

В

Α

Supplementary Table S1

Primers

FANCD2 rAAV Conditional Vector Targeting Exon 12: Golden Gate Cloning primers				
hFANCD2_LF_GG	GACGCTCTTCACCGTGACCCAAACTTCCTATTGA			
hFANCD2_LR_GG	GACGCTCTTCTGAGGTTGCTTTATCTAGGTGTGA			
hFANCD2_RF_GG	GACGCTCTTCGGCACAGACTAACTGAGAATACTGAC			
hFANCD2_IR_GG	GACGCTCTTCGGTATGCTATACGAAGTTATGGATTGATCTGAATGGCTAAG			
hFANCD2_IF_GG	GACGCTCTTCCTACATTATACGAAGTTATCAGACGACAGTGCAAGTT			
hFANCD2_RR_GG	GACGCTCTTCCCGCCGCCACCTCAGATTATCTT			
FANCD2 rAAV Knockou	t Vector Targeting Exon 12: Golden Gate Cloning primers			
FANCD2-St KO-LF	GACGCTCTTCACCG GTGACCTACTGATAGAGAATAC			
FANCD2-St KO-LR	GACGCTCTTCTGAG TAAGAGCATACCTCAAGTGT			
FANCD2-ST KO-RF	GACGCTCTTCGTCAAAGAGCTCATCCTCACAC			
FANCD2-ST KO-RR	GACGCTCTTCCATGTTGACAGTGGACAGATTGA			
FANCD2 Allele Determin	nation rAAV Targeting			
FANCD2_EX11SF	ATTCTTCATTCCGTAACAGC			
FANCD2_LoxP SR	GACAACCTCATGTATAAGATGG			
FANCI rAAV Conditiona	I Vector Targeting Exon 10: Golden Gate Cloning primers			
Fancl_GG_LF	GACGCTCTTCACCGGCTCAGGAGTTCAAGACC			
Fancl_GG_LR	GACGCTCTTCTGAGTCAAGACCAGCCTCTACTAA			
Fanclcond_GG_RF	GACGCTCTTCGTCACTCCTGGGATCAAGTGAT			
Fanclcond_GG_IR	GACGCTCTTCGGTATGCTATACGAAGTTATGAGTGTGGTAACATCATGTA			
Fanclcond_GG_IF	GACGCTCTTCCTACATTATACGAAGTTATTAATGTCCTCACTTTAGCAG			
Fanclcond_GG_RR	GACGCTCTTCCATGGAACAACCAAATGCAATGC			
FANCI Allele Determinat	tion rAAV Targeting			
Fanclc_GG_LIF	GCAATGGCACAATCTTGG			
Fanclcond_GG_LoxR	ATAGGACTTTCTGGCTTGCT			
CRISPR/Cas9 Targeting	of FANCD2 Exon 11			
FANCD2 gRNA sequence	AACAGCCATGGATACACTTG			
FancD2_CC_F2	GGAAGATGGAGTAAGAGAAGT			
FancD2_CC_R2	TGCTCATTCATAGTGGGTAG			
CRISPR/Cas9 Targeting	of FANCI Exon 9			
FANCI gRNA sequence	CTTATCTAGTGCACTGAAGA			
Fancl_CC F3	TTCTCTGCTCCCAAGTTTC			
Fancl CC R3	TGTGCTGAGGTGAAGGTA			

