GigaScience The genome draft of the Coconut (Cocos nucifera) --Manuscript Draft--

Manuscript Number:	GIGA-D-17-00038R1		
Full Title:	The genome draft of the Coconut (Cocos nucifera)		
Article Type:	Data Note		
Funding Information:	International Science and Technology Cooperation projects of Hainan Province (No. KJHZ2014-24)	Dr Yaodong Yang	
	Hainan Natural Science Foundation (313058)	Dr Wei Xia	
	the fundamental Scientific Research Funds for Chinese Academy of Tropical Agriculture Sciences (1630032012044)	Dr Yaodong Yang	
	the fundamental Scientific Research Funds for Chinese Academy of Tropical Agriculture Sciences (1630052014002)	Dr Yaodong Yang	
	the fundamental Scientific Research Funds for Chinese Academy of Tropical Agriculture Sciences (1630052015050)	Dr Yong Xiao	
	The major Technology Project of Hainan (ZDZX2013023-1)	Dr Ming Peng	
	the fundamental Scientific Research Funds for Chinese Academy of Tropical Agriculture Sciences (1630152017019)	Dr Yaodong Yang	
	the fundamental Scientific Research Funds for Chinese Academy of Tropical Agriculture Sciences (1630152016006)	Dr Yong Xiao	
	Central Public-interest Scientific Institution Basal Research Fund for Innovative Research Team Program of CATAS (17CXTD-28)	Dr Yaodong Yang	
Background Coconut palm (Cocos nucifera, 2n = 32), a member of genus Cocos and famil Arecaceae (Palmaceae), is an important tropical fruit and oil crop. Currently, o palm is cultivated in 93 countries, including Central and South America, East a Africa, Southeast Asia and the Pacific island, with a total growth area of more million hectares (www.fao.org/faostat/en/). Coconut palm is generally classifie main categories: "Tall" (flowering 8-10 years after planting) and "Dwarf" (flowe years after planting), based on morphological characteristics and breeding ha Palmae species has a long growth period before reproductive years which hin conventional breeding progress. In spite of initial successes, improvements m conventional breeding have been very slow. In the present study, we obtained sequences of Cocos nucifera genome: a major genomic resource which could to facilitate molecular breeding in Cocos nucifera and accelerating the breedir process in this important crop. Findings A total of 419.67 gigabases (Gb) of raw reads were generated by the Illumina 2000 platform using a series of paired-end and mate-pair libraries, covering th predicted Cocos nucifera genome length (2.42Gb, variety "Hainan Tall") to an estimated 173.32× read depth. A total scaffold length of 2.20 Gb was generat = 418 Kb), representing 90.91% of the genome. The coconut genome was pr to harbor 28,039 protein-coding genes, which is less than in Phoenix dactylife (PDK30 variety: 28,889), Phoenix dactylifera (DPV01 variety: 41,660) and Ela guineensis (34,802). BUSCO evaluation demonstrated the obtained scaffold sequences covered 90.8% of the coconut genome, and that the genome was 74.1% complete Genome annotation results revealed that 72.7%, of the		member of genus Cocos and family pical fruit and oil crop. Currently, coconut Central and South America, East and West d, with a total growth area of more than 12 Coconut palm is generally classified into two s after planting) and "Dwarf" (flowering 4-6 al characteristics and breeding habits. This efore reproductive years which hinders initial successes, improvements made by . In the present study, we obtained de novo ajor genomic resource which could be used cifera and accelerating the breeding ds were generated by the IlluminaHiSeq and mate-pair libraries, covering the .42Gb, variety "Hainan Tall") to an old length of 2.20 Gb was generated (N50 ome. The coconut genome was predicted ch is less than in Phoenix dactylifera a (DPV01 variety: 41,660) and Elaeis monstrated the obtained scaffold enome, and that the genome annotation esults revealed that 72.75% of the coconut	

	genome was consisted of transposable elements. of which long-terminal repeat retrotransposons elements (LTRs) accounted for the largest proportion (92.23%). Comparative analysis of the antiporter gene family and ion channel gene families between C. nucifera and Arabidopsis thaliana indicated that significant gene expansion may occurred in coconut involving Na+/H+ antiporter, Carnitine/acylcarnitine translocase, Potassium-dependent sodium-calcium exchanger, and potassium channel genes. Conclusions Despite its agronomic importance, C. nucifera is still under-studied. In this report, we made an attempt to construct a draft genome of C. nucifera and provide an enormous amount of genomic information that will facilitate future functional genomics and molecular assisted breeding in this crop species.		
Corresponding Author:	Yaodong Yang, Ph.D Coconut Research Institute Wenchang City, Hainan CHINA		
Corresponding Author Secondary Information:			
Corresponding Author's Institution:	Coconut Research Institute		
Corresponding Author's Secondary Institution:			
First Author:	Yong Xiao		
First Author Secondary Information:			
Order of Authors:	Yong Xiao		
	Pengwei Xu		
	Haikuo Fan		
	Luc Baudouin		
	Wei Xia		
	Stéphanie Bocs		
	Junyang Xu		
	Qiong Li		
	Anping Guo		
	Lixia Zhou		
	Jing Li		
	Yi Wu		
	Zilong Ma		
	Alix Armero		
	Auguste Emmanuel Issali		
	Na Liu		
	Ming Peng		
	Yaodong Yang		
Order of Authors Secondary Information:			
Response to Reviewers:	Response to editor and reviewers		
	Dear editor and reviewers		
	Thank you very much for your crucial comments for our manuscript entitled "The genome draft of the Coconut (Cocos nucifera)" (GIGA-D-17-00038). We have made a thorough revision to the ms based on all of comments from editor and reviewers. Each		

comments raised by the reviewers had been carefully answered in the response sheet. We hope the revised version can meet the requirement of "GigaScience"

Sincerely yours,

Yaodong Yang

PHONE NUMBER: 0086-898-63330602 FAX NUMBER: 0086-898-63330673 EMAIL: yyang@catas.cn POSTAL ADDRESS: Coconuts Research Institute, Chinese Academy of Tropical Agricultural Sciences, 496 Wenqing Av., Wenchang, Hainan 571339, P.R.China

Response to editor and reviewers,

Reviewer 1

1.Line 40: in 93 countries -> the introduction (line 70) say 89 countries

>>>Response: Thank you for your suggestion. We have re-checked the document reported by Batugal et al., 2005. The corresponding revision has been done in the Introduction part of the revised manuscript.

2.11 million ha ->the introduction (line 72) says 12 million ha

>>>Response: Thank you for your suggestion; we have re-checked the plant area of coconut in the website of Food and Agriculture Organization of the United Nations (http://www.fao.org/faostat/en/). The corresponding revision has been done in the Abstract part of the revised manuscript.

3.Hinders progress in genetic breeding. Do you mean 'marker assisted breeding' or 'genomic assisted breeding'?

>>>Response: Thank you for your suggestion; we meant to say 'conventional breeding'. Revisions have been made in the Abstract part of the revised manuscript to make our opinions clearer.

4.Genetic improvement is slow. Do you mean trait improvement with marker or genetic assisted

>>>Response: We meant to say the improvement made by 'conventional breeding' is slow. The corresponding revision has been done in the revised manuscript.

5.Line 48: The coverage does not add up. 714.67 Gb on a 2.42 Gb genome is $295 \times$ coverage. In any case, only the coverage of the cleaned reads should be shown $(177 \times)$

>>>Response: Thank you for your suggestion; in revised manuscript, only the cleaned reads were used for the coverage depth analysis and the coverage is173.32× read depth.

6.Line54: Do you mean 41,166 genes

>>>Response: Thank you for your suggestion; we have re-checked the annotated gene number for datepalm based on the document reported by AI-Mssallem et al., 2013 and 41 660 genes were annotated. The corresponding revisions have been made in the Abstract part of revised manuscript.

7.Line60: space missing between facilitating and future

>>>Response: Thank you for your suggestion, a space has been added between facilitating and future.

8.Line 61: should be 'molecular assisted breeding'

>>>Response: Thank you for your suggestion, corresponding revisions have been done in the Abstract part of revised version.

9.Line 78: '...wide range to environment...' -> unclear, should be explained. Also 'environment'

>>>Response: Some sentences have been added to the revised manuscript for explaining '...wide range to environment...' in Line 240– Line 242|Page 3.

10.Line78: '...especially for high tolerance to high salt density.' , please clarify

>>>Response: Coconut palm can disseminate through ocean currents: floating nuts sprout and grow naturally upon washing up on beaches. The ability to adapt to a high salt environment is closely related to this dissemination feature and to these natural growth conditions. Corresponding revision has been done in Line 243– Line 244|Page 3 of revised manuscript.

11.Line 80: '...making it possible to understand its adaptation to high salinity.' You do not investigate this, you should change the statement to something milder such as: 'This study forms the basis for future research investigating the coconuts tolerance to salt stress'

>>>Response: Thank you for your suggestion, We also present the genome sequence of HAT coconut and added an analysis of the antiporter and ion channel gene families, relevant to salinity tolerance, into the revised version. Corresponding revision had been added into in Line 237– Line 238|Page 3.

12.Line 82: provide references. The way this sentence reads at the moment, make it seem like you are also reporting those genome sequence.

>>>Response: The corresponding references have been added into Line 423|Page 4 of revised manuscript.

13.Line 92: space between 'Illumina', 'Hiseq2000' and 'sequencer'

>>>Response: Two spaces had been added into between Illumina, Hiseq2000 and sequencer in Line 436|Page 4 of revised manuscript.

14.Line129: The data shows that you have higher coverage and a longer N50, it does not show that the assembly is of better quality.

>>>Response: Thank you for your suggestion, the sentence has been replace by other sentence: "The comparative results of the BUSCO estimation in coconut and in the four other palm genome sequences indicates that the smallest fraction of missing genes as predicted by BUSCO was found in the coconut genome assmebly", in Line 724 – Line 726|Page 6 of revised version.

15.Line 131: 'tissues', not 'issues'

>>>Response: Thank you for your suggestion, corresponding revisions has been done in the revised version.

16.Line134: table 4 and 5 are mixed up

>>>Response: We repeatedly checked Table 4 and 5. Corresponding revisions has been done in revised manuscript.

17.Line 165: BLAST not BLSAT

>>>Response: Thank you for your suggestion, 'BLSAT' had been modified in revised manuscript.

18.Line 175 (and others): keep a space between numbers and units, consistently.

>>>Response: we re-checked all numbers and units throughout the manuscript. All needed spaces have been added between numbers and units.

19.Line195: Change start of sentence (e.g. 'After the above described steps...')

>>> Response: Thank you for your suggestion, corresponding revision has been done in Line 970|Page 8 of the revised manuscript.

20.Line 196: should read: 'than the predicted gene markers..'

>>>Response: Thank you for your suggestion, corresponding revision has been done in Line 971 | Page 8 of revised version.

21.Line203: space between 'by' and 'sequence'

>>>Response: Thank you for your suggestion, a space had been added between by and sequence

22.Line211: after ref 38, just one dot

>>>Response: Thank you for your suggestion, the ref 38 and dot has been deleted in revised version.

23.Line 219: remove space between 'mapping' and ','

>>>Response: Thank you for your suggestion, the space has been deleted between 'mapping' and ','.

24.References: need a lot of editing to uniform

>>>Response: All references of the manuscript have been reviewed and edited based on the author guideline of "Gigascience" in the revised manuscript.

25.Tables: Headers are unclear and many abbreviations within tables are not explained

>>>Response: Thank you for your suggestion, revisions have been done for the table headers. Meanwhile, the abbreviations have been explained and replaced with corresponding full name.

26.What is the difference between Table 4 and Table 7? Both show BUSCO assessments of palm species. Clarify both in tables and in the text.

>>>Response: Thank you for your suggestion, Table 7 has been changed into Table 6 in the revised version. Table 4 referred to the comparative analysis of the assembled genome sequences for four palm species using BUSCO software, while Table 6 referred to the comparative analysis of the predicted gene from the four palm species using BUSCO software. Revisions have been done to make Table 4 and Table 6 legends more clearly in "Table" part of revised version.

27.Figure legend: Figure 1 does not contain any morphological characteristics; they are photographs of coconut plants.

>>>Response: Figure 1 had been substantially revised in the revised version.

Reviewer 2

1.My only major concern about the manuscript is that the written style is not ready for publication. There are many type and grammatical mistakes all over the main text, figure captions and table legends. The manuscript needs some extensive copy editing to be published.

>>>Response: Thank you for your suggestion, the manuscript has been reviewed and edited throughout the manuscript by the native experts (Annaliese Mason, Baudouin Luc and Amjad Iqbal).

Reviewer 3

1.Homologous gene families using a larger set of genomes would allow a gain-/loss analysis (check the Zostera (seagrass) genome paper Figure 1a for a recent example), some venn diagrams based on this showing how many gene are shared with close relative (e.g. Elaeis), other monocots (e.g. rice) and dicots (e.g. Arabidopsis) could also be generated based on this (e.g. orchid genome paper figure 1a). Asynteny/collinearity analysis is usually included, often combined with a Ks analysis (see the orchid genome paper Figure 2, Zostera genome paper Figure 2).

>>>Response: Thank you for your suggestion, we added venn diagrams between different species and analyzed the divergence time between different species into Line 990| Page 8 - Line 1270 | Page 10 of the revised version. Meanwhile, we identified and characterized antiporter and ion channel gene family in Line 1271 | Page 10 – Line 1578 | Page 11 of revised manuscript.

