
S1 Supplementary Materials

S1.1 Matrix Exponential Evaluation of Integral

Define the matrix K to be,

K =

C B

0 A

 ,

where matrices C, B and A are as before. As all powers of K have the same block-triangular

structure, we can denote exp(tK) as,

exp(tK) =

F (t) H(t)

0 G(t)

 .

Taking the derivative of exp(tK) with respect to t gives,

d

dt
exp(tK) = K exp(tK),

and hence expressions for each of F (t), G(t), and H(t),

dF (t)

dt
=CF (t),

dG(t)

dt
=AG(t), and

dH(t)

dt
=CH(t) +BG(t).

Solving for H(t) gives exp(Ct)×
[∫ t

0
exp(−Cs)×B × exp(As)ds

]
, which we can use to evaluate

the second moments of the stochastic system exactly. Thus, for a given set of model parameters,

we can solve the first two moments exactly.

S1.2 Derivation of Hellinger and Kullback-Leibler Divergences for

Multivariate Normal Distributions

For distributions P and Q of a continuous random variable, the Kullback-Leibler divergence

[1, 2] is defined as

∆K(P ||Q) =

∫
Rd

p(x) log
p(x)

q(x)
dx .
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The Rényi divergence of order r [3] is given by

Dr(P ||Q) =
1

r − 1
log

∫
Rd

p(x)rq(x)1−rdx ,

and this equals the Kullback-Leibler divergence in the limit r → 1 [4]:

lim
r→1

Dr(P ||Q) = ∆K(P ||Q) . (1)

Another measure of divergence between P and Q is the squared Hellinger distance [5] defined

as

∆2
H(P ||Q) =

1

2

∫
Rd

(√
p(x)−

√
q(x)

)2
dx . (2)

We derive expressions for ∆K and ∆2
H with respect to P and Q as multivariate normal distri-

butions. In both cases, the following lemma will be used in the proofs.
Lemma 1:

If P and Q are multivariate normal distributions with parameters (µ1,Σ1) and (µ2,Σ2), re-

spectively, then ∫
Rd

p(x)rq(x)1−rdx =
|rΣ2 + (1− r)Σ1|−1/2

|Σ1|(r−1)/2|Σ2|−r/2
×

exp

{
r(r − 1)

2
µT (rΣ2 + (1− r)Σ1)

−1µ

}
[6, pp.45-46].

Theorem 1:

If P and Q are d-dimensional multivariate normal distributions with parameters (µ1,Σ1) and

(µ2,Σ2), respectively, then

∆K(P ||Q) =
1

2

[
tr
(
Σ−12 Σ1

)