'

Construct Template pri-Sequence number miRNA 1a hsa-miR-21 central GGACGCUUAUCAGACUGAUGUUGUUCGCAACACCAGUCGAUG stem GGCGUCC hsa-miR-21 central GGACGCUUAUAAAACUGAUGUUGUUCGCAACACCAGUUUAUG 1b stem ∆SBE GGCGUCC 2a hsa-miR-105 GGACGAUGCUCAGACUCCUGUGUUCGCACGGAUGUUUGAGCA central stem UCGUCC hsa-miR-199a1 GGACAACCAGUGUUCAGACUACCUGUUUCGACAGUAGUCUGC 3a central stem ACACUGGUUGUCC 3b hsa-miR-199a1 GGACAAUCAGACUACCUGUUUCGACAGGUAGUCUGCUUGUCC minimal SBE **3**c hsa-miR-199a1 GGCCAACCCAGUGUUCAGACUACCUGUUCAGGAGGCUCUCAA UGUGUACAGUAGUCUGCACAUUGGUUAGGCC stem loop 4a hsa-miR-215 AUUCGUCC central stem 4b hsa-miR-215 GGACGAUUGACAGACAAUAUAGCUGAGUUUGUCUGUCAUUC natural loop GUCC 5a hsa-miR-421 GGACGUUAAAUGUUUGUUGAGCGUUCGCGCUCAACAGACAUU AAUCGUCC central stem GGACGUACUGCAGACAGUGGGCGUUCGCGCGUACGUCUGUGG 6a hsa-miR-509 central stem GUACGUCC 6b hsa-miR-509 GGACGUACUGCCAGAAGUGGGCGUUCGCGCGUACUCUGGUGG central stem Δ SBE GUACGUCC 7a hsa-miR-600 GGACGCUCUUGUCUGUCAGGCAGUGGAGUUACUUACAGACAA GAGCGUCC natural loop hsa-miR-631 GGACGUGGCCCAGACCUCAGCUUCGGCUGAUGGACUGAGUCA 8a central stem CGUCC 9a cel-miR-84 central CGCGUCC stem cel-miR-84 short GGUGAGGUAGUAUGUAAGCUUCGGCUUUCAACUAACUCGCC 9b GGCAUCUGAGGUAGUAUGUAAUAUUGUAGACUGUCUAUAAU 9c cel-miR-84 stem GUCCACAAUGUUUCAACUAACUCGGCUGCC loop hsa-miR-21 GGGUGUUUUGCCUACCAUCGUGACAUCUCCAUGGCUGUACCA 10 CCUUGUCGGGUAGCUUAUCAGACUGAUGUUGACUGUUGAAU extended CUCAUGGCAACACCAGUCGAUGGGCUGUCUGACAUUUUGGUA UCUUUCAUCUGACCAUCCAUAUCCAAUGUUCUCAG 11 VAI GGGCACUCUUCCGUGGUCUGGUGGAUAAAUUCGCAAGGGUA UCAUGGCGGACGACCGGGGUUCGAACCCCGGAUCCGGCCGUCC GCCGUGAUCCAUGCGGUUACCGCCCGCGUGUCGAACCCAGGU GUGCGACGUCAGACAACGGGGGGAGCGCUC

Supplementary Table 1. Complete list of RNA sequences used in this study

12	U55	υυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυ
		υυυυυυυυυυυυ
13	RNA/DNA hybrid	5' – r(GUAUGUCUAGACUGAA) – 3'
	duplex with 2 SBEs	3' – d(CATACAGATCTGACTT) – 5'
14	dsRNA duplex with	5' – d(GTATGTCTAGACTGAA) – 3'
	2 SBEs	3' – d(CATACAGATCTGACTT) – 5'
15	miR-21 RNA	5' – r(UCAACAUCAGUCUGAUAAGCUA) – 3'
	duplex	3' – r(AGUUGUAGUCAGACUAUUCGAU) – 5'
16	30-bp hairpin	GGAUCGAUCGAUCGAUCGGCAUCGAUCGGCUUCGGCCGAUCG
		AUGCCGAUCGAUCGAUCC
17	Group II intron	GGGGUCUCGUAUUGCAGAAAUGACAACAUCUGCCGUAACCAA
	D4A	UCGGGUAAAAGGUGGUCAAAUCAAGCGAGAC
17a	D4a truncation 1	GGGUCUCGUAUUGCAGAAAUGACAACAUCUUUCGAGGUGGUC
		AAAUCAAGCGAGAC
17b	D4a truncation 2	GGGUCUCGUAUUGCAGAAAUGACUUCGGUCAAAUCAAGAGAG
		AC
17c	D4a truncation 3	GGGUCUCGUAUUGCAGAAAUAAAUCAAGCGAGAC
17d	D4a isolated	GGGUCUCGUAUUGCAGAAAUGACACAUCUUGCCCGUAACCAA
	terminal loop	UCGGGUAAGGUGUGUCAAAUCAAUGCGAGAC
17e	D4a isolated apical	GGGUCUCGUAUUGCAGAUGACACAUCUGCCGUAACCAAUCGG
	Іоор	GUAAAAGGUGUGUCAUCUGCAAUGCGAGAC
18	ai5-gamma D3	GGGUAUAAAAAGCUAAUGCCAUAUUGUAAUGAUAUGGAUAA
		GAAUUAUUAUUCUAAAGAUGAAAAUCUGCUAACUUAUACUG
19	dsDNA with 1 SBE	5' – GTATGTCTCAGATGAA – 3'
		3' – CATACAGAGTCTACTT – 5'
20	NF-KB aptamer	GAUACUUGAAACUGUAAGGUUGGCGUAUC
21	RRE	GGUCUGGGCGCAGCGCAAGCUGACGGUACAGGCC

Supplementary Figure 1

SMAD3 RNA binding is conferred by the MH1 domain. A) SMAD3 domain map with the nucleic acid-binding MH1 domain highlighted in green. **B)** SDS-PAGE gel of the purified protein constructs used for all experiments. **C)** Representative EMSAs of full-length SMAD3 binding to pri-miRNA constructs with and without the SBE. This binding recapitulates the affinity and the lack of sequence specificity conferred by SMAD3 MH1. **D)** Representative EMSA of full-length SMAD3 binding to **17**. This binding recapitulates the high affinity for complex RNA structures conferred by SMAD3 MH1.

Supplementary Figure 2

SMAD3 does not preferentially bind pri-miRNA stem loops. A) Representative EMSAs and curve fits for replicate experiments performed on pri-miRNA constructs **B)** *K*_D^{app} values calculated from replicate experiments on pri-miRNA constructs. pri-miRNA constructs containing putative SBEs are shown in blue and negative controls are shown in red. **C)** Secondary structure of the miRNA construct **10** containing the central stem loop and flanking single-stranded regions. RNA folding algorithms predict a stable central stem and many unstable conformations for the flanking regions. **D)** Secondary structure of the length matched control RNA construct **11**. The secondary structure is based on experimental probing data (51).

Supplementary Figure 3

SMAD3 does not bind dsRNA or RNA/DNA hybrid duplexes. Representative EMSAs of poor SMAD3 binding to RNA-containing duplexes.

Supplementary Table 1 Complete list of RNA sequences used in this study