2.No case study is included, I feel there should be at least one (though as the paper is submitted as a data note the journal might not require one). The authors are the first ones to have a glimpse at the genome of this species. I would make sense to check a few relevant gene families (coconut are clearly very different from seeds of other monocots, so seed related gene families would be likely candidates for a more in depth study)

>>>Response: Thank you for your suggestion. It is known that coconut palm can disseminate through ocean currents: floating nuts sprout and grow naturally upon washing up on beaches. The ability to adapt to a high salt environment is closely related to this dissemination feature and to these natural growth conditions. In the revised manuscript, we identified antiporter and ion channel genes in the genome of Cocos nucifera, some of which had been validated to be associated with salt stress in Arabidopsis. In the gene expansions analysis, some gene families showed significant expansion in compared to Arabidospsis, including Na+/H+ antiporter family. Carnitine/acylcarnitine translocase family, Potassium-dependent sodium antiporter, and potassium channel. The expansion of Na+/H+ antiporter family and Potassiumdependent sodium antiporter may be associated with coconut salt tolerance. The expansion of carnitine/acylcarnitine translocase family may be associated with the accumulation of fatty acid in coconut pulp. At last, the expansion of potassium channel may be associated with the accumulation of potassium ion in coconut water. Corresponding revision had been added into Line Line 1271 | Page 10 - Line 1578 | Page 11 of revised manuscript.

3.For non-bioinformaticians a supplemental website which offers a BLAST interface would certainly be welcome.

>>>Response: we have uploaded coconut genome raw data into Sequence Read Archive (SRA) of the National Center for Biotechnology Information. The assembled and annotated data were uploaded into GigaDB database. Meanwhile, the assembled and annotated data have been uploaded into pirate website for blast analysis and genome browse. However, currently, this website is not available for all people. The website will be available after further website improvement and paper publication

4.Line 128 -129: The N50 by itself is not a direct measure for the quality of the assembly. Avoid over-interpretation.

>>>Response: Thank you for your suggestion, the sentence has been replace by other sentence: "The comparative results of the BUSCO estimation in coconut and in the four other palm genome sequences indicates that the smallest fraction of missing genes as predicted by BUSCO was found in the coconut genome assmebly", in Line 724 – Line 726|Page 6 of revised version.

5.Line 54 and abstract: (DVP01, 4166) -> the number of genes for the date palm

genome is incorrect. In table 2 the authors report 41, 660 !

>>>Response: Thank you for your suggestion; we have re-checked the annotated gene number for datepalm based on the document reported by AI-Mssallem et al., 2013 and 41 660 genes were annotated. The corresponding revisions have been made in the Abstract part of revised manuscript.

6.Line 60: facilitating future: missing space Line 78-79

>>>Response: Thank you for your suggestion, a space has been added into between facilitating and future.

7.Line 78-79: For high tolerant to high salt density: revise grammar

>>>Response: Thank you for your suggestion, revisions have been done in Line 240– Line 242 | Page 3 of revised manuscript

8.Line 80: ...present Hainan Tall... -> ...present the Hainan Tall

>>>Response: Thank you for your suggestion, the sentence has been rewrite and the usage of the phrase "Hainan Tall" has been carefully checked throughout the revised manuscript.

9.Line 82: ...about genome

>>>Response: Revisions have been done in revised manuscript.

10.Line 88 (and other places): ...pair end... -> ...paired end...

>>>Response: Thank you for your suggestion, all 'pair end' has been modified into 'paired end' throughout the revised manuscript.

11.Line 96: ...removed by using ... -> ...removed using...

>>>Response: Thank you for your suggestion, corresponding revision had been done in revised manuscript

12.Line 116: ...SOAPdenovo2 map... -> ...SOAPdenovo2 maps...

>>>Response: Thank you for your suggestion, corresponding revision had been done in Line 572 | Page 5 of revised manuscript.

13.Line 132: ...reported in previous Fan's research ...: incorrect grammar should be revised (as previously reported by Fan et al...).

>>>Response: Thank you for your suggestion, corresponding revision had been done in Line 598 | Page 5 in revised manuscript

14.Line 181: Previous Fan's research: revise grammar

>>>Response: 'Previous Fan's research' had been modified into 'as previously reported by Fan et al.' in Line 874 | Page 7 of revised manuscript

15.Line 192: ... a diagrammic pipeline is showed...: revise grammar

>>>Response: Thank you for your suggestion, corresponding revisions had been done in Line 968|Page 8 revised version.

16.Line 199: ...completely... -> complete

>>>Response: Thank you for your suggestion, corresponding revision has been done in Line 973 | Page 8 of revised manuscript.

	17.Line 203 -204: In sequence similarity step: revise
	>>>Response: 'In sequence similarity step' has been modified into 'Firstly' in Line 979 Page 8 of the revised manuscript.
	18.Line 232-233: Font is suddenly somewhat bigger
	>>>Response: Thank you for your suggestion, corresponding revision have been done in "Funding" part of revised manuscript.
Additional Information:	
Question	Response
Are you submitting this manuscript to a special series or article collection?	No
Experimental design and statistics	Yes
Full details of the experimental design and statistical methods used should be given in the Methods section, as detailed in our <u>Minimum Standards Reporting Checklist</u> . Information essential to interpreting the data presented should be made available in the figure legends. Have you included all the information requested in your manuscript?	
· · · · · · · · · · · · · · · · · · ·	
Resources	Yes
A description of all resources used, including antibodies, cell lines, animals and software tools, with enough information to allow them to be uniquely identified, should be included in the Methods section. Authors are strongly encouraged to cite <u>Research Resource</u> <u>Identifiers</u> (RRIDs) for antibodies, model organisms and tools, where possible.	
Have you included the information requested as detailed in our Minimum Standards Reporting Checklist?	
Availability of data and materials	Yes
All datasets and code on which the conclusions of the paper rely must be either included in your submission or deposited in <u>publicly available repositories</u> (where available and ethically appropriate), referencing such data using a unique identifier in the references and in the "Availability of Data and Materials" section of your manuscript.	

Have you have met the above requirement as detailed in our <u>Minimum</u> <u>Standards Reporting Checklist</u>?

1			
2			
3 4			
5			
6 7	1	The genome draft of Coconut (Cocos nucifera)	Formatted: Numbering: Continuous
8	2	Vong Viao ¹ * Dengwei Yu ³ * Haikuo Fan ¹ * Luc Baudouin ⁴ * Wei Yia ¹ * Stánhanie Boce ⁴ * Junyang	
9 10	2	Tong Alao γ , rengwei Au γ , flaikuo ran γ , Euc Baudouni γ , wei Ala γ , stephanie Bocs γ , funyang	
11	3	Xu ² , Qiong Li ² , Anping Guo ² , Lixia Zhou ⁴ , Jing Li ⁴ , Yi Wu ⁴ , Zilong Ma ² , Alix_Armero ⁴ , Auguste	
12 13	4	Emmanuel Issali ³ , Na Liu ^{3¢} , Ming Peng ^{2¢} , Yaodong Yang ^{1¢}	
14	5	¹ Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute,_Chinese	
15 16	6	Academy of Tropical Agricultural Sciences, Wenchang, Hainan 571339, P.R.China	
17	7	² Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural	
18 19	8	Science, Haikou, Hainan 571101, P. R. China	
20	9	³ BGI-Shenzhen, Shenzhen 518083, China	
21 22	10	⁴ French Agriculture Research Centre for International for International Development (CIRAD), UMR	
23	11	AGAP, F-34398, Montpellier France	
24 25	12	⁵ Station Cocotier Marc Delorme, Centre National De RechercheAgronomique (CNRA)_07 B.P. 13,	
26	13	Port Bouet,Côte d'Ivoire	
27 29	14		
29	15	*The authors have equal contribution to the manuscript	
30 21	10		
32	10		
33 24	17	Yong Xiao: <u>xiaoyong1980@catas.cn</u>	
34 35	18	Wei Pengwei Xu: xupengwei@genomics.cn	
36	19	Haikuo Fan: <u>vanheco@163.com</u>	
37 38	20	Luc Baudouin Lue: <u>luc.baudouin@cirad.fr</u>	Field Code Changed
39	21	Wei Xia: <u>saizjxiawei@hainu.edu.cn</u>	
40 41	22	BoesStéphanie Bocs: stephanie.sidibe-bocs@cirad.fr	Field Code Changed
42	23	Junyang_Xu: xujy@genomics.cn	
43 44	24	Qiong Li: liqiong4416@126.com	
45	25	Anping_Guo: gap211@126.com	
46 47	26	Lixia Zhou: <u>glzz_2009@163.com</u>	
48	27	Jing Li: lijing002x@catas.cn	
49 50	28	Yi Wu: <u>wuyi-scuta@163.com</u>	
51	29	Zilong Ma: <u>mzl900@163.com</u>	
5∠ 53	30		Formatted: Font: Times New Roman, 9 pt
54	1	٨	Formatted: Font: Times New Roman
55 56			
57			
58 59			
60			
61 62			
63			
64			

1		
2		
3		
4		
5		
6		
7 9	31	ArmeroAlix Armero: alix.armero_villanueva@cirad.fr
9	32	Auguste Emmanuel Issali: issaliemma@yahoo.com
10 11	33	Na Liu: naliu@genomics.cn
12	34	Ming Peng: mmpeng_2000@yahoo.com
13 14	35	Yaodong Yang: <u>yyang@catas.cn</u>
15	36	
16 17	37	Background
18	38	Coconut palm (Cocos_nucifera, 2n = 32), a member of genus Cocos_and of the-family Arecaceae
19 20	39	(Palmaceae), is an important tropical fruit and oil crop. Currently, coconut palm is cultivated in 93
21	40	countries, including Central and South America, East and West Africa, Southeast Asia and the Pacific
22 23	41	island, with a total growth area of more than $\underline{12}\underline{12}$ million hectares (www.fao.org/faostat/en/).
24	42	Coconut palm is generally classified into two main categories: "Tall"_(flowering 8-10 years after
25 26	43	planting) and "Dwarf" (flowering 4-6 years after planting), based on the morphological characteristics
27 28	44	and breeding habits. This palmae Palmae species needs has a long growth time-period before entre
29	45	into-reproductive years which hinders the progress for conventional breeding progress. In spite of
30 31	46	initial successes, the improvements made by conventional improvement breeding have been is very
32	47	slow. In the present study, we obtained <i>de novo</i> sequences of <i>Cocos nucifera</i> genome:, which will a
33 34	48	majorwith its provide enormousa large amount of genomic information resource which could be used
35 36	49	forto facilitate the further-molecular assisted-breeding and accelerate the breeding process of in Cocos
30 37	50	nucifera accelerating the breeding process in this important crop.genetic improvement is very
38 39	51	slow.In Tthe present study, we obtained the was performed to de novo sequence the genome of Cocos
40	52	muciferagenome, which will provide a large amount of genomic information for molecular assisted
41 42	53	breeding and accelerate the breeding process of Cocos nucifera.
43 44	54	Findings
45	55	A total of <u>419.67</u> 419.67 gigabases (Gb) of raw <u>readsreads</u> was-were generated_by the Illumina_HiSeq
46 47	56	2000 platform_using differenta series of -combinations of paired-end and mate-pair librariesusing
48	57	different combinations of paired end and mate pair libraries, comprising which covering
49 50	58	approximately <u>173.32× depth of the</u> 173.32× depthofthe predictedestimated Cocos nucifera genome
51	59	lengthCocos_nucifera genome (2.42Gb, variety "the-Hainan Tall") to an estimated 173.32× read depth.
5⊿ 53	60	A total scaffold length of 2.20 Gb was generated_, with a (scaffold N50 of _= 418 Kb), , which and
54		2
55		
56		

Formatted: Font: No underline, Font color: Auto, (Intl) SimSun

Formatted: Font: Times New Roman, 9 pt

61	representings 90.91% of the estimated genome (2.42Gb), while T_the BUSCO evaluation		
62	demonstrated the obtained scaffold sequences reached 90.8% completeness of coconut genome		
63	reached (90.8%). The coconut genome was predicted to harbor 28,039 protein-coding genes, which is		
64	less than in Phoenix dactylifera (PDK30 variety:, 28,889), Phoenix dactylifera (DPV01 variety:,	/	Formatted: No underline, Font color: Auto
65	41,660)_and_Elaeis_guineensis (34,802). BUSCO evaluation demonstrated the obtained scaffold		
66	sequences covered 90.8% of the coconut genome, and that The completeness level for the annotation		
67	completeness-genome annotation was also evaluated estimated by BUSCO which showed a level of		
68	that was, reached to 74.1% completeness. Genome annotation results revealed that 72.75% of the		
69	coconut genome was consisteds of transposable elements, among inofOf which the class of		
70	long-terminal repeat retrotransposons elements (LTRs) make upaccountsed for the largest proportion		
71	(92.23%). Comparative analysis of the antiporter gene family and ion channel gene familyies between		
72	C. nucifera and Arabidopsis thaliana indicated thatasuggested significant gene expansion may		
73	happenedoccurred in the former genomecoconut, involving in Na+/H+ antiporter,		
74	Carnitine/acylcarnitine translocase, Potassium-dependent sodium-calcium exchanger, and potassium		
75	channel genes.		
Г 76	Conclusions		
77	Despite its_agronomic importance, Cocos_C. nucifera_is still under-studied. In the currentthis report,		
78	we made an attempt to construct a draft the genome of Cocos. nucifera, which and provideds an		
79	enormousa large amount of genomic information that will facilitate future functional genomics and		
80	molecular assisted breeding in <u>Cocos nuciferathis crop species</u> .		Formatted: Font: Not Italic, No underline, Font color: Auto
81	In the current report, we made an attempt to draft the We report a genome draft of Cocosmicifera.		Formatted: Font: Not Italic, No underline, Font color: Auto
82	which. Thisstudy providesa large amount of genomic information that will, facilitate ingfuture		
83	functional genomics and molecular assisted breeding in Cocosnucifera.		
84	Keywords:_Coconut _z _P_alm, genome, Assembly, Annotation-		
85			
86	Data description		
87	Background		
88	Coconut_palm (Cocos nucifera, 2n = 32), the only species_of fromin_genus Cocos_of andand belongs		
89	toin the family Arecaceae, is a tropical oil crop and is-widely cultivated in tropical regions due to its		
90	extensive application in agriculture and industry. The Coconut palmtropical species was is thought to		Formatted: Font: Times New Roman
	3		

be originated from the sSouthewest and western Western pacific Pacific region (including the Malay Peninsula and archipelagoArchipelago, New Guinea, and the Bismarck Archipelago) and the southwest Pacific. At Ppresently, the this tropical tree crop had hasis been distributed across 93 tropical countries_[1], including Central and South American, East and West African, Southeast Asia and the pacific <u>lislands</u>, and is grownaccounts for over 12 million hectares of land (www.fao.org/faostat/en/).