Supplementary Table S2

Figure	samples	p-value (two tales)
4A	D2 ^{-/-} vs I ^{-/-}	0.033561
	D2 ^{-/-} vs ID2 DKO	0.000029
	I ^{-/-} vs ID2 DKO	0.000065
	WT vs I ^{-/-}	0.0000115
	WT vs D2 ^{-/-}	0.0000308
5A-B	WT vs D2 ^{-/-} + HU 50 μM	ns
	WT vs D2 ^{-/-} + HU 100 μM	0.0018921
	WT vs D2 ^{-/-} + HU 150 μM	0.0019495
	WT vs D2 ^{-/-} + APH 10 nM	0.0310029
	WT vs D2 ^{-/-} + APH 25 nM	0.0204921
	WT vs D2 ^{-/-} + APH 50 nM	0.0004985
	WT vs I ^{,/-} + HU 50 μM	ns
	WT vs I [≁] + HU 100 μM	ns
	WT vs I ^{-/-} + HU 150 μM	ns
	WT vs I ^{-/-} + APH 10 nM	ns
	WT vs I ^{-/-} + APH 25 nM	ns
	WT vs I ^{-/-} + APH 50 nM	0.0120932
	WT vs ID2 DKO + HU 50 μM	ns
	WT vs ID2 DKO + HU 100 μ M	ns
	WT vs ID2 DKO + HU 150 μM	ns
	WT vs ID2 DKO + APH 10 nM	ns
	WT vs ID2 DKO + APH 25 nM	ns
	WT vs ID2 DKO + APH 50 nM	ns
5F	WT + HU vs D2 ^{-/-} + HU	0.00021854
	WT + HU vs I [≁] + HU	0.00040459
	WT + HU vs ID2 DKO + HU	0.00062153
5G	WT vs WT + HU	0.000731473
	D2 ^{-/-} vs D2 ^{-/-} + HU	0.00065732
	I ^{-/-} vs I ^{-/-} + HU	0.000321296
	ID2 DKO vs ID2 DKO + HU	0.0001602
6B	WT + APH vs D2 ^{-/-} + APH	0.000595
	WT + APH vs I [≁] + APH	0.009439
	WT + APH vs ID2 DKO + APH	0.000594
	D2 ^{-/-} + APH vs I ^{-/-} + APH	0.001009
	D2 ^{-/-} + APH vs ID2 DKO + APH	0.011695
6C	WT + APH vs D2 ^{-/-} + APH	0.002453
	WT + APH vs I [≁] + APH	0.014428
	WT + APH vs ID2 DKO + APH	0.003668
	D2 ^{-/-} + APH vs I ^{-/-} + APH	0.013982
6E	WT + HU vs D2 ^{-/-} + HU	0.004277

Figure	samples	p-value (two tales)
6E	WT + HU vs I [,] + HU	0.015219
	WT + HU vs ID2 DKO + HU	0.00449912
7C	WT + HU vs D2 ^{./.} + HU	0.0002692
	WT + HU vs I [≁] + HU	0.0195361
	WT + HU vs I [≁] (2)+ HU	ns
	WT + HU vs I ^{-/-} (12)+ HU	ns
8A	WT vs I ^{/-}	0.0240309
	WT vs ID2 DKO	0.012311962
	D2 ^{-/-} vs I ^{-/-}	9.91012E-06
	D2 ^{-/-} vs ID2 DKO	0.00055944
8B	WT vs D2 ^{-/-} + RS-1	0.00020194
	WT vs I [≁] + RS-1	ns
	WT vs ID2 DKO + RS-1	ns
	D2 ^{-/-} vs I ^{-/-}	0.01322908
	D2 ^{-/-} vs ID2 DKO	0.01258901
	D2 ^{-/-} vs D2 ^{-/-} + RS-1	1.8008E-09
	I ^{-/-} vs I ^{-/-} + RS-1	0.000040968
	ID2 DKO vs ID2 DKO + RS-1	0.00031077
S3A-B	WT vs D2 ^{-/-} + HU 50 μM	ns
	WT vs D2 ^{-/-} + HU 100 μM	ns
	WT vs D2 ^{-/-} + HU 150 μM	0.013007
	WT vs D2 ^{-/-} + APH 10 nM	0.025805
	WT vs D2 ^{-/-} + APH 25 nM	0.022563
	WT vs D2 ^{-/-} + APH 50 nM	0.001225
	WT vs I ^{-/-} + HU 50 μM	ns
	WT vs I ^{-/-} + HU 100 μM	ns
	WT vs I ^{-/-} + HU 150 μM	ns
	WT vs I ^{-/-} + APH 10 nM	ns
	WT vs I [≁] + APH 25 nM	ns
	WT vs I [≁] + APH 50 nM	ns
	WT vs ID2 DKO + HU 50 μM	ns
	WT vs ID2 DKO + HU 100 μM	ns
	WT vs ID2 DKO + HU 150 μM	ns
	WT vs ID2 DKO + APH 10 nM	ns
	WT vs ID2 DKO + APH 25 nM	ns
	WT vs ID2 DKO + APH 50 nM	0.0293818
S6	PD20+D2 vs PD20+D2 + HU	0.00052779
	PD20 vs PD20 + HU	0.00204948

