Note to readers with disabilities: *EHP* strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in *EHP* articles may not conform to 508 standards due to the complexity of the information being presented. If you need assistance accessing journal content, please contact ehponline@niehs.nih.gov. Our staff will work with you to assess and meet your accessibility needs within 3 working days.

Supplemental Material

Genome-Wide Association Study of Susceptibility to Particulate

Matter-Associated QT Prolongation

Rahul Gondalia, Christy L. Avery, Melanie D. Napier, Raúl Méndez-Giráldez, James D. Stewart, Colleen M. Sitlani, Yun Li, Kirk C. Wilhelmsen, Qing Duan, Jeffrey Roach, Kari E. North, Alexander P. Reiner, Zhu-Ming Zhang, Lesley F. Tinker, Jeff D. Yanosky, Duanping Liao, Eric A. Whitsel

Table of Contents

- Table S1. Genotyping, quality control, imputation & analysis, by study / subpopulation
- **Table S2.** Sensitivity of the $PM_{10}x$ SNP interaction
- **Figure S1.** Quantile-Quantile (QQ) plot of observed versus expected $-\log_{10} P$ -values of each SNP from the trans-ethnic, fixed-effects meta-analysis of the SNP x PM₁₀ interactions. Lambda is the genomic inflation factor.
- **Figure S2.** A) Predicted mean (95% confidence interval) QT (ms) per unit increase in the coded allele (T) dosage of rs1619661 at PM₁₀ concentrations dichotomized at \leq and > the 50th 90th percentiles (P50, P60, P70, P80, P90) and the 1987-2006 National Ambient Air Quality Standard (NAAQS*) for annual PM₁₀ (50 μ g/m³), while adjusting for age, geographic region or center, season, calendar year, RR interval, and ancestry. B) Distribution of observed ambient PM₁₀ concentrations labelled with the PM₁₀ dichotomizations.

Figure S3. UCSC Genome Brower displaying rs1619661 (highlighted), associated SNPs (linkage disequilibrium ≥ 0.8), and tracks representing DNAse1 hypersensitivity and DNA methylation in cardiac tissues.

Supplemental Material References

Table S1. Genotyping, Quality Control, Imputation & Analysis, by Study / Subpopulation.

Study	Race / Ethnicity	Genotyping Platform	Genotype Calling Software	Genotype Filters	Imputation Software	NCBI Build	Reference Panel
ARIC	Black	Affymetrix GeneChip SNP Array 6.0	Birdseed	Call rate ≤ 90% MAF < 1%	MaCH v1.0.16	HapMap 2 Build 36	YRI/CEU 1:1
ARIC	White	Affymetrix GeneChip SNP Array 6.0	Birdseed	Call rate $\leq 95\%$ HWE p $< 1x10^{-6}$ MAF $< 1\%$	MaCH v1.0.16	HapMap 2 Build 36	CEU
WHI GARNET ^a	White	Illumina Human Omni1-Quad v1-0 B	BeadStudio v3.1.3.0	Call rate $\leq 98\%$ HWE p $< 1x10^{-4}$	BEAGLE v3.3.1	1000G v3 3/2012	EUR
WHI Mopmap ^a	White	Affymetrix Axiom Genome-Wide Human CEU I	Birdseed	Call rate $\le 90\%$ HWE p $< 1x10^{-6}$ MAF $< 0.5\%$	MaCH minimac	Hapmap 2 Build 36	CEU
WHI SHARe	Black	Affymetrix GeneChip SNP Array 6.0	Birdseed	Call rate $\leq 95\%$ HWE p $< 1x10^{-6}$ MAF $< 1\%$	MaCH v1.0.16	HapMap 2 Build 36	YRI/CEU 1:1
WHI SHARe	Hispanic	Affymetrix GeneChip SNP Array 6.0	Birdseed	Call rate $\leq 95\%$ HWE p $< 1x10^{-6}$ MAF $< 1\%$	MaCH v1.0.16	1000G v3 3/2012	All ancestries
WHI WHIMS	White	Human OmniExpress Exome-8v1_B Genome-Wide Human	Birdseed	Call rate $\leq 98\%$ HWE p $< 1x10^{-4}$ MAF $< 1\%$	MaCH minimac	Hapmap 2 Build 36	CEU