In China, the coconut palm grows in the subtropical regions - Hainan and Yunnan provinces - as an economical and ornamental plant. In the province of Hainan, economical is cultivated over forover an area of approximately 43,000 hectares in Hainan, withand, out of which the "Hainan Tall" (HAT) variety covered approximately 36,000 hectares is made upcovered by the coconut variety, the "the Hainan Tall" (HAT)_[2]. The Hainan TallHAT coconut are needs eight to ten years to entrerites reproductive stage and slow to mature (flowering 8-10 years after planting), has can grow to a height of about-20-30 meters, and have with a medium to large sized nut-size. The Hainan Tall eoconut-Though thise HAT cultivar of coconut is highly tolerant to salt and drought stress, whilebut yet-sensitive to temperatures below 10 °C. It is known that under natural conditions, cCoconut palm can can be disseminated through ocean currents: floating on the sea and the nuts that sprouts and grows naturally upon washing up onwhen reach the beach in natural conditiones. The ability ofto adapting to a high salt environment is closely related withto this dissemination feature and to these natural growth environmentHence, this tropical species gradually adapted to high salt environment during a long evolutionconditionsary process. The morphological characteristics of the Hainan TallHAT cultivar are givenshowedn -in Figure 1. Here, Besides, wWw also present the genome sequence of Hainan TallHAT the Hainan Tall coconut and thean analysis for of the antiporter and ion channel gene family families, relevant to salinity tolerance, which will forms the basis for future research investigating the coconuts tolerance to salt stress. Moreover, Since theAs draft genome sequences of its coconut relative species,s (e.g. such as Elaeis guineensis[3] [3] and Phoenix dactylifera [4, 5], [4, 5]) have previously beenwere also reported.-, we also performed TheAa comparative analysis has been was performed between coconut and itsthese relative species for the characters of the genome assembly and annotation characteristics results of coconut and its relative species in the study.

Formatted: Font: Times New Roman, 9 pt

Formatted: Font: Times New Roman

121 Data description

122 Sample collection and sequence sequencing strategy

The Ggenomic DNA was extracted from the spear leaf of the variety a"the the Hainan Tall"_coconut (Cocos_nucifera_L. Taxonomy ID: 13894; 19033'3" 19°33'3"N, 110°047'25" E) individual selected from the coconut garden of the the Coconut Research Institute (Wenchang, Hainan province, China) by using the CTAB extraction method [6]. Subsequently, four paired paired end (PE) libraries with insert sizes asof_170 bp, 500 bp, 450 bp and 800 bp_and five Matemate-pair (MP) libraries with insert sizes asof_2 Kb, 5_Kb, 10_Kb, 20_Kb and 40 Kb_were constructed using the standard procedure provided by Illumina (San Diego, USA). After library_preparation and quality control of the_DNA samples, template DNA fragments were hybridized to the surface of the flow cells on an Illumina HiSeq2000_sequencer_and, amplified to form_clusters, and then sequenced by following the standard Illumina manual. Finally, we generated 714.67 Gb of raw reads from all constructed libraries. The raw outputs for sequenced outputs for each sequenced library are summarized in Table 1. Before assembly, We filtered the raw reads were pretreated withbyusing the following stringent filtering processes throughvia the SOAPfilter (v2.2) [7] software: (1) removedFiltered reads with 25% low-quality bases (quality scores \leq 7); (2) **R** removed reads with N bases more than 1%; (3) Ddiscarded reads with adapter contamination and/or PCR duplicates-; (4) removedFiltered reads with undersized insert sizes. Finally, 419.08 Gb (estimated 173.17× read depth) of high-quality sequences were obtained for genome assembly. reads with low quality (base quality less than 7 with percent higher than 25% or N percent higher than 1%), small insert size, PCR duplication or adapter contamination were removed using SOAPfilter, a software applicationin the SOAPdenovo package[7]. After filtering, 419.08 Gb (173.17× depth) high-quality sequences were obtained forgenome assembly. De novo assembly of short reads of Cocos_nucifera We_used 209.38 Gb209.38Gb clean reads of the short-insert libraries (excludeing theinsert size 450bp library), excludinge the insert size of 450bp libraryin order to estimate the coconut genome size by k-mer_frequency_distribution analysis [7]. The genome size (G) of Cocos_nucifera could be estimated by the following formula: $G = N \times (L - K + 1) / K$ _depth

Formatted: No underline, Font color: Auto, Highlight

Formatted: Font: 10 pt
Formatted: Font: Times New Roman, 9 pt
Formatted: Font: Times New Roman

$150 \quad \frac{G = N \times (L - K + 1)/K_depth}{K_depth}$

where N represents the total of number of reads, L represents the read length, <u>K represents the k-mer</u> value used in the analysis and K_depth refers to the main peak in the k-mer distribution curve. In our calculations, N was 2,049,520,223, L was 100 and K_depth was 71<u>for K=17</u>. As a result, therefore, *Cocos_nucifera_genome* was estimated to be 2.42 gigabases (Gb). K-mer_size distribution analysis (Figure 2) indicated that *Cocos_nucifera* was a diploid species with low heterozygous heterozygosity and a high proportion of repetitive sequences.

We then assembled the Cocos nucifera genome by using the software SOAPdenovo2 in three steps: contig construction, scaffold construction and gap filling. In the contig_construction step: the SOAPdenovo2 setwas run_with the parameters 'pregraph_-K 63 -R -d 1'_was_employed to construct de Bruijn graphs_from paired-end libraries with _____ insert sizes ranginge from 170 to 800 bp. ;._____ Then The k-mers from the de Bruijn graphs were then used to form contiguous sequences (contigs) with the parameters_'contig_-R' by clipping tips, merging bubbles and removing the-low coverage links. In the scaffold construction step: the orders of the contigs were determined by using paired-end and mate-pair information with parameters 'map -k 43' and 'scaff -F -u'. In more detailmore detail, SOAPdenovo22 maps-maps the reads from paired-paired-end and mate pair libraries to contigs based on a hash table (keys are unique k-mers on contigs; values are positions). In this-such_cases, two contigs_are considered to be_linked if_the bridging of the contigs are supported by five paired-end read pairs or three mate-pair read pairs. In the gap filling step: the bridging of the contigs are supported byfive paired end read pairs or three mate pair read pairs. In the gap filling step, :gaps within scaffolds were filled by utilizing_KGF [7] (V1.06) and_GapCloser software (v1.12-r6) [7] with paired-end libraries with (having an insert size from 170 to 800 bp in cases, where one end could be mapped to one contig and the other end extended into a gap). To achieve optimized the -assembled sequencey result, Rabbit (a Poisson-based Kk-mer model software, see the URL in the "availability of supporting data" sectionpath: availability of supporting datasoftware, path: availability of supporting data) was used to determine repeat sequences, segmental duplications or divergent_haplotypes on the assembly. After-removale of the redundant sequences. , aA final-total scaffold-length of 2.20 Gb for the scaffolds was obtained and used for continued further generated analysis, which accountings

Formatted: Font: Times New Roman, 9 pt

Formatted: Font: Times New Roman

179 foreomprising__90.91% of the predicted genome size (Table 2), which wasand larger than the African 180 oil palm and dateother-palm genomes (Table 2)species in palmagae. Meanwhile, the N50 of the the 181 obtained contigs N50-was 72.64 Kb and the scaffold N50 was 418.06 Kb_for the scaffolds,-__which 182 have excludeding while the length of scaffolds less than 100 bp-were excluded. The Ccomparison of 183 N50 values for the s-assembled y_N50sof-coconut genome and for with-four previously published 184 palm genomes_Elaeis guineensis [3], Elaeis oleifera [3], Phoenix dactylifera_(PDK30) [4] and 185 Phoenix dactylifera(DPV01) [5] wereis listed inwere listed in Table 2.

186 Genome evaluation

187 The 57,304 unigenes (transcript obtained from three different tissues, spear leaves, young leaves and 188 fruit flesh) as previously reported by Fan et al. reported by Fan et al. [8] were_aligned to the assembled 189 genome of *Cocos_nucifera_using BLAT_[9]* with default parameters. The alignment results predicted 190 indicated that the assembled genome of *Cocos_nucifera_covered 96.78%* of all-the expressed unigenes, 191 suggesting a high level of coverage haves been reached for the assembled genome (Table 3).

We also evaluated the level of genome completeness offor the assembled sequences by using BUSCOv2.0 [10], which quantitatively assesses genome completeness by using evolutionarily-informed expectations of gene content from near-universal single-copy orthologs selected from_OrthoDBv9 (http://busco.ezlab.org/, plant set)._BUSCO analysis_showed that there are separate 90.8% and 3.4% of the 1,440 expected plant genes were identified as complete and fragmented genes respectively, respectively, while 5.8-% of genes were considered asto be missing in from the assembled coconut genome sequencey. The BUSCO results showed that our assembly was more complete than assembled data reported from three palm species. The Comparison Ccomparingative results of the BUSCO results estimation, with in coconut and in the the other four other palm genome sequenceses indicateds that the smallest fraction of missing genes as predicted by BUSCO genes happened was found in the coconut genome assmebly assembly, (Table 4).the BUSCO results with the other four palm genomes indicated the smallest missing of smallest BUSCO genesin coconut genome (Table 4).

205 Repeat annotation

We combined a-homology <u>- based annotation and *de novo* method to identify transposable elements</u>
(TEs) and the tandem repeats in the *Cocos_nucifera* genome. In homology <u>- based annotation step</u>:
TEs at DNA and protein levels were identified by searching against <u>the Repbase library (version</u> Z_A

Formatted: No underline, Font color: Auto, Not Highlight Formatted: No underline, Font color: Auto, Not Highlight

Formatted: No underline, Font color: Auto, Not Highlight Formatted: No underline, Font color: Auto, Not Highlight Formatted: No underline, Font color: Auto, Not Highlight Formatted: No underline, Font color: Auto, Not Highlight Formatted: No underline, Font color: Auto, Not Highlight Formatted: No underline, Font color: Auto, Not Highlight Formatted: No underline, Font color: Auto, Not Highlight Formatted: No underline, Font color: Auto, Not Highlight Formatted: No underline, Font color: Auto, Not Highlight Formatted: No underline, Font color: Auto, Not Highlight Formatted: No underline, Font color: Auto, Not Highlight Formatted: No underline, Font color: Auto, Not Highlight Formatted: No underline, Font color: Auto, Not Highlight Formatted: No underline, Font color: Auto, Not Highlight Formatted: No underline, Font color: Auto, Not Highlight Formatted: No underline, Font color: Auto, Not Highlight Formatted: No underline, Font color: Auto, Not Highlight Formatted: Font: Times New Roman, 9 pt

20.04) [11] with RepeatMasker (v4.0.5) [12] and RepeatProteinMasker (v4.0.5) [12]. In the de novo step:_de novo libraries were constructed based on the genome sequences using the de novo prediction program RepeatModeler (path:Ssee the URL in the "availability of supporting dataavailability of supporting data" section) and LTR_FINDER [13] by removing contamination contaminant and multi-copy genes. Subsequently, Then the novel transposable elements were identified and classified using RepeatMasker. The tandem repeat sequences were identified by TRF (Tandem Repeat Finder) software [14] with the following parameters 'Match = 2, Mismatch = 7, Delta = 7, PM = 80, PI = 10, Minscore = 50 and MaxPerid $= 2000^{\circ}$. The total length of the tandem repeat sequences predicted by the software is-was_151,229,585 bp, comprising_6.86% of the coconut genome. Finally, a total of 1.6 Gb of non-redundant repetitive elements were identified, accounting for 74.48% of the coconut genome, while. Ttransposable elements took up 72.75% forof the total 1.6Gb of repetitive elements and with the. The most predominant transposons were long-terminal repeat retrotransposon (LTR) class, which accountsing for 92.23% of all TEs and 67.1% of the coconut genome (Table 5). Gene prediction We combined homology, de novoand transcript alignment to predict genes in Cocosnucifera genome. We combined three strategies -to predict genes in Cocos nucifera genome: homology - based, de novo and transcript alignment-to predict genes in Cocos nucifera genome. For homology prediction: For homology prediction- based annotation: the protein sequences the proteinsequences of Arabidopsis thaliana[15], Oryza sativa[16], Sorghum bicolor[17] and Zeamays[18] of Arabidopsis thaliana [15]. Oryza sativa[16], Sorghum bicolor [17], Zea mays [18], Elaeis guineensis, and Phoenix dactylifera (DPV01)and Elacis guineensis and Phoenix dactylifera (DPV01) were downloaded from each corresponding sources (see "Availability of data sources")from each corresponding sources (See <u>"Availability of data sources"). The longest transcript was selected to represent the genes with among</u> differnt alternative splicing variants. We aligned these homologous proteins to tThe coconut genome was blastaligned against these downloaded databases using TBLASTN[19] with parameter '-e 1e-5 -F -m 8', and connected the BLAAST hit results were processed to candidate gene loci by solar (v0.9) with parameter '-aprot_2_genome2 -z' to determine the candidate gene loci. Next, we extracted the genomic sequences of candidate gene loci along with up and down stream 1kb flanking sequences, and appliedied Genewise 2.2.0 [20] to define the intron_-exon boundaryboundaries. The genes with pre-stop codon or frame-shifted shifts were excluded for from further analysis.

