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Table S1. Docking eIF2o on eIF2B

Distances
; NMR! Cross-link?
Docking Binding partner
model
<5A | <10A | >10A | <10A | <154
(%) (%) (%) (%) (%)
14 21 0 7 8
elF2Ba
67 % 100 % 0 % 88 % 100 %
NMR
+ s 6 11 5 4 6
_linki elF2B
cross-linking P 38% | 69% | 31% | 67% | 100%
(this work)
3 3
elF2Bo
100 % | 100 %
7 14 7 7 8
elF2Bo.
33 % 67 % 33 % 88 % 100 %
Cross-linking only IF2Bp 3 7 9 6 6
e
(1) 19 % 44 % 56 % 100 % | 100 %
3 3
elF2B6
100 % | 100 %

"' NMR distance restraints were set to 5 A. Distances < 10 A were considered allowed, to account for docking the
proteins as rigid bodies, and docking human elF2a to S. pombe elF2B. Distances > 10 A were considered restraint

violations.

2 Cross-linking distance restraints were set to 10 A. Distances < 15 A were considered allowed, to account for docking
the proteins as rigid bodies, and docking human eIF2a to S. pombe elF2B. Distances > 15 A were considered restraint

violations (no such restraint violations were observed in any of the two docking models).

3 Analyzed as a reference.




Fig. S1

Intramolecular Interaction Interface in elF2a




Figure S1. Comparisons of the CSP effects of the phosphomimetic mutation S51D and deletion analysis of the
elF2a intermolecular interaction

(A) Residues affected by the intramolecular interaction mapped onto the structure of elF2a, colored from 1
standard deviation (o)) to red (>30). Indeterminate residues are colored grey. Residues <l are colored black. A
contiguous surface is apparent, also involving the CTT. Residues 302-314 were absent in the NMR structure and are
thus not displayed here and were not obviously affected. This panel is identical to Fig. 1D. (B) Residues affected by
the phosphomimetic mutation mapped onto the structure of e[F2a. Coloring is as in panel A. Comparison to panel A
reveals that the effects of the phosphomimetic mutation overlap substantially with the intramolecular surface, but are
of smaller magnitude. This panel is identical to Fig. 2D. (C) Residues affected by the intramolecular interaction in
elF2ass1p mapped onto the structure of elF2a, colored as in panel A. Comparison to panel A reveals that the effects of
the intramolecular interaction in elF2assip are essentially the same as in WT elF2a, but are of smaller magnitude.
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Figure S2. Effects of the phosphomimetic mutation S51D on the eIF2a intermolecular interaction

(A) TROSY-HSQC spectra of 2H/"*N-labeled full length eIF2a (black), full length phosphomimetic elF20. (purple),
and 2H/'SN/"3C-labeled elF2a-CTD (red). Arrows indicate movement of peaks away from their full length WT
positions. The boxed area corresponds to the blown up frame shown in Figure 2E. (B) TROSY-HSQC spectra of
2H/"N-labeled eIF20-NTD (black) and phosphomimetic eIF2a-NTDssp (purple). (C) Shown in individual insets are
peaks for elF2a-CTD residues experiencing chemical shift perturbations of 1o or greater, derived from the spectra
comparison shown in (A). The pattern of peak movement indicates a destabilizing effect of the phosphomimetic
mutation on the intramolecular interaction in eIF2a, since the peaks in the phosphomimetic elF2a mutant are
intermediate between the peak positions in full-length WT elF2a and those in free elF2a-CTD. (D) For the residues
highlighted in (C), the fractional displacement along the line and the magnitude of deviation off of the line were
calculated. A value of 100% corresponds to final location on top of the eI[F2a-CTD peak position, while a value of
0% indicates no movement and thus a final location on top of the wild-type elF2a peak position. Resulting mean
fractional displacement of ~50% indicates peak positions are halfway between elF2a (“bound” state) and e[F2a-CTD
(“free” state). No pattern emerged based on angular deviation. (E) Shown in individual insets are select peaks for
elF2a-CTD residues from (C), with the peak from the spectrum of phosphorylated full-length eIF2a overlaid in gold
over the spectra of full-length eIF2a (black), full length phosphomimetic elF2a (purple), and elF2a-CTD (red). The
pattern of peak movement indicates a slightly greater destabilizing effect on the intramolecular interaction in elF2a
by phosphorylation, compared to the phosphomimetic mutation, since the peaks in phosphorylated elF2a are slightly
closer to the peak position in free elF2a-CTD. (F) Plot of chemical shift perturbations due to deletion of the opposite
domain (black) as well as due to the phosphomimetic mutation (purple). Grey bars represent indeterminate residues
for which no analysis could be performed. A substantial overlap exists between residues affected by intramolecular
interaction and by the S51D mutation, as can also be visually seen by comparing Fig. S1A and B.
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A Closed elF2a conformation in the context of the elF2 structure
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Figure S3.