Abbreviations: ARIC, Atherosclerosis Risk in Communities study; CEU, Utah residents with northern and western European ancestry; EUR, European; GARNET, Genome-wide Association Research Network into Effects of Treatment; HWE, Hardy-Weinberg equilibrium; MAF, minor allele frequency; MOPMAP, Modification of PM-Mediated Arrhythmogenesis in Populations; SHARe, SNP Health Association Resource; WHI, Women's Health Initiative; WHIMS, Women's Health Initiative Memory Study; YRI, Yoruba in Ibadan, Nigeria

aControls

Table S2. Analysis of Predicted Mean QT (ms) by Genotype and PM_{10} exposure

rs1619661 Genotype	PM_{10}	N Participants	Predicted QT	95% CI
CC (1.6%) ^a	≤ P90	309	402	401, 403
	> P90	34	397	396, 399
CT (21.8%) ^a	≤ P90	4348	403	402, 403
	> P90	483	401	400, 401
TT (76.7%) ^a	≤ P90	15286	403	403, 403
	> P90	1698	404	403, 404
Total (100%)		22158		

Abbreviations: CI, confidence interval; N, number; P90, 90th percentile; PM₁₀, particulate matter < 10 μm in diameter

^a Estimated genotype frequency under Hardy-Weinberg equilibrium

Table S3. Sensitivity of the PM₁₀ x rs1619661 interaction

	PM Size	PM	PM Averaging Period	Additional	Internation	P
		Threshold (percentile)		Adjustment	Interaction	
Sensitivity to				or Restriction	Estimate (SE) ^a	
No changes	PM ₁₀	90 th	2 days		2.55 (0.46)	2.11x10 ⁻⁸
PM	PM_{10}	80 th	2 days		1.70 (0.36)	2.10x10 ⁻⁶
	PM_{10}	70^{th}	2 days		1.48 (0.33)	9.48x10 ⁻⁶
	PM_{10}	60^{th}	2 days		1.05 (0.30)	5.16x10 ⁻⁴
threshold	PM_{10}	50 th	2 days		0.71 (0.30)	1.65x10 ⁻²
	PM_{10}	$50 \mu g/m^3$	2 days		2.84 (0.51)	2.04x10 ⁻⁸
DM.	PM_{10}	90 th	1 week		1.18 (0.45)	9.44x10 ⁻³
PM	PM_{10}	90^{th}	2 weeks		1.29 (0.46)	4.77x10 ⁻³
averaging	PM_{10}	90 th	3 weeks		1.18 (0.46)	1.00×10^{-2}
period	PM_{10}	90^{th}	1 month		0.80 (0.45)	7.65x10 ⁻²
PM size	$PM_{2.5}^{00000000000000000000000000000000000$	90 th	1 month		0.80 (0.51)	1.14x10 ⁻¹
	PM_{10}	90 th	2 days	nSES ^c	2.50 (0.46)	4.78x10 ⁻⁸
Additional	PM_{10}	90^{th}	2 days	Meteorological ^d	2.60 (0.45)	9.85x10 ⁻⁹
adjustment	PM_{10}	90 th	2 days	Lifestyle factors ^e	2.56 (0.45)	1.85x10 ⁻⁸
	PM_{10}	$90^{ m th}$	2 days	All ^{cde}	2.57 (0.46)	2.96x10 ⁻⁸
β-antagonist	PM_{10}	PM_{10}	2 days	Users	-0.61 (1.47)	6.78x10 ⁻¹
restriction	PM_{10}	PM_{10}	2 days	Non-Users	2.91 (0.47)	6.59x10 ⁻¹⁰

Abbreviations: PM, particulate matter; $PM_{2.5}$, PM < 2.5 µm in diameter; PM_{10} , particulate matter < 10 µm in diameter; nSES, neighborhood socioeconomic status.