Formatted: Font: Times New Roman, 9 pt

For *De-<u>de</u> novo* prediction: We-we randomly selected 1000 <u>full-full-</u>length genes (GeneWise score equal 100, intact structure: start codon, stop codon, perfect intron-exon boundary) from gene <u>sets-models</u> predicted by <u>homology-homology-based</u> methods to train the model parameters for AUGUSTUS2.5[21]. Two software programs, AUGUSTU2.5 and GENSCAN 1.0 [22], were used to do *de novo* prediction on <u>the</u> repeat-masked genome of *Cocos_nucifera*. Genes with incomplete structure or protein coding length less than 150bp were filtered out.

<u>Subsequently, Then Gg</u>enes from <u>both</u> homology<u>-based</u> and *de novo*_methods were combined to <u>get_obtain</u> non-redundant gene sets by using GLEAN [23] with the following parameters: minimum coding sequence length 150 bp and maximum intron length 50 kb. Genes were filtered with the same thresholds <u>as were used</u> for homology<u>-based</u> annotation.

For transcriptome-based prediction: RNA-seq data (SRR606452) as as-previously reported by Fan et al. as prvioiuslypreviously reported by Fan et al.[8] were was mapped onto the coconut genome to identify the splice junctions using the software TopHat (v2.1.1) [24]. And then The software Cufflinks (v2.2.1) [25] was then used to assemble transcripts with the aligned reads. The coding potential of these transcripts was identified using a fifth-order_Hidden Markov Model, which was estimated with the same gene sets used in AUGUSTUS training by train_GlimmerHMM, an application in the GlimmerHMM [26] package. The transcripts with intact open reading frames (ORFs) were exacted extracted and the longest ORF transcript was retrieved as while a representative of a gene whiles multiple isisoformstranscripts fromlocated in on thea same locus.

At lastFinally, we merged the GLEAN and the transcriptome result to form a comprehensive gene set using an in-house annotation pipeline with the in-following steps: firstly, all-to-all BLASTP analysis of protein sequences wereas performed between GLEAN results and transcript assemblies with an E-value cutoff of 1e-10. These transcript assemblies were added to the GLEAN result to form (untranslated region) UTRs or alternative spliceing products, depending on whether the coverage and identity of the alignment results reached 0.9 or not. If the transcript assemblies had no blastBLAST hit with the GLEAN results, these transcript assemblies would bewere added to the final gene set as novel gene.inthefollowing steps: firstly, all-to-all BLASTP analysis of protein sequences were performed between GLEAN result and transcript assemblies with an E-value cutoff 1e-10. These transcript assemblies were added to the GLEAN result to form (untranslated region) UTRs or alternative splice on whether coverage and identity of the

Formatted: Font: Times New Roman, 9 pt

alignment results reached 0.9 or not. If the transcript assemblies had no blast hit with the
GLEAN result, these transcript assemblies would be added to the final gene setas novel gene.
The protocol for integrating GLEAN and Transcriptome transcriptome data is shown in Figure 3.

272 Gene evaluation

After the above described steps, we obtained a final gene set contained The annotation results showedprocesses have identified a total of 28,039 protein-coding protein codinggenes were obtained (Table 2), which is less than the predicted predicted gene numbers of Phoenix dactylifera (PDK30,28,889), Phoenix dactylifera (DPV01, 41,660) and Elaeis_guineensis_(34,802)._Meanwhile3. the through the BUSCO evaluation showed the a separate of that ...demonstrated 74.1% and 11.2% of 1,440 expected plant genes were identified as complete and fragmented, and, with 14.7% of genes were considered missing in the gene sets. The BUSCO results showed that our gene prediction was more complete than that of *Phoenix dactylifera* (PDK30) and *Elaeis guineensis*, but less completely than that of Phoenix dactylifera (DPV01) (Table 6), , This maybe due to the higher repetitive elements hinderence of the gene prediction of coconut genome by higher repetitive elements.

283 Gene Function

Gene function annotation was identified-done by based on sequence similarity and domains conservation. In-Firstly, the step of sequence alignment: we searched aligned the coconut protein coding genes were blastaligned against against with the KEGG protein databases [27], SwissProt and TrEMBL [28] using BLASTP at a cut-off E-value threshold of 10⁻⁵. Subsequently, the Then we use the best match of from the alignment was used to represent the gene function. We obtained 18,445 KEGG, 18,867 Swissprot and 24,882 Tremble annotated genes. In domains conservation step:Secondly, InterProScan_5.11-51.0_software_[29]_was_employed to identify the motif and domain based on against the public databases Pfam_[30], PRINTS_[31], ProDom_[32], SMART_[33], PANTHER_[34], TIGRFAM_[35] and SUPERFAMILY [36]. This The gene function annotationrevealed domonstrated demonstrated that 21,087_of the coconut proteins had conserved motifs and, 1,622 Gene Ontology (GO) terms were assigned to 15,705_coconut proteins from the corresponding InterPro entry [37]. In total, approximately_89.41% of these genes were functionally annotated using the above methods.

297 Gene Family Construction

Formatted: Font: Times New Roman, 9 pt

I	۸ ⁴ ۱۸.
327	7706 orthologous families shared by all monocot and dicot species, suggesting 544 monocot unique
326	families of orthologous genes. There are544orthologous families shared by five monocot species and
325	were only existing in Cocos nucifera(coconut specific families) (Table 7). Figure 4 shows shared gene
324	ancestor of the angiosperms of Cocos nucifera genes were assigned in 14,411 families, 282 families
323	functions shared by five monocot species and 7,706 ancestral functions in the most recent common
322	orthologous families shared by all monocot and dicot species, suggesting 544 monocot unique
321	offor orthologous genes. There are 544 orthologous families shared by five monocot species and 7706
320	Cocos nucifera (coconut specific families) (Table 7). Figure 4 showseds the shared gene families
319	nucifera genes were assigned into 14,411 families, of which 282 families were only existinged in
318	of the genes and a Markov Chain Clustering (MCL) with default parameters. About 79.80-% of Cocos
317	E-value threshold of 1e-5. OrthoMCL [38] was used to identify gene family based on the similarities
316	to be more reasonable. Similarities between pair sequence were calculated using BLASTP with
315	two species were re-predicted using NCBI Prokaryotic Genome Annotation Pipeline, which seemed
314	(DPV01) were greatly different from the research paper published in 2013, because genes of these
313	selected to represent the gene. The gene numbers of Elacis guineensis and Phoenix dactylifera
312	(MCL) with default parametersFor genes with alternative splicing variants, the longest transcript was
311	was used to identify gene family based on the similarities of the genes and a Markov Chain Clustering
310	paired sequences were calculated using BLASTP with an E-value threshold of 1e-5. OrthoMCL [38]
309	Prokaryotic Genome Annotation Pipeline which seemed to be more reasonable. Similarities between
308	in 2013[3, 5]_reference, because genes of these two species were re-predicted using the NCBI
307	guineensis and Phoenix dactylifera (DPV01) were greatly different from the research paper published
306	variants, the longest transcripts wasere selected to represent the gene. The gene numbers of <i>Elaeis</i>
305	each corresponding ftp site (see "Availability of data sources"). For genes with alternative splicing
304	Musa acuminata, Carica papaya, Populus trichocarpa, Amborella trichopoda, were download from
303	persica, Solanum tuberosum, Glycine max, Arabidopsis thaliana, Theobroma cacao, Vitis vinifera,
302	angiosperms, including Elacis guineensis, Phoenix dactylifera (DPV01), Sorghum bicolor, Prunus
301	Amborella trichopoda, were download from each corresponding ftp siteProtein sequences of thirteen
300	Theobroma cacao, Vitis vinifera, Musa acuminata, Carica papaya, Populus trichocarpa and,
299	Sorghum bicolor, Prunus persica, Solanum tuberosum, Glycine max, Arabidopsis thaliana,
298	Protein sequences of thirteen angiosperms, including <i>Elaeis guineensis</i> , <i>Phoenix dactylifera</i> (DPV01),
1	

Formatted: No underline, Font color: Auto, Highlight

Formatted: Font: Times New Roman, 9 pt

functions shared by five monocot species and 7,706 ancestral functions in most recent common ancestor of angiosperms. Phylogenetic analysis We extracted 247 single copy orthologous genes derived from the gene family analysis step, and then aligned the protein sequences of each family with MUSCLE (v3.8.31) [39]. Next, the protein alignments were converted to corresponding coding sequences (CDS) using an in-house Perl script. These coding sequences of each single copy gene family were concatenated to form one super gene for each species. The nucleotides at position 2 (phase one site) and 3 (four degenerate site) of codon were extracted separately to construct the phylogenetic tree by PhyML3.0 [40] withusing a HKY85 substitution model and a gamma distribution across sites. The tree constructed by phase one sites was consistent with the tree constructed by four degenerate sites. We extracted 247single copy orthologous genes from the gene family step, and then aligned the protein sequences of each family with MUSCLE (v3.8.31) [39]. Next, the protein alignments were converted to corresponding coding sequences (CDS) using an in-house Perl script. These coding sequences of each single copy family were concatenated to form one super gene for each species. The nucleotides at position 2 (phase one site) and 3 (four degenerate site) of codon were extracted separately to construct the phylogenetic tree by PhyML3.0 [40] with HKY85 substitution model and a gamma distribution across sites. The tree constructed by phase one sites was consistent with tree constructed by four degenerate sites. **Divergence time** The Bayesian relaxed molecular clock approach was used to estimate species divergence time using MCMCTREE in PAMLThe Bayesian relaxed molecular clock approach was used to estimate species divergence time using MCMCTREE in PAML [41], based on the four-degenerate sitesbased on the four degenerate sites and the data set used in phylogenetic analysis, with previously published calibration times [42] (Ddivergence between Arabidopsis between Arabidopsis thaliana and Carica papaya was 54-90 Mya, divergence between Arabidopsis thaliana and Populus trichocarpa was 100-120 Mya). The divergence time between coconut and oil palm is about 46.0 (25.4-83.3) million years ago (Figure 5), which is less than the divergence time between coconut and date palm. data set

used in phylogenetic analysis, with previously published calibration times [42] (Divergence

Formatted: Font: Times New Roman, 9 pt

2		
3		
4		
6		
7 8	357	between Arabidopsis thaliana and Carica papaya was 54-90 Mya, divergence between Arabidopsis
9	358	thaliana and Populus trichocarpa was 100 120 Mya). The divergence time between coconut and oil
10 11	359	palm is about 46.0(25.4-83.3) million years ago (Figure 5), which is less than the divergence time
12	360	between coconut and date palm.
13 14	361	Identification of antiporter genes in coconut genome
15	362	Antiporters isare a-transmembrane proteins involveding in the exchange of two-substances within and
16 17	363	outsideopposite directions through the membrane. In Arabidopsis, the functions of Arabidopsis
18 19	364	antiporter genes have been well characterized experimentally, τ and this gene family werewas
20	365	subdivided into thirteen different functional groups. Among them, three functional clusters involved
21 22	366	in Na+/H+ antiporters, some of which were documented to be associated with salt tolerance [43, 44].
23	367	Antiporter is a transmembrane protein involving in exchange of two substances in opposite
24 25	368	directionsthrough the membrane. In Arabidopsis, the functionsof Arabidopsis antiporter genes have
26	369	been well characterized experimentally, and were subdivided into thirteendifferent functional groups.
27 28	370	Among them, three functional clusters involved in Na+/H+ antiporter, some of which were
29 30	371	documented to be associated with salt tolerance [43, 44].
31	372	The amino acid sequences of 70 antiporter genes of Arabidopsis were downloaded from the
32 33	373	Arabidopsis Information Resource (TAIR) website (http://www.arabidopsis.org) wereand used as
34 25	374	queries tofor BLASTP against the predicated protein-databases of in the Cocos nucifera genome
35 36	375	etwith a cut-off e-value of 1e-10. A total of 126 antiporter genes were identified in coconut
37 38	376	genome. The amino acid sequences of 70 antiporter genes of Arabidopsis downloaded from the
39	377	Arabidopsis Information Resource (TATR) website (http://www.arabidopsis.org) were used as
40 41	378	queries to BLASTP against the protein database of Cocos nucifera at a cut off e_vlaue of 1e 10. A
42 43	379	total of 126 antiportar genes were identified in coconut genome. With the help of theUsing local
44	380	Hidden Markov Model-based HMMER (v3.0) searches and the Pfam database, seven antiporter genes
45 46	381	were excluded forfrom further analysis because of the lack of conserved domain. The detailed
47	382	information of the 119 antiporter genes wereis listed in Additional file 1.
48 49 50	383	local Hidden Markov Model based HMMER (v3.0) searches and Pfam database, seven antiporter
	384	genes were excluded for further analysis because of lack of conserved domain. The detailed
52	385	information of the 119 antiporter genes werelisted in Supplementary Table1.
53 54	386	In order to elucidate the evolutionary relationship and potential functions of the antiporters
55	1	<u>k</u> ~ <u>k</u>
56		
57 50		
50 59		
60		
61		
62		