(A) Closed elF2a conformation in the context of the el F2 structure. alF2 from the structure of the archaeal elF2-
GTP<Met-tRNA; complex (3V11.pdb) (2) is shown as ribbon. alF2f is orange-red; alF2y is orange; alF2a-CTD is
grey; and alF2a-NTD is grey. The CTD of human elF2a (shown in yellow) in closed conformation, as in Fig. 1E, was
aligned to the CTD of alF2a. The side-chain of S51 is shown in blue. elF2a is in orientation similar to that in Fig. 1E.

(B) Effects of the phosphomimetic S51D mutation on elF2a mobility in Gel Filtration Chromatography (GFC).
GFC traces of WT elF2a (green) and elF2assip (magenta). The proteins were run on a GE Superdex G 75 10/300 GL
column, in a 10 mM Na phosphate buffer, pH 7.0, 150 mM NacCl, 0.01 % NaN3, 2 mM DTT, 0.1 mM AEBSF, 1 mM
EDTA. Positions of select molecular weight markers are shown with dashed lines. MW, was calculated from a
standard curve using molecular weight markers.
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Fig. S4

elF2Ba Binding Surface on elF2a-NTD
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Figure S4. Effects of the phosphomimetic S51D mutation and eIF2a-CTD on elF2Bo binding

Residues in elF2a-NTD (A), elF2a (B), elF20-NTDssip (C), and elF2assip (D) experiencing selective signal loss in
TROSY-HSQC spectra of 2H/"*N-labeled protein samples upon binding to el[F2Ba, mapped onto the structure of
elF2a-NTD, colored from (>10) to red (>30). Indeterminate residues are colored grey. Residues <lc are
colored black. elF2a-NTD is shown in the same orientation as in Fig. 3D. For full length elF2a and elF20ss1p, only
the NTD is shown, as no residues in the CTD crossed the 16 threshold. Surfaces appear similar for all four constructs,
indicating no obvious change in binding to e[F2Ba due to the presence of el[F2a-CTD or due to the phosphomimetic
mutation.
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Figure S5. Effects of the phosphomimetic mutation S51D and eIF2a-CTD on elF2Bf binding

(A) TROSY-HSQC spectra of 2H/'*N-labeled elF20-NTD in the absence (black) and presence (red) of excess eIF2Bp.
(B) Boxed area in (A) with boxed area from Fig. 4B for comparison. Intermolecular surface was similar to that of
elF20-NTDssip shown in Fig. 4D. TROSY-HSQC spectra of 2H/**N-labeled elF2a (C) and elF20ssip (D) in the
absence (black) and presence (red) of excess elF2B. No significant binding was observed. (E) SDS PAGE of
fractions from Gel Filtration Chromatography (GFC) of a mix of GH-elF2Ba and eIF2Bp (top), and GH-elF2Bao,
elF2Bp, and GH-elF2B5 (bottom). Free elF2Ba is a dimer, whereas e[F2Bf and eI[F2B6 are monomers. M, molecular
weight markers, Start, starting material, 7-18, GFC fraction numbers. The protein positions are labeled on the right.
A truncated elF2B6 fragment is labeled with an asterisk (*).



