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Supplementary Figure S1: A functional single-chain dimer. 
(A) The plasmid expressing the LS heterodimer was modified to fuse the C-terminus of the MBPHsmar1 
subunit to the N-terminus of the TrxAHsmar1 subunit with a flexible linker (see Materials and Methods). 
Expression and purification gives a single polypeptide of 1262 amino acids (143 kDa) containing two 
transposase monomers. 
(B) SDS-PAGE analysis of the LS heterodimer and the single-chain dimer.  
(C) Gel filtration analysis of the LS heterodimer and single-chain dimer. The similar profiles of the non-
covalent and covalent dimers indicate that the single-chain dimer does not form tetramers to detectable 
levels. 
(D) An E. coli papillation assay with a non-covalent dimer, the wild type single-chain dimer and mutant 
single-chain dimers that carry an active site mutation (D155A) in one of the two subunits. The assay relies 
on the mobilization of a transposon that carries a promoterless LacZ gene (56). Transposition of the 
reporter construct downstream of an active promoter leads to the appearance of blue papillae that cover 
the bacterial colonies when grown on X-Gal-containing plates. The experiment shows that the single 
chain dimer is active in bacteria. When one of the two subunits of the single-chain dimer carried an active 
site mutation, transposition was abolished. This indicates that the two subunits of the single-chain dimer 
act together in transposition. A low number of papillae was observed when the second subunit (TrxA-
tagged) was mutated. This presumably reflects a low level of dimer-of-dimers in which two WT subunits 
have come together despite the fact that mass action strongly favors intramolecular dimerization. This is 
also evident from the larger amount of backbone production with this mutant (Figure 6A, compare centre 
and right panels). Transposase expression vectors were transformed in the DH5α-based E. coli strain 
RC5096. Transformants were plated on LB-agar medium supplemented with ampicillin (200 µg/ml), 
lactose (0.1 %) and X-gal (40 µg/ml). Plates were incubated at 37ºC for 5 days and photographed. 
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Supplementary Figure S2: Order of cleavage events and products of the plasmid transposition 
assay. 
In the mariner transpososome, 5′ strands are cleaved before either of the 3′ strands (21). In a plasmid 
transposition assay, 5′-end nicks at one or both ends give the nicked intermediate; 3′-end cleavage at one 
end gives the linear intermediate and 3′-end cleavages at both ends gives the backbone product. 
 

 
 

(1)

(3)
(2)

(4)

(1) (2)

(1)(2)

(3)

(3)

(4)

(4)

Strand cleavages Plasmid products

5′
 s

tra
nd

 c
le

av
ag

es
3′

 s
tra

nd
 c

le
av

ag
es

Supercoiled
substrate (SC)

Linear (L)

Nicked (N)

Backbone
(BB) 

5′
3′

=

=

=

=

=



 
 

Supplementary Figure S3: Dimer models for transposon cleavage. 
For each model there is a defined number of ways in which wild type and catalytically inactive subunits 
can be arranged on the four DNA strands. The probability of a given combination to occur is given by the 
equation: P = [WT]n(WT) x [M]n(M), where [WT] and [M] are the ratios of wild-type and mutant transposases 
in the mixture, respectively, and n(WT) and n(M) are the number of wild-type and mutant subunits within 
the combination, respectively. Each combination predicts a specific reaction product from a plasmid 
assay. The combinations that predict the same outcome are then added up and a graph of the predicted 
occurrence of each product is plotted as a function of the mutant content in the reaction mixture.  
(A) Without subunit pre-equilibration. In this model, the transposon is acted upon by a transposase 
homodimer. The product outcome is not dependent on the role of individual subunits in the reaction. If the 
transposase dimer is active, the reaction will give the backbone product (BB). If the transposase dimer is 
inactive, the supercoiled substrate (SC) remains unreacted. Therefore the predicted outcome of a 
reaction with increasing ratio of inactive transposase is a gradual decline is backbone and concomitant 
increase in supercoiled substrate. 
(B) With subunit pre-equilibration. In this model, the transposon is acted upon by transposase 
homodimers and heterodimers. Here, the reaction outcome depends on the role of individual subunits 
during transposon cleavage, as illustrated. Graphs 5 and 6 are indistinguishable because the coupling of 
cleavage events in the transpososome is such that 3′ cleavage is greatly reduced when one 5′ end 
remains uncleaved (21). 
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Supplementary Figure S4: Tetramer models for transposon cleavage. 
(A) Without subunit pre-equilibration. In this model, the transposon is acted upon by two transposase 
homodimers. The products of the reaction depend on which pair of strands each dimer cleaves. Graphs 2 
and 3 are indistinguishable because the coupling of cleavage events in the transpososome is such that 3′ 
cleavage is greatly reduced when one 5′ end remains uncleaved (21). 
(B) With subunit pre-equilibration. In this model, the transposon is acted upon by four transposase 
subunits that behave like independent monomers. Therefore, the reaction outcome does not depend on 
the role of each subunit. The cleavage products depend on which individual strand is occupied by an 
active or inactive subunit. There are 16 possible combinations, each of which predicts a specific reaction 
outcome, which is dictated by the constrained order of strand cleavages in mariner (21). 
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