63 64 65 Formatted: No underline, Font color: Auto, Not Highlight

Formatted: Font: Times New Roman, 9 pt

identified in the study, we applied a combined phylogenetic analysis of Arabidopsis and C. nucifera antiporter proteins usingbyusing the neighbor joining method (Figure 6). Phylogenetic analysis showed that the 119 antiporter genes from C. nucifera can be subdivided into twelve groups-Meanwhile, and that almost all antiporter genes from C. nucifera can bewere clustered intotogether with the functional groups found in Arabidopsis thaliana. In order to elucidate the evolutionary relationship and potential functions of the EgMYBs identified in the study, we applied a combined phylogenetic analysis of Arabidopsis and C. nuciferaantiporter proteins using the neighbor joining method (Figure 6). Phylogenetic analysis showed that the 119 antiporter genes from C. nuciferacan be subdivided into twelve groups. Meanwhile, almost all antiporter genes from C. nucifera can be clustered into the function groups found in Arabidopsis thaliana. Phylogenetic analysis showed that the number of antiporter genes wereas equal between Arabidopsis thaliana and C. nucifera Elaeis guineensis among for allmost groups except for G1 (one of three Na+/H+ antiporter family), G3 (Ccarnitine/acylcarnitine translocase family) and G12 (Ppotassium-dependent sodium-calcium exchanger). The In the three groups, the genes from C. nucifera are far more than these from Arabidopsis thaliana, for example, G1 group (one of three Na+/H+ antiporter familyies) only contained only one Arabidopsis antiporter gene and but 14 C. nucifera antiporters (1-At/14-Cn),,Phylogenetic analysis showed that the number of antiporter genes were equal between Arabidopsis thaliana and Elacis guineensis among all groups except for G1 (one of three Na+/H+ antiporter family), G3 (Carnitine/acylcarnitine translocase family) and G12 (Potassium dependent sodium calcium exchanger). In the three groups, the genes from C.nuciferaare far more than these from Arabidopsis thaliana, for example, G1 group (one of three Na+/H+ antiporter family) only contained one Arabidopsis antiporter gene, and but 14 C. nucifera antiporters (1/14), whereas G3 (Ccarnitine/acylcarnitine translocase family)G3 (Carnitine/acylcarnitine translocase family) contained (1-At/29-Cn), and G13 (PatassiumPotassium-dependent sodium-calcium exchanger)G3 (PotassiumPatassium dependent sodium-calcium exchanger) contained (3-At/11-Cn). The These results indicated gene family expansion involving in the three functional groups. Na+/H+ antiporter family had been reported to be associated with salt stress. Hence, tThe expansion of the Na+/H+ antiporter gene family in coconut palm maybe associated with the high salt tolerance of coconut. Meanwhile, carnitine/acylcarnitine translocase is involved in fatty

Formatted: Font: Times New Roman, 9 pt

7	acid transport cross the mitochondrial membranes. Hence, tThise gene family expansion of the gene
8	family-maybe associated with accumulation of fatty acid in coconut pulp. Moreover, coconut water
9	containeds a high density of potassium ion, approximately 312 mg potassium ion per 100 g coconut
0	water [45]. In theis study, the gene number of potassiumpatassium dependent sodium calcium
1	exchangerswere also detected to be significant expansionpotassium-dependent sodium-calcium
2	exchangers were also detected to be significantly increased comparinged withto
3	Arabidopsisexpansion.

4 Identification of ion channel genes in coconut genome

A total of 67 ion channel genes were identified in the coconut genome (Additional file 2). The amino acid sequences of 67 C. nucifera and 60 Arabidopsis ion channel genes were used to demonstrate analyze their evolutionary relationship (Figure 7). Almost all ion channel genes from C. nucifera can be clustered into the function groups found in Arabidopsis thaliana. The number of ion channel genes was equal between Arabidopsis thaliana and Cocos nucifera among allin most groups except for G5 (potassium channel). Many more The genes (21) from C. nucifera are far more than these (9) from Arabidopsis thaliana (9 genes) were present in group 5 (potassium channels), whichindicating gene family expansion are involveding in potassium channel. The gene family expansion maybe associated with accumulation of potassium ions in coconut water.

435 Conclusion

Cocos_nucifera (2n = 32) is an important tropical crop, and is also used as an ornamental plant in the tropics. In the present study, we sequenced and *de novo* assembled the coconut genome. A total scaffold length of 2.2 Gb was generated, with a-scaffold N50 of 418 Kb. The divergence time of *Cocos nucifera* and *Elaeis guineensis* is lessmore recent than that of *Cocos nucifera* and *Phoenix dactylifera*, suggesting thea closer relationship ofbetween *C. nucifera* and *E. guineensis*-is-more eloserly. Comparative analysis of antiporter and ion channels between *C. nucifera* and *Arabidopsis thaliana* showed significant gene family expansions maybe involving Na+/H+ antiporters, channels. The expansion of these gene families may be associated with adaptation to salt stress, accumulation of fatty acid in coconut pulp and potassium ions in coconut water. The function of expanded gene families in species evolution is always tend toglways related towith the environmental

Formatted: Font: Times New Roman, 9 pt

2		
3 4		
5		
6 7	447	adaption species adapt and the identified, the expand gene families of expansion happened in
8 9	448	ecoconut palm may be associated with its' salty adaption and unique taste of ecoconut water. The
10	449	divergence time of Cocos nucifera and Elacis guineensis is less than Cocos nucifera and Phoenix
11	450	<i>dactylifera</i> , suggesting the <u>a close</u> relationship of <u>between_</u> <i>C. nucifera</i> and <i>E. guincensis</i> is more
13	451	closely. The function of expanded gene families is always related to the environment that a species
$14 \\ 15$	452	adapt, the <u>refore, expand gene families of coconut may associate with its' salty adaption and unique</u>
16 17	453	taste of coconut water. The data output of the coconut genome will provide a valuable resource and
18	454	reference information for the development of high density molecular makers, construction of high
19 20	455	density linkage maps, detection of QTL (quantitative trait loci), genome-wide association mapping,
21	456	and molecular breeding. Comparative analysis of antiporter and ion channel between C. nucifera and
22 23	457	Arabidopsis thaliana suggestedshowed significant gene expansion involving in Na+/H+ antiporter,
24	458	Carnitine/acylcarnitine translocase, Patassium dependent sodium calcium exchanger, and potassium
25 26	459	channel. The expansion of these gene families may be associated with ecconut salt stress,
27 28	460	accumulation of fatty acid in coconut pulp and potassium ion in coconut water.
29	461	Availability of supporting data
30 31	462	Supporting data are available in the GigaDB database, and the raw data were deposited in the
32	463	SRA539146 with the project accession code PRJNA374600 for the <i>Cocos nucifera</i> genome.
33 34	464	Previously published RNA-seq data used for transcriptome-based prediction is available from the
35 36	465	under accession number SRR606452.
37	466	Availability of software
30 39		
40	467	Kabbit: hp://ftp.genomics.org.cn/pub/Plutellaxylostella/Kabbit_linux-2.6.18-194.blc.tar.gz
41	468	RepeatModeler: http://www.repeatmasker.org/RepeatModeler.html,version1.0.5
43 44	469	Solar: https://sourceforge.net/p/treesoft/code/HEAD/tree/branches/lh3/solar/
45	470	HMMER:http://www.ebi.ac.uk/Tools/hmmer
46 47	471	Availability of software
48	472	Rabbit:ftp://ftp.genomics.org.cn/pub/Plutellaxylostella/Rabbit_linux 2.6.18-194.blc.tar.gz
49 50	473	RepeatModeler: http://www.repeatmasker.org/RepeatModeler.html,version1.0.5
51	474	Solar: https://sourceforge.net/p/treesoft/code/HEAD/tree/branches/lh3/solar/
52 53	475	HMMER:http://www.ebi.ac.uk/Tools/hmmer
54 55		<u>4</u> 16 <u>.</u>
56		
57 58		
50		
60 61		
62		
63		
64 65		

l: Font: Italic, No underline, Font color: Auto	С

Formatted: Font: Italic, No underline, Font color: Auto

Formatte

Formatted: Line spacing: 1.5 lines

Formatted: Font: Times New Roman, 9 pt

1			
2			
3 4			
5			
6 7	1		
8	476	Availability of other angiosperms data sources	
9 10	477	Arabidopsis thaliana, Oryza sativa, Sorghum bicolor, Zea mays, Sorghum bicolor, Solanum ${}^{\bigstar}$	Formatted: Line spacing: 1.5 lines
11	478	tuberosum, Prunus persica, Theobroma cacao, Vitis vinifera, Musa acuminata, Carica papaya,	
12 13	479	Populus trichocarpa, Amborella trichopoda: https://phytozome.jgi.doe.gov/pz/portal.html	
14	480	(phytozomev9.1)	
15 16	481	Elaeis guineensis: ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/442/705/GCF_000442705.1_EG5/	
17	482	Phoenix dactylifera (DPV01):	Formatted: Left, Line spacing: 1.5 lines
18 19	483	ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/413/155/GCF_000413155.1_DPV01/	
20	484	Phoenix dactylifera (PDK30):	
22	485	http://qatar-weill.cornell.edu/research/datepalmGenome/download.html	
23 24	486	Availability of other angiosperms data sources	
25	407		
26 27	487	Aradiaopsis inaliana, Oryza saliva, Sorgnum dicolor, Zea mays,Sorgnum dicolor,Solanum	
28	488	tuberosum,Prunus persica,Theobroma caeao, Vitis vinifera, Musa acuminata, Carica papaya,	
29 30	489	Populus trichocarpa, Amborella trichopoda:https://phytozome.jgi.doe.gov/pz/portal.html	
31	490	(phytozomev9.1)	
32 33	491	<i>Elaeis guineensis</i> : ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/442/705/GCF_000442705.1_EG5/	
34	492	Phoenix dactylifera (DPV01):	
36	493	ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/413/155/GCF_000413155.1_DPV01/	
37 38	494	Phoenix dactylifera (PDK30):	
39	495	http://gatar-weill.cornell.edu/research/datepalmGenome/download.html	
40 41	496	Competing interests	
42	497	The authors declare that they have no competing interests.	
43 44	498	Funding	
45	499	This study was supported by International Science and Technology Cooperation projects of Hainan	
46 47	500	Province (No. KJHZ2014-24), Hainan Natural Science Foundation (No. 313058), the major	
48 49	501	Technology Project of Hainan (No. ZDZX2013023-1), the fundamental Scientific Research Funds for	
49 50	502	Chinese Academy of Tropical Agriculture Sciences (CATAS-No. 1630032012044, 1630052014002,	
51 52	503	1630052015050, 1630152017019, and 1630152016006), Central Public-interest Scientific Institution	
53	504	Basal Research Fund for Innovative Research Team Program of CATAS (NoO.17CXTD-28).	Formatted: Font: Times New Roman, 9 pt Formatted: Font: Times New Roman
54 55		17	
56			
57 58			
50 59			
60			
61			
62 63			
64			
65			

505 Author's contribution

- 506 YX, HF, YY, MP, QL, AG designed the study and contribute to the project coordination; XY, PX, WX
 507 wrote the paper; LZ, JL, YW collected the samples and extracted the genomic DNA; YX, BL, BS, JX,
- 508 AA, EI, NL conducted the genome analyses.

509 Acknowledgements

510 Annaliese S. Mason is gratefully acknowledged for assistance with language editing and manuscript

511 revisions.

512 References

- Batugal P, V Ramanatha Rao and J Oliver, editors. Coconut Genetic Resources. International
 Plant Genetic Resources Institute Regional Office for Asia, the Pacific and Oceania
 (IPGRI-APO) Serdang, Selangor DE, Malaysia; 2005.
- 3
 516
 2.
 Tang B, Tang M, Chen C, Qiu P, Liu Q, Wang M, et al. Characteristics of soil fauna community

 4
 517
 in the Dongjiao coconut plantation ecosystem in Hainan, China. Acta Ecologica Sinica.

 5
 518
 2006;26(1):26-32. doi:http://dx.doi.org/10.1016/S1872-2032(06)60003-6.
- 5
 519
 3.
 Singh R, Ong-Abdullah M, Low ET, Manaf MA, Rosli R, Nookiah R, et al. Oil palm genome

 7
 520
 sequence reveals divergence of interfertile species in Old and New worlds. Nature.