Fig. S6

Proposed elF2 binding surface on elF2B
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Figure S6. Docking the eIF2-TC on elF2B

(A) Cross-eyed stereo view of the surface on elF2B proposed to bind the elF2 heterotrimer. eIF2Ba/B/d residues
shown to cross-link to both phosphorylated and unphosphorylated elF2a are red; residues in eIF2Bf that cross-link
only to unphosphorylated elF2a are (1). elF2By/e residues shown to cross-link to elF2y in e[F2Beapo-elF2
complexes are navy, except the two elF2Be residues with lower efficiency of cross-linking to elF2(a-P)-GDP than to
apo-elF2 (1), which are light blue. The sites of CACH/VWM mutations in elF2Bye are grey. The same coloring
scheme for eIF2B is used in panel (B) and in Figures S5B, S6, and S7. The two e[F2By/e residues shown to cross-link
equally well to both apo-elF2 and elF2(a-P)-GDP (1) are marked with black circles. The two elF2B¢ residues with
lower efficiency of cross-linking to elF2(a-P)-GDP than to apo-elF2 (1) are light blue and marked with red circles.
(B) Cross-eyed stereo view of the elF2-GTPsMet-tRNA; ternary complex (TC) from the S. cerevisiae 48S pre-
initiation complex (3JAQ.pdb) (3) docked on elF2B. elF2B coloring is as in panel (A). e[F2-TC is shown as ribbon.
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Figure S7. Validating the eIF2B*TC model

(A) Cross-eyed stereo view of the eI[F2B+TC complex, with e[F2B colored based on electrostatic potential (blue
indicates positive charges; red indicates negative charges). The color scheme of TC is as in Fig. S6B. (B) Cross-eyed
stereo view of the eI[F2B+TC complex, with eIF2B and elF2 residues reported to cross-link to each other (4) shown in
magenta and connected with magenta lines). The tRNA and nucleotide are not shown so as not to visually obscure
cross-links. e[F2B and elF2 coloring is as in Fig. S6B.
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Figure S8. Building a model of the eIF2BeelF2(a-P)-GDP complex

(A) Cross-eyed stereo view of the elF2B*TC with the structure of human elF2Be-CTD (3JUILpdb) (5) docked such
that it interacts with a CACH/VWM mutation-rich surface on eIF2B¢ as well as oriented such that residues important
for catalytic activity are facing the G-domain of elF2y. eIF2B and eIF2 coloring is as in Fig. S6B. (B) Cross-eyed
stereo view of the el[F2BeelF2a model shown in Fig. 6A merged with the model of the eI[F2B*TC complex shown in
Fig. 6B. elF2a from the e[F2BeelF2a model is colored , with individual residues in elF2a colored according to
the following scheme: (i) residues in the P-loop are purple, unless colored as detailed below; (ii) residues affected by
elF2Ba binding (see Fig. 3) are navyj; (iii) residues affected by eIF2Bf binding (see Fig. 4) are ; and (iv) residues
affected by both are blue. elF2a from the e[F2B*TC model is colored grey. The tRNA is not shown.
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Potential ligand-binding sites in elF2B
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Figure S9. Potential mechanisms of eIF2B regulation by small molecules

(A) Cross-eyed stereo view of elF2B in ribbon representation with potential ligand-binding locations shown as black
spheres. Only one copy of each subunit is displayed for simplicity. elF2B coloring is as in Fig. S6. (B) The same view
as in (A), but with elF2(a-P)-GDP overlaid. eIF2B coloring is as in panel (A). eIF2 coloring is as in Fig. S8B. (C) The
same view as in (B), but with e[F2B in surface representation.
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