Figure	samples	p-value (two tales)
S8	WT vs D2 ^{-/-}	0.001209
	WT vs I ^{-/-}	ns
	WT vs ID2 DKO	0.012742

2 (A) Schematic of the CRISPR/Cas9-mediated gene targeting to knockout FANCD2 in WT cells to create D2^{-/-} clone #29. A guide RNA was designed targeting FANCD2 exon 11 with the 3 Cas9 cut site overlapping with an endogenous BpuEI restriction enzyme recognition site. 4 5 Indels introduced at the Cas9 cut site (red arrow) would disrupt the BpuEI cut site. Sequence confirmation of biallelic frameshift inducing mutations. (B) Schematic of the CRISPR/Cas9-6 mediated gene targeting to knockout *FANCI* in D2^{-/-} clone #29 cells to create ID2^{-/-} clone #3. 7 8 A guide RNA was designed targeting *FANCI* exon 9 with the Cas9 cut site overlapping with an endogenous AcuI restriction enzyme recognition site. Indels introduced at the Cas9 cut site 9 10 (red arrow) would disrupt the AcuI recognition sequence. Bottom: Sequence confirmation of 11 biallelic frameshift-inducing mutations. (C) Schematic of the CRISPR/Cas9-mediated gene targeting to knockout *FANCI* in $D2^{-/-}$ clone #39 cells to create the $ID2^{-/-}$ DKO clone #4. A 12 guide RNA was designed targeting FANCI exon 9 with the Cas9 cut site overlapping with an 13 14 endogenous AcuI restriction enzyme recognition site. Indels introduced at the Cas9 cut site 15 (red arrow) would disrupt the AcuI recognition sequence. Sequence confirmation of biallelic frameshift inducing mutations. (D-E) $D2^{-/-}$, $\Gamma^{/-}$ and ID2 DKO cells do not express truncated 16 forms of FANCD2 or FANCI. (D) WCEs from WT, D2^{-/-} (clone #39, exon 12 deletion), and 17 18 ID2 DKO (clone #1) cells were analyzed for the presence of full length FANCD2 (166 kDa) 19 and truncated FANCD2 (expected size of truncated FANCD2 expressed from exons 1-11: 35.8 20 kDa) via western blot and whole membrane analysis using an antibody that recognizes the N-21 terminus of FANCD2 (Santa Cruz; sc-20022, 1:1000). Tubulin was used as a loading control. (E) WCEs from WT, Γ^{-} (clone 28, exon 10 deletion), and ID2 DKO (clone #1) cells were 22 23 analyzed for the presence of full length FANCI (146 kDa) and truncated FANCI protein 24 (expected size of truncated FANCI expressed from exons 1-9: 27.9 kDa) via western blot and 25 whole membrane analysis using an antibody that recognizes the N-terminus of FANCI (Bethyl; 26 A300-212, 1: 1000). *Note*: Samples were run only briefly on an 8-16% gradient gel to allow 27 detection of small protein sizes. On these gels, a non-specific band appears to co-migrate with 28 full length FANCI, however, longer sample runs on low % gradient gels reveal that there is no 29 detectable full length FANCI protein in $\Gamma^{/-}$ and *ID2* DKO cells (Figure 3A, B).

30 Supplementary Figure S2

FANCD2 and FANCI act in concert to activate the MMC-triggered intra-S phase checkpoint. WT, $D2^{-/-}$ (clones #29 and #39), $\Gamma^{/-}$ (clones #28 and #30) and *ID2* DKO (clones #1 and #2) cells, as well as the complemented counterparts, were untreated or treated with 10 nM MMC for 20 hr, followed by propidium iodide (PI) staining and FACS analysis. Shown is a graphic representation of the average percentage of the indicated cell populations present in the G1, S and G2/M phases of the cell cycle. Average percentages were determined from a minimum of 3 replicates and data points were averaged between clones of identical genetic backgrounds.