 8
 521
 2013;500(7462):335-9. doi:10.1038/nature12309.
- 522 4. Al-Dous EK, George B, Al-Mahmoud ME, Al-Jaber MY, Wang H, Salameh YM, et al. De novo
 523 genome sequencing and comparative genomics of date palm (Phoenix dactylifera). Nature
 524 biotechnology. 2011;29(6):521-7. doi:10.1038/nbt.1860.
- 25255.Al-Mssallem IS, Hu S, Zhang X, Lin Q, Liu W, Tan J, et al. Genome sequence of the date palm3526Phoenix dactylifera L. Nature communications. 2013;4:2274. doi:10.1038/ncomms3274.
- 527
 6.
 Murray MG and Thompson WF. Rapid isolation of high molecular weight plant DNA. Nucleic

 5
 acids research. 1980;8(19):4321-5.
- 375297.Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, et al. SOAPdenovo2: an empirically improved38530memory-efficient short-read de novo assembler. Gigascience. 2012;1(1):18.39531doi:10.1186/2047-217X-1-18.
- 5328.Fan H, Xiao Y, Yang Y, Xia W, Mason AS, Xia Z, et al. RNA-Seq analysis of Cocos nucifera:1533transcriptome sequencing and de novo assembly for subsequent functional genomics2534approaches. PloS one. 2013;8(3):e59997. doi:10.1371/journal.pone.0059997.
- 3
 535
 9.
 Kent WJ. BLAT--the BLAST-like alignment tool. Genome Research. 2002;12(4):656-64.

 4
 536
 doi:10.1101/gr.229202..
- 4553710.Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV and Zdobnov EM. BUSCO: assessing46538genome assembly and annotation completeness with single-copy orthologs. Bioinformatics47539(Oxford, England). 2015;31(19):3210-2. doi:10.1093/bioinformatics/btv351.
- 1854011.Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O and Walichiewicz J. Repbase19541Update, a database of eukaryotic repetitive elements. Cytogenetic and genome research.505422005;110(1-4):462-7. doi:10.1159/000084979.
- 54312.Tarailo-Graovac M and Chen N. Using RepeatMasker to identify repetitive elements in544genomic sequences. Current protocols in bioinformatics. 2009;Chapter 4:Unit 4.10.

Formatted: Font: Times New Roman, 9 pt

Formatted: Font: Times New Roman

T

1				
2				
3				
4				
5				
6				
7	545		doi:10.1002/0471250953.bi0410s25.	
8	546	13.	Xu Z and Wang H. LTR_FINDER: an efficient tool for the prediction of full-length LTR	
9	547		retrotransposons. Nucleic acids research. 2007;35(Web Server issue):W265-8.	
10	548		doi:10.1093/nar/gkm286.	
	549	14.	Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic acids	
12	550		research. 1999;27(2):573-80.	
13 14	551	15.	The Arabidopsis Genome Initiative, Analysis of the genome sequence of the flowering plant	
14 15	552		Arabidopsis thaliana. Nature. 2000;408(6814):796-815.	
16	553		doi: <u>http://www.nature.com/nature/journal/v408/n6814/suppinfo/408796a0_S1.html</u> .	
17	554	16.	Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, et al. A draft sequence of the rice	
18	555		genome (Oryza sativa L. ssp. japonica). Science (New York, NY). 2002;296(5565):92-100.	
19	556		doi:10.1126/science.1068275.	
20	557	17.	Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, et al. The	
21	558		Sorghum bicolor genome and the diversification of grasses. Nature. 2009;457(7229):551-6.	
22	559		doi:10.1038/nature07723.	
23	560	18.	Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, et al. The B73 maize genome:	
24	561		complexity, diversity, and dynamics. Science (New York, NY). 2009;326(5956):1112-5.	
25	562		doi:10.1126/science.1178534.	
26	563	19.	Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and	
27	564		PSI-BLAST: a new generation of protein database search programs. Nucleic acids research.	
28 20	565		1997;25(17):3389-402.	
29 20	566	20.	Birney E, Clamp M and Durbin R. GeneWise and Genomewise. Genome Research.	
30	567		2004;14(5):988-95. doi:10.1101/gr.1865504.	
32	568	21.	Stanke M, Keller O, Gunduz I, Hayes A, Waack S and Morgenstern B. AUGUSTUS: ab initio	
33	569		prediction of alternative transcripts. Nucleic acids research. 2006;34(Web Server	
34	570		issue):W435-9. doi:10.1093/nar/gkl200.	
35	571	22.	Burge C and Karlin S. Prediction of complete gene structures in human genomic DNA.	
36	572		Journal of molecular biology. 1997;268(1):78-94. doi:10.1006/jmbi.1997.0951.	
37	573	23.	Elsik CG, Mackey AJ, Reese JT, Milshina NV, Roos DS and Weinstock GM. Creating a honey	
38	574		bee consensus gene set. Genome biology. 2007;8(1):R13. doi:10.1186/gb-2007-8-1-r13.	
39	575	24.	Trapnell C, Pachter L and Salzberg SL. TopHat: discovering splice junctions with RNA-Seq.	
40	576		Bioinformatics (Oxford, England). 2009;25(9):1105-11. doi:10.1093/bioinformatics/btp120.	
41	577	25.	Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript	
42	578		assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform	
43 11	579		switching during cell differentiation. Nature biotechnology. 2010;28(5):511-5.	
44	580	26	dol:10.1038/NDT.1621.	
46	581	26.	Majoros WH, Pertea M and Salzberg SL. Tigrscan and GilmmerHiviM: two open source ab	
47	502		dei:10.1002/bioinformatics/btb/215	
48	202	77	dol:10.1093/bioinformatics/bin315.	
49	584	27.	Ogata H, Goto S, Sato K, Fujibuchi W, Bono H and Kanenisa M. KEGG: Kyoto Encyclopedia of	
50	585	20	Genes and Genomes. Nucleic acids research. 1999;27(1):29-34.	
51	200	28.	Balroch A and Apweller K. The SWISS-PROT protein sequence database and its supplement	
52	507	20	In Emile III 2000. Nucleic acids research. 2000,26(1):45-6.	Formatted: Font: Times New Roman, 9 pt
53	200	29.	Jones P, Binns D, Chang HT, Flaser M, LI W, MCAnuna C, et al. InterProscan S. genome-scale	Formatted: Font: Times New Roman
54			19	
55				
56				
5/				
20 20				
59				
61				
62				
63				
64				

T				
2				
З				
1				
-				
5				
6				
7	589		protein function classification. Bioinformatics (Oxford, England). 2014;30(9):1236-40.	
8	590		doi:10.1093/bioinformatics/btu031.	
9	591	30.	Bateman A. Birney E. Durbin R. Eddy SR. Howe KL and Sonnhammer EL. The Pfam protein	
10	502		families database. Nucleic acids research, 2000-28/1)-262-6	
11	592			
10	593	31.	Attwood TK, Croning MDR, Flower DR, Lewis AP, Mabey JE, Scordis P, et al. PRINTS-S: the	
12	594		database formerly known as PRINTS. Nucleic acids research. 2000;28(1):225-7.	
13	595	32.	Corpet F, Gouzy J and Kahn D. Recent improvements of the ProDom database of protein	
14	596		domain families. Nucleic acids research. 1999:27(1):263-7.	
15	507	33	Schultz I Conley RR Doerks T Ponting CP and Bork P SMART: a web-based tool for the	
16	500	55.	Schultz J, copiey KK, boerks I, rohang er and bork F. Siviektin a web-based tool for the	
17	598		study of genetically mobile domains. Nucleic acids research. 2000;28(1):231-4.	
18	599	34.	Mi H, Huang X, Muruganujan A, Tang H, Mills C, Kang D, et al. PANTHER version 11:	
10	600		expanded annotation data from Gene Ontology and Reactome pathways, and data analysis	
19	601		tool enhancements. Nucleic acids research. 2017;45(Database issue):D183-D9.	
20	602		doi:10.1093/nar/gkw1138	
21	602	25	Colorent ID, Unit DU, Devidere T, Consective A, Coving Ciplia M, Malang MC, et al.	
22	603	35.	selengut JD, Haft DH, Davidsen I, Ganapathy A, Gwinn-Giglio M, Nelson WC, et al.	
23	604		TIGRFAMs and Genome Properties: tools for the assignment of molecular function and	
24	605		biological process in prokaryotic genomes. Nucleic acids research. 2007;35(Database	
25	606		issue):D260-D4. doi:10.1093/nar/gkl1043.	
26	607	36	Wilson D. Pathica R. Zhou V. Talbot C. Vogal C. Madara M. et al. SUDEREAMUV-sonhisticated	
20	607	50.	whish b, retried it, habbe c, voger c, madera w, et al. Sor Entrawier Sophisticated	
27	608		comparative genomics, data mining, visualization and phylogeny. Nucleic acids research.	
28	609		2009;37(Database issue):D380-6. doi:10.1093/nar/gkn762.	
29	610	37.	Burge S, Kelly E, Lonsdale D, Mutowo-Muellenet P, McAnulla C, Mitchell A, et al. Manual GO	
30	611		annotation of predictive protein signatures: the InterPro approach to GO curation. Database	
31	612		: the journal of biological databases and curation. 2012;2012:bar068.	
32	613		doi:10.1093/database/bar068	
33	614	20	Li L Staaskart CL Ir and Roos DS OrthoMCL: identification of ortholog groups for	
34	014 C1F	50.	er E, Stoeckert CJ, St. and Ross DS. Ortholoce. Identification of Ortholog groups for	
35	615		eukaryotic genomes. Genome Research. 2003;13(9):2178-89. doi:10.1101/gr.1224503.	
36	616	39.	Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput.	
37	617		Nucleic acids research. 2004;32(5):1792-7. doi:10.1093/nar/gkh340.	
38	618	40.	Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W and Gascuel O. New algorithms	
30	619		and methods to estimate maximum-likelihood phylogenies: assessing the performance of	
10	620		PhyML 3.0. Systematic biology, 2010;59(3):307-21, doi:10.1093/sysbio/syg010.	
40	621	11	Yang Z DAML 4: phylogenetic analysis by maximum likelihood. Molecular biology and	
41	021	41.	Tang Z. FAIVE 4. phylogenetic analysis by maximum incentiou. Molecular biology and	
42	622		evolution. 2007;24(8):1586-91. doi:10.1093/molbev/msm088.	
43	623	42.	Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, et al. The genome of	
44	624		black cottonwood, Populus trichocarpa (Torr. & Gray). Science (New York, NY).	
45	625		2006;313(5793):1596-604. doi:10.1126/science.1128691.	
46	626	13	Shi H Lee BH Wu SLand Zhu IK Overevoression of a plasma membrane Nat/Ht antiporter	
47	620	45.	Sin n, Lee bil, wa si and zha sk. overexpression of a plasma memorane waryin antiporter	
48	627		gene improves sait tolerance in Arabidopsis thaliana. Nature biotechnology.	
40	628		2003;21(1):81-5. doi:10.1038/nbt766.	
49	629	44.	Brini F, Hanin M, Mezghani I, Berkowitz GA and Masmoudi K. Overexpression of wheat	
50	630		Na+/H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 improve salt- and drought-stress	
51	631		tolerance in Arabidopsis thaliana plants. Journal of experimental botany. 2007:58(2):301-8.	
52	632		doi:10.1002/ivb/orl251	Formatted: Font: Times New Roman, 9 pt
53	052			Eormatted: Font: Times New Poman
54	Ì		20	Formatted. Fort. Times New Koman
55	I		A 'A	
56				
57				
5.Q				
50				
59				
60				
60				

-

45.

Yong JW, Ge L, Ng YF and Tan SN. The chemical composition and biological properties of coconut (Cocos nucifera L.) water. Molecules (Basel, Switzerland). 2009;14(12):5144-64. doi:10.3390/molecules14125144.

639 Tables640 Table 1 Data outputs produced by sequencing_different insert size libraries

Library type	Lane	Reads Length(bp)	Insert Size(bp)	Raw data (Gb)	Clean data(Gb)
PE101	3	100	170	128.75(53.20)	111.32(46)
PE251	2	250	450	73.86(30.52)	56.42(23.31)
PE101	2	100	500	64(26.45)	65.11(26.90)
PE101	2	100	800	78.16(32.30)	64.90(26.82)
MP50	3	49	2000	128.6(53.14)	60.70(25.08)
MP50	2	49	5000	71.75(29.65)	18.62(7.69)
MP50	2	49	10000	74.65(30.85)	18.53(7.66)
MP50	2	49	20000	70.7(29.21)	19.35(7.99)
MP50	1	49	40000	24.2(10.08)	4.13(1.71)
Total	19			714.67(295.32)	419.08(173.17)

641 Note: The sequencing depth was shown in parentheses, calculated based on a genome size of 2.42G Clean data

642 were obtained by filtering raw data with low-quality and duplicate reads. PE: paired-end, MP: mate pair.