^aTrans-ethnic, fixed-effects meta-analysis without genomic control implemented in METAL.

^bMonthly average PM_{2.5} exposure at geocoded participant address estimated by a spatiotemporal model with GIS-based predictors.

^cNeighborhood socioeconomic status measured by a sum of Z scores of: median household income, % households with interest dividends or rent income,

[%] age 25+ with high school degree, % age 16+ with professional, managerial, or executive occupations, median value of owner-occupied housing units.

^dTemperature (°C); dew point (°C); barometric pressure (kPa)

^eSmoker status (current, former, never), alcohol drinker status (current, former, never), total caloric intake (kcal), sedentary lifestyle

Figure S1. Quantile-Quantile (QQ) plot of observed versus expected $-\log_{10} P$ -values of each SNP from the trans-ethnic, fixed-effects meta-analysis of the SNP x PM₁₀ interactions. Lambda (λ) is the genomic inflation factor.

Figure S2. A) Predicted mean (95% confidence interval) QT (ms) per unit increase in the coded allele (T) dosage of rs1619661 at PM₁₀ concentrations dichotomized at \leq and > the $50^{th}-90^{th}$ percentiles (P50, P60, P70, P80, P90) and the 1987-2006 National Ambient Air Quality Standard (NAAQS*) for annual PM₁₀ (50 μg/m³), while adjusting for age, geographic region or center, season, calendar year, RR interval, and ancestry. B) Distribution of observed ambient PM₁₀ concentrations labelled with the PM₁₀ dichotomizations.

Figure S3. UCSC Genome Brower displaying rs1619661 (highlighted), associated SNPs (linkage disequilibrium \geq 0.8), and tracks representing DNAse1 hypersensitivity and DNA methylation in cardiac tissues.

Tracks, from top to bottom:

Lead SNP: The SNP with a genome-wide significant association in this study, rs1619661.

LD SNP: SNPs associated with rs1619661 (linkage disequilibrium > 0.8), from HaploReg (Ward and Kellis 2012).

HCF Sig: Human cardiac fibroblast deoxyribonuclease 1 digital genomic footprinting (DNAse1 DGF) per base signal, from ENCODE/UW.

HCFaa Sig: Human cardiac (adult atrial) fibroblast DNAse1 DGF per base signal, from ENCODE/UW.

HCM Sig: Human cardiac myocyte DNAse1 DGF per-base signal, from ENCODE/UW.

Heart DS/OS: Heart tissue DNAse1 hypersensitivity density / overlap signals, from ENCODE/Duke.

HCF & HCM 1/2: Human cardiac fibroblast & myocyte DNA methylation by reduced representation bisulfite sequencing (Cokus et al. 2008), from ENCODE/HudsonAlpha. Percent of sequenced molecules that are DNA methylated: red (100%), yellow (50%), green (0%).

HCF & HCM: Human cardiac fibroblast & myocyte CpG methylation by Methyl 450K Bead Arrays from ENCODE/HAIB. Methylation status: orange (methylated), purple (partially methylated), bright blue (unmethylated), black (NA).

<u>Heart-Aorta</u>: Human heart aorta DNA methylation by bisulfite sequencing analysis pipeline, MethPipe (Song et al. 2013). Methylation status: green (partially methylated region), blue (hypomethylated region), purple (allele-specific methylated regions)

Supplemental Material References

Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, et al. 2008. Shotgun bisulphite sequencing of the arabidopsis genome reveals DNA methylation patterning. Nature 452:215-219.

Song Q, Decato B, Hong EE, Zhou M, Fang F, Qu J, et al. 2013. A reference methylome database and analysis pipeline to facilitate integrative and comparative epigenomics.

Ward LD, Kellis M. 2012. Haploreg: A resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic acids research 40:D930-934.