38 Supplementary Figure S3

(A) FANCD2, but not FANCI, promotes cellular resistance to HU. WT, $D2^{-/-}$ (clone #29), $\Gamma^{/-}$ 39 (clone #30) and *ID2* DKO (clone #2) cells were plated at low density and incubated with 40 41 increasing doses of HU (0 to 150 µM) for 12 to 14 days to allow for single cell colony 42 formation. Plates were fixed and stained with Coomassie, and colonies with a minimum of 50 43 cells were scored. Results were averaged from a minimum of 3 replicates and normalized to 44 the respective untreated cells. Error bars represent the standard deviation and significance was 45 determined by t-test. Statistical significance at p < 0.05, p < 0.01, and p < 0.001 are indicated as *, **, ***, respectively. (B) FANCD2, but not FANCI, promotes cellular resistance to 46

47 APH. WT, $D2^{-l}$ (clone #29), Γ^{l-} (clone #30) and ID2 DKO (clone #2) cells were plated at low 48 density and incubated with increasing doses of APH (0 to 50 nM) for 12 to 14 days to allow 49 for single cell colony formation. Plates were fixed and stained with Coomassie, and colonies 50 with a minimum of 50 cells were scored. Results were averaged from a minimum of 3 51 replicates and normalized to the respective untreated cells. Error bars represent the standard 52 deviation and significance was determined by t-test. Statistical significance at p < 0.05, p < 53 0.01, and p < 0.001 are indicated as *, **, ***, respectively.

54 Supplementary Figure S4

FANCD2 and FANCI cooperate to promote CtIP foci formation following replication stress. WT, $D2^{-/-}$ (clone #39), $\Gamma^{/-}$ (clone #28) and *ID2* DKO (clone #1) cells were untreated or treated with 2 mM HU for 20 hr. Nuclear CtIP foci formation was analyzed by fluorescence microscopy and representative images were taken. Nuclei with >5 foci were considered positive for CtIP foci formation.

60 Supplementary Figure S5

61 FANCD2 and FANCI are dispensable for RAD51 foci formation during replication stress.

62 WT, $D2^{-/-}$ (clone #39), $\Gamma^{/-}$ (clone #28) and *ID2* DKO (clone #1) cells were untreated or treated

- with 2 mM HU for 20 hr. Nuclear RAD51 foci formation was analyzed by fluorescence
 microscopy and representative images were taken. Nuclei with >5 foci were considered
 positive for RAD51 foci formation.
- 66 Supplementary Figure S6

FANCD2 is dispensable for replication stress-induced RAD51 foci formation in a human
 fibroblast cell line. An FA-D2 patient-derived cell line (PD20) and its complemented

69	counterpart (PD20+D2) were untreated or treated with 2mM HU for 20 h. Cellular nuclei were
70	analyzed for the presence of RAD51 foci. Nuclei with >5 foci were considered positive for
71	RAD51 foci formation.
72	Supplementary Figure S7
73	FANCD2, but not FANCI, functions to promote ANHEJ-mediated DNA DSB repair. WT, D2 ⁻
74	^{/-} (clone #39), Γ ^{/-} (clone #28) and <i>ID2</i> DKO (clone #1) cells, as well as the complemented
75	counterparts, were used for this analysis. In this assay, I-Scel digestion creates a DSB in the
76	ANHEJ reporter plasmid (EJ2-GFP). Repair of the DSB by microhomology-mediated repair
77	restores GFP expression. The repair percentage was determined by the number of dual GFP
78	and mCherry positive cells divided by the number of mCherry positive cells (transfection
79	control). Results were averaged from a minimum of 3 replicates. Error bars represent the
80	standard deviation and significance was determined by t-test. Statistical significance at $P < 0.05$,
81	<i>P</i> <0.01, <i>P</i> <0.001, <i>P</i> <0.0001 are indicated as *, **, ***, **** respectively.
82	Supplementary Table 1
83	List of primer sequences used during Golden Gate Cloning and for the confirmation of
84	correctly targeted FANCD2 and FANCI exon sizes and sequences.

85 Supplementary Table 2

- 86 Summary of all P-values for results shown in Main Figures 4 to 8, and in Supplementary
- Figures S3, S6 and S8.