644 Table 2 Comparison analysis of genome sizes, assembly and annotation of four palmae species, including

645 coconut, *Phoenix dacylifera* (PDK30 and DPV01, two different versions), *Elaeis guineensis* (EG), and *Elaeis*

646 oleifera (EO)

8	Creation	Sequencing	Sequence	Estimated	Assembly	Contig	Scaffold	Gene	TEs percent
9	species	technology	coverage	size(Gb)	size(Gb)	N50(Kb)	N50(Kb)	Number	(%)
0	Phoenix dactylifera	Illumina	53.4x	0.00	0.29	6.44	20.49	20.000	22.6
1	(PDK30)	GAIIx		0.00	0.38	0.44	50.48	28,889	23.0
2	Phoenix dactylifera	454,SOLiD,	120	0.67	0.54	10.01	224.00	11.660	20.07
3	(DPV01)	ABI3730	139x	0.67	0.56	10.81	334.08	41,660	38.87
4 r	Elaeis guineensis	454	16	1.0	1.54	0.27	1045 41	24.902	12.24
5	(African oil palm)	454	10X	1.8	1.54	9.37	1045.41	54,802	45.24
0 7	Elaeis oleifera	151	16	1.0	1.40	0.45	222.11		
י 8	(American oil palm)	454	16x	1.8	1.40	8.45	333.11		
9	Cocos nucifera	Illumina	17237	2.42	2.20	72 (1	410.07	20.020	70.75
0	(Hai nan Tall)	HiSeq	1/3X	2.42	2.20	/2.64	418.07	28,039	12.15

647 Note: Coconut: Cocos nucifera (Hai-nan Tall); PDK30: Phoenix dactylifera (PDK30); DPV01:_Phoenix

dactylifera (DPV01); EG: *Elaeis guineensis*_(American_African_oil palm E5 build); EO *Elaeis oleifera*_(American

649 oil palm, O8-build); The-TEs results wereas obtained using the same pipeline as for the with the Ccoconut 21

Formatted: Font: Times New Roman, 9 pt

Formatted: Font: Times New Roman

Formatted: Left

Table 3 The gene coverage of Cocos_nucifera_by_based on_transcriptome data

Datasat	Number	Total	Base coverage	Sequencecoverage by
Dataset	Inumber	length (bp)	by assembly	assembly (%)
All	57,304	43,090,665	96.78	99.57
>200bp	57,304	43,090,665	96.78	99.57
>500bp	25,713	33,470,388	96.36	99.85
>1000bp	13,796	25,004,919	95.99	99.94

Table 4_The comparative analysis of assembly results of five_palm species with BUSCO_software, including

Formatted: Left

661 coconut, Phoenix dacylifera (PDK30 and DPV01, two varieties), Elaeis guineensis (EG), and Elaeis oleifera

662 (EO)

I

genome

	Co	conut	PD	K30	DP	V01	I	EG	I	EO
BUSCOs	Ν	P(%)	Ν	P(%)	Ν	P(%)	Ν	P(%)	Ν	P(%)
Total	1440		1440		1440		1440		1440	
Complete single-copy	1192	82.8	1042	72.4	1160	80.6	1100	76.4	1004	69.7
Complete duplicated	115	8.0	81	5.6	134	9.3	116	8.1	63	4.4
Fragment	49	3.4	98	6.8	42	2.9	60	4.2	84	5.8
Missing	84	5.8	219	15.2	104	7.2	164	11.3	289	20.1

663 Note: Coconut: Cocos nucifer<u>a (the Hainan Tall); PDK30: Phoenix dactylifera (PDK30); DPV01:Phoenix</u>
664 dactylifera (DPV01); EG: Elaeis guineensis(A<u>fricanmerican</u> oil palm E5 build); EO Elaeis oleifera_(American
665 oil palm, O8-build);

667 Table 5 Classification of predicted transposable elements in the coconut genome

	Repabse TEs	Protein TEs	De novo TEs	Combined TEs	
	length	length	length	length	percentage
DNA	20,936,158	24,655,089	35,131,002	58,119,982	2.64
LINE	4,251,185	9,631,472	7,610,172	19,197,064	0.87
SINE	85,717	0.00	186,364	270,055	0.012
LTR	361,968,154	512,700,933	1,419,281,798	1,478,182,089	67.10
Other	8,145	0.00	0.00	8,145	0.0004
Unknown	0.00	12,360	139,084,335	139,096,695	6.31
Total	385,037,442	546,965,774	1,552,582,881	1,602,630,396	72.75
			22		

Formatted: Font: Times New Roman, 9 pt

Note: Repabse TEs means RepeatMask against Repbase; Protein TEs means RepeatProteinMask result against Repbase protein; De novo TEs means RepeatMask against the de novo library; Combined TEs: means-the combine<u>d</u> results of <u>these</u> three steps.

Table 6_The comparative analysis of gene prediction results of four_palm species with BUSCO_software

	Co	conut	PD	K30	DP	V01	I	EG
BUSCOs	Ν	P(%)	Ν	P(%)	Ν	P(%)	Ν	P(%)
Total	1440		1440		1440		1440	
Complete single-copy	965	74.1	748	51.9	1195	83.0	555	38.5
Complete duplicated	102	7.1	81	5.6	159	11.0	53	3.7
Fragment	162	11.2	255	17.7	44	3.1	270	18.8
Missing	211	14.7	356	24.8	42	2.9	562	39.0

Note: Coconut: Cocos nucifera (the Hai-nan Tall); PDK30: Phoenix dactylifera (PDK30); DPV01: Phoenix Formatted: Left

Formatted: Font: Times New Roman, 9 pt

Formatted: Font: Times New Roman

dactylifera (DPV01); EG: Elaeis guineensis (African American oil palm E5 build); The gene of Elaeis oleifera_

(American oil palm, O8-build) was missing, not attained from the public database;

Table 7 Statistical analysis of gene families of different species

Species	Genes number	Genes in families	Unclustered genes	Family number	Unique families	Average genes per family
C. nucifera	28,039	22,376	5,663	14,411	282	1.55
E. guineensis	30,430	22,021	8,409	13,415	262	1.64
P. dactylifera	24,908	22,193	2,715	14,074	112	1.58
S. bicolor	27,159	22,016	5,143	12,992	916	1.69
P. persica	27,792	24,276	3,516	14,443	497	1.68
S. tuberosum	34,879	28,288	6,591	13,206	1,119	2.14
G. max	42,859	38,104	4,755	14,589	1,145	2.61
A. thaliana	26,637	22,990	3,647	13,292	674	1.73
T. cacao	28,624	23,776	4,848	14,928	625	1.59
V. vinifera	25,329	19,122	6,207	13,309	599	1.44
M. acuminata	36 538	24 354	12.184	13 089	620	1.86

I

1								
2								
3								
4								
5								
6								
7 8	686							
9	687							
10 11	688							
12	689							
13 14	690							
15 16	691							
17	692	Figure legends						
18 19	693	Figure 1 Morphological characteristic of coconut tree (A), spica (B), female flower (C), Male flower						
20 21	694	(D), -coconut nut (E), coconut nut without skin (F), and -vertical section of coconut nut (G).						
22	695	Figure 2_Kmer analysis of the coconut genome.						
23 24	696	Figure 3 The protocol_for integrating GLEAN and Transcriptome_transcriptome_data.						
25	697	Figure 4 Groups of orthologues shared among the angiosperms Cocos nucifera (Coconut), Elaeis						
26 27 28	698	guineensis (Oil palm), Phoenix dactylifera (Date palm), Sorghum bicolor (Sorghum), Musa						
29 30	699	acuminate (Banana) and Arabidopsis thaliana (Arabidopsis). Veenn diagram generated by						
31 32	700	http://www.interactivenn.net/						
33 34 25	701	Figure 5. Estimation of divergence time. The blue numbers on the nodes are the divergence time from						
35 36 27	702	present (million years ago, Mya), the red nodes indicated the previously published calibration times.						
37 38 39	703	Figure 6. Phylogenetic tree of antiporter genes from C. nucifera and Arabidopsis thaliana. Every						
40 41	704	cluster wais indicated with a different colored arc line arc. The potential function of every cluster wais						
42 43	705	indicated with the function groups found in Arabidopsis thaliana. Colored stars indicate antiporter						
44 45	706	genes of C. nucifera.						
46 47	707	Figure 7. Phylogenetic tree of ion channel genes from C. nucifera and Arabidopsis thaliana. Every						
48 49	708	cluster was indicated with different colored arc line arc. The potential function of every cluster was						
50 51	709	indicated with the function groups found in Arabidopsis thaliana. Colored stars indicate ion channel						
52 53	710	genes of C. nucifera.	/	Form	atted: F	ont: Time	es New Ro	man, 9 pt
54	1	24.	//	Form	atted: F	ont: Time	es New Ro	man
55								
56								
57								
58								
59								

 Figure 4Groups of orthologues shared among the angiosperms <i>Cocos nucifera</i>(Coconut), <i>Elaeis</i> <i>guincensis</i>(Oil palm), <i>Phoenix dactylifera</i>(Date palm), <i>Sorghum bicolor</i>(Sorghum), <i>Musa</i> <i>acuminate</i>(Banana) and <i>Arabidopsis thaliana</i>(Arabidopsis). Veen diagram generated by http://www.interactivenn.net/ Figure 5. Estimation of divergence time. The blue numbers on the nodes are the divergence time from present (million years ago, Mya), the red node indicated the previously published calibration times. Figure 6. Phylogenetic tree of atiporter genes from <i>C. nucifera</i> and <i>Arabidopsis thaliana</i>. Every cluster was indicated with different colored are line. The potential function of every cluster was indicated with the function groups found in <i>Arabidopsis thaliana</i>. Colored stars indicate antiporter genes of <i>C. nucifera</i>.
712 guincensis(Oil palm), Phoenix dactylifera(Date palm), Sorghum bicolor(Sorghum), Musa 713 acuminate(Banana) and Arabidopsis thaliana(Arabidopsis). Veen diagram generated by 714 http://www.interactivenn.net/ 715 Figure 5. Estimation of divergence time. The blue numbers on the nodes are the divergence time from 716 present (million years ago, Mya), the red node indicated the previously published calibration times. 717 Figure 6. Phylogenetic tree of atiporter genes from C. nucifera and Arabidopsis thaliana. Every 718 cluster was indicated with different colored are line. The potential function of every cluster was 719 indicated with the function groups found in Arabidopsis thaliana. Colored stars indicate antiporter 720 genes of C. nucifera.
 <i>acuminate</i>(Banana) and <i>Arabidopsis thaliana</i>(Arabidopsis). Veen diagram generated by http://www.interactivenn.net/. Figure 5. Estimation of divergence time. The blue numbers on the nodes are the divergence time from present (million years ago, Mya), the red node indicated the previously published calibration times. Figure 6. Phylogenetic tree of atiporter genes from <i>C. nucifera</i> and <i>Arabidopsis thaliana</i>. Every cluster was indicated with different colored are line. The potential function of every cluster was indicated with the function groups found in <i>Arabidopsis thaliana</i>. Colored stars indicate antiporter genes of <i>C. nucifera</i>.
 http://www.interactivenn.net/ Figure 5. Estimation of divergence time. The blue numbers on the nodes are the divergence time from present (million years ago, Mya), the red node indicated the previously published calibration times. Figure 6. Phylogenetic tree of atiporter genes from <i>C. nucifera</i> and <i>Arabidopsis thaliana</i>. Every cluster was indicated with different colored are line. The potential function of every cluster was indicated with the function groups found in <i>Arabidopsis thaliana</i>. Colored stars indicate antiporter genes of <i>C. nucifera</i>.
Figure 5. Estimation of divergence time. The blue numbers on the nodes are the divergence time from present (million years ago, Mya), the red node indicated the previously published calibration times. Figure 6. Phylogenetic tree of atiporter genes from <i>C. nucifera</i> and <i>Arabidopsis thaliana</i> . Every cluster was indicated with different colored are line. The potential function of every cluster was indicated with the function groups found in <i>Arabidopsis thaliana</i> . Colored stars indicate antiporter genes of <i>C. nucifera</i> .
present (million years ago, Mya), the red node indicated the previously published calibration times. Figure 6. Phylogenetic tree of atiporter genes from <i>C. nucifera</i> and <i>Arabidopsis thaliana</i> . Every cluster was indicated with different colored are line. The potential function of every cluster was indicated with the function groups found in <i>Arabidopsis thaliana</i> . Colored stars indicate antiporter genes of <i>C. nucifera</i> .
Figure 6. Phylogenetic tree of atiporter genes from <i>C. nucifera</i> and <i>Arabidopsis thaliana</i> . Every cluster was indicated with different colored are line. The potential function of every cluster was indicated with the function groups found in <i>Arabidopsis thaliana</i> . Colored stars indicate antiporter genes of <i>C. nucifera</i> .
 relation of every cluster was indicated with different colored arc line. The potential function of every cluster was indicated with the function groups found in <i>Arabidopsis thaliana</i>. Colored stars indicate antiporter genes of <i>C. nucifera</i>.
 indicated with the function groups found in <i>Arabidopsis thaliana</i>. Colored stars indicate antiporter genes of <i>C. nucifera</i>.
720 genes of <i>C. nucifera</i> .
721 Figure 7. Phylogenetic tree of ion channel genes from <i>C. nucifera</i> and <i>Arabidopsis thaliana</i> . Every
722 cluster was indicated with different colored arc line. The potential function of every cluster was
723 indicated with the function groups found in <i>Arabidopsis thaliana</i> . Colored stars indicate ion channel
724 genes of <i>C. nucifera</i> .
775
725
726
727
728
729
730
731 Additional files
732
Additional file 1 Identification and characterization of antiporter genes in the genome of Cocos
734 <u>nucifera</u>
735
Additional file 2 Identification and charaterization characterization of ion channel genes in the genome
737 of Cocos nucifera
25

Formatted: Font: Times New Roman, 9 pt

Formatted: Font: Times New Roman

Additional file 1

Click here to access/download Supplementary Material Additional file 1.xlsx Additional file 2

Click here to access/download Supplementary Material Additional file 2.xlsx

±

Response to editor and reviewers

Dear editor and reviewers

Thank you very much for your crucial comments for our manuscript entitled "The genome draft of the Coconut (*Cocos nucifera*)" (GIGA-D-17-00038). We have made a thorough revision to the ms based on all of comments from editor and reviewers. Each comments raised by the reviewers had been carefully answered in the response sheet. We hope the revised version can meet the requirement of "GigaScience"

Sincerely yours,

Yaodong Yang

PHONE NUMBER: 0086-898-63330602
FAX NUMBER: 0086-898-63330673
EMAIL: yyang@catas.cn
POSTAL ADDRESS:
Coconuts Research Institute, Chinese Academy of Tropical Agricultural Sciences,
496 Wenqing Av., Wenchang, Hainan 571339, P.R.China

Response to editor and reviewers,

Reviewer 1

1. Line 40: in 93 countries -> the introduction (line 70) say 89 countries

>>>Response: Thank you for your suggestion. We have re-checked the document reported by Batugal et al., 2005. The corresponding revision has been done in the Introduction part of the revised manuscript.

2. 11 million ha ->the introduction (line 72) says 12 million ha

>>>Response: Thank you for your suggestion; we have re-checked the plant area of coconut in the website of Food and Agriculture Organization of the United Nations (<u>http://www.fao.org/faostat/en/</u>). The corresponding revision has been done in the Abstract part of the revised manuscript.

3. Hinders progress in genetic breeding. Do you mean 'marker assisted breeding' or 'genomic assisted breeding'?

>>>Response: Thank you for your suggestion; we meant to say 'conventional breeding'. Revisions have been made in the Abstract part of the revised manuscript to make our opinions clearer.

4. Genetic improvement is slow. Do you mean trait improvement with marker or genetic assisted

>>>Response: We meant to say the improvement made by 'conventional breeding' is slow. The corresponding revision has been done in the revised manuscript.

5. Line 48: The coverage does not add up. 714.67 Gb on a 2.42 Gb genome is 295× coverage. In any case, only the coverage of the cleaned reads should be shown (177×)`

>>>Response: Thank you for your suggestion; in revised manuscript, only the cleaned reads were used for the coverage depth analysis and the coverage is173.32× read depth.

6. Line54: Do you mean 41,166 genes

>>>Response: Thank you for your suggestion; we have re-checked the annotated gene number for datepalm based on the document reported by AI-Mssallem et al., 2013 and 41 660 genes were annotated. The corresponding revisions have been made in the Abstract part of revised manuscript.

7. Line60: space missing between facilitating and future

>>>Response: Thank you for your suggestion, a space has been added between facilitating and future.

8. Line 61: should be 'molecular assisted breeding'

>>>Response: Thank you for your suggestion, corresponding revisions have been done in the Abstract part of revised version.

 Line 78: '...wide range to environment...' -> unclear, should be explained. Also 'environment'

>>>Response: Some sentences have been added to the revised manuscript for explaining '...wide range to environment...' in Line 240– Line 242|Page 3.

10. Line78: '...especially for high tolerance to high salt density.', please clarify

>>>Response: Coconut palm can disseminate through ocean currents: floating nuts sprout and

grow naturally upon washing up on beaches. The ability to adapt to a high salt environment is closely related to this dissemination feature and to these natural growth conditions. Corresponding revision has been done in Line 243– Line 244|Page 3 of revised manuscript.

11. Line 80: '...making it possible to understand its adaptation to high salinity.' You do not investigate this, you should change the statement to something milder such as: 'This study forms the basis for future research investigating the coconuts tolerance to salt stress'

>>>Response: Thank you for your suggestion, We also present the genome sequence of HAT coconut and added an analysis of the antiporter and ion channel gene families, relevant to salinity tolerance, into the revised version. Corresponding revision had been added into in Line 237– Line 238|Page 3.

12. Line 82: provide references. The way this sentence reads at the moment, make it seem like you are also reporting those genome sequence.

>>>Response: The corresponding references have been added into Line 423|Page 4 of revised manuscript.

13. Line 92: space between 'Illumina', 'Hiseq2000' and 'sequencer'

>>>Response: Two spaces had been added into between Illumina, Hiseq2000 and sequencer in Line 436|Page 4 of revised manuscript.

14. Line129: The data shows that you have higher coverage and a longer N50, it does not show that the assembly is of better quality.

>>>Response: Thank you for your suggestion, the sentence has been replace by other sentence: "The comparative results of the BUSCO estimation in coconut and in the four other palm genome sequences indicates that the smallest fraction of missing genes as predicted by BUSCO was found in the coconut genome assmebly", in Line 724 – Line 726|Page 6 of revised version.

15. Line 131: 'tissues', not 'issues'

>>>Response: Thank you for your suggestion, corresponding revisions has been done in the revised version.

16. Line134: table 4 and 5 are mixed up

>>>Response: We repeatedly checked Table 4 and 5. Corresponding revisions has been done in revised manuscript.

17. Line 165: BLAST not BLSAT

>>>Response: Thank you for your suggestion, 'BLSAT' had been modified in revised manuscript.

18. Line 175 (and others): keep a space between numbers and units, consistently.

>>>Response: we re-checked all numbers and units throughout the manuscript. All needed spaces have been added between numbers and units.

19. Line195: Change start of sentence (e.g. 'After the above described steps...')

>>> Response: Thank you for your suggestion, corresponding revision has been done in Line 970|Page 8 of the revised manuscript.

20. Line 196: should read: 'than the predicted gene markers..'

>>>Response: Thank you for your suggestion, corresponding revision has been done in Line 971 | Page 8 of revised version.

21. Line203: space between 'by' and 'sequence'

>>>Response: Thank you for your suggestion, a space had been added between by and sequence

22. Line211: after ref 38, just one dot

>>>Response: Thank you for your suggestion, the ref 38 and dot has been deleted in revised version.

23. Line 219: remove space between 'mapping' and ','

>>>Response: Thank you for your suggestion, the space has been deleted between 'mapping' and ','.

24. References: need a lot of editing to uniform

>>>Response: All references of the manuscript have been reviewed and edited based on the author guideline of "Gigascience" in the revised manuscript.

25. Tables: Headers are unclear and many abbreviations within tables are not explained

>>>Response: Thank you for your suggestion, revisions have been done for the table headers. Meanwhile, the abbreviations have been explained and replaced with corresponding full name.

26. What is the difference between Table 4 and Table 7? Both show BUSCO assessments of palm species. Clarify both in tables and in the text.

>>>Response: Thank you for your suggestion, Table 7 has been changed into Table 6 in the revised version. Table 4 referred to the comparative analysis of the assembled genome sequences for four palm species using BUSCO software, while Table 6 referred to the comparative analysis of the predicted gene from the four palm species using BUSCO software. Revisions have been done to make Table 4 and Table 6 legends more clearly in "Table" part of revised version.

27. Figure legend: Figure 1 does not contain any morphological characteristics; they are photographs of coconut plants.

>>>Response: Figure 1 had been substantially revised in the revised version.

Reviewer 2

1. My only major concern about the manuscript is that the written style is not ready for publication. There are many type and grammatical mistakes all over the main text, figure captions and table legends. The manuscript needs some extensive copy editing to be published.

>>>Response: Thank you for your suggestion, the manuscript has been reviewed and edited throughout the manuscript by the native experts (Annaliese Mason, Baudouin Luc and Amjad Iqbal).

Reviewer 3

1. Homologous gene families using a larger set of genomes would allow a gain-/loss analysis (check the Zostera (seagrass) genome paper Figure 1a for a recent example), some venn diagrams based on this showing how many gene are shared with close relative (e.g. *Elaeis*), other monocots (e.g. rice) and dicots (e.g. Arabidopsis) could also be generated based on this (e.g. orchid genome paper figure 1a). Asynteny/collinearity analysis is usually included, often combined with a Ks analysis (see the orchid genome paper Figure 2, Zostera genome paper Figure 2).

>>>Response: Thank you for your suggestion, we added venn diagrams between different species and analyzed the divergence time between different species into Line 990| Page 8 - Line 1270 | Page 10 of the revised version. Meanwhile, we identified and characterized antiporter and ion channel gene family in Line 1271 | Page 10 – Line 1578 | Page 11 of revised manuscript.

2. No case study is included, I feel there should be at least one (though as the paper is submitted as a data note the journal might not require one). The authors are the first ones to have a glimpse at the genome of this species. I would make sense to check a few relevant gene families (coconut are clearly very different from seeds of other monocots, so seed related gene families would be likely candidates for a more in depth study)

>>>Response: Thank you for your suggestion. It is known that coconut palm can disseminate

through ocean currents: floating nuts sprout and grow naturally upon washing up on beaches. The ability to adapt to a high salt environment is closely related to this dissemination feature and to these natural growth conditions. In the revised manuscript, we identified antiporter and ion channel genes in the genome of *Cocos nucifera*, some of which had been validated to be associated with salt stress in Arabidopsis. In the gene expansions analysis, some gene families showed significant expansion in compared to Arabidospsis, including Na+/H+ antiporter family, Carnitine/acylcarnitine translocase family, Potassium-dependent sodium antiporter, and potassium channel. The expansion of Na+/H+ antiporter family and Potassium-dependent sodium antiporter may be associated with the accumulation of fatty acid in coconut pulp. At last, the expansion of potassium channel may be associated with the accumulation of potassium ion in coconut water. Corresponding revision had been added into Line Line 1271 | Page 10 – Line 1578 | Page 11 of revised manuscript.

3. For non-bioinformaticians a supplemental website which offers a BLAST interface would certainly be welcome.

>>>Response: we have uploaded coconut genome raw data into Sequence Read Archive (SRA) of the National Center for Biotechnology Information. The assembled and annotated data were uploaded into GigaDB database. Meanwhile, the assembled and annotated data have been uploaded into pirate website for blast analysis and genome browse. However, currently, this website is not available for all people. The website will be available after further website improvement and paper publication

4. Line 128 -129: The N50 by itself is not a direct measure for the quality of the assembly. Avoid over-interpretation.

>>>Response: Thank you for your suggestion, the sentence has been replace by other sentence: "The comparative results of the BUSCO estimation in coconut and in the four other palm genome sequences indicates that the smallest fraction of missing genes as predicted by BUSCO was found in the coconut genome assmebly", in Line 724 – Line 726|Page 6 of revised version.

5. Line 54 and abstract: (DVP01, 4166) -> the number of genes for the date palm genome is incorrect. In table 2 the authors report 41, 660 !

>>>Response: Thank you for your suggestion; we have re-checked the annotated gene number for datepalm based on the document reported by AI-Mssallem et al., 2013 and 41 660 genes were annotated. The corresponding revisions have been made in the Abstract part of revised manuscript.

6. Line 60: facilitating future: missing space Line 78-79

>>>Response: Thank you for your suggestion, a space has been added into between facilitating and future.

7. Line 78-79: For high tolerant to high salt density: revise grammar

>>>Response: Thank you for your suggestion, revisions have been done in Line 240– Line 242 | Page 3 of revised manuscript

8. Line 80: ...present Hainan Tall... -> ...present the Hainan Tall

>>>Response: Thank you for your suggestion, the sentence has been rewrite and the usage of the phrase "Hainan Tall" has been carefully checked throughout the revised manuscript.

9. Line 82: ...about genome

>>>Response: Revisions have been done in revised manuscript.

10. Line 88 (and other places): ...pair end... -> ...paired end...

>>>Response: Thank you for your suggestion, all 'pair end' has been modified into 'paired end' throughout the revised manuscript.

11. Line 96: ...removed by using ... -> ...removed using...

>>>Response: Thank you for your suggestion, corresponding revision had been done in revised manuscript

12. Line 116: ...SOAPdenovo2 map... -> ...SOAPdenovo2 maps...

>>>Response: Thank you for your suggestion, corresponding revision had been done in Line 572 | Page 5 of revised manuscript.

13. Line 132: ...reported in previous Fan's research ...: incorrect grammar should be revised (as previously reported by Fan et al...).

>>>Response: Thank you for your suggestion, corresponding revision had been done in Line 598 | Page 5 in revised manuscript

14. Line 181: Previous Fan's research: revise grammar

>>>Response: 'Previous Fan's research' had been modified into 'as previously reported by Fan et al.' in Line 874 | Page 7 of revised manuscript

15. Line 192: ... a diagrammic pipeline is showed...: revise grammar

>>>Response: Thank you for your suggestion, corresponding revisions had been done in Line

968|Page 8 revised version.

16. Line 199: ...completely... -> complete

>>>Response: Thank you for your suggestion, corresponding revision has been done in Line 973 | Page 8 of revised manuscript.

17. Line 203 -204: In sequence similarity step: revise

>>>Response: 'In sequence similarity step' has been modified into 'Firstly' in Line 979|Page 8 of the revised manuscript.

18. Line 232-233: Font is suddenly somewhat bigger

>>>Response: Thank you for your suggestion, corresponding revision have been done in "Funding" part of revised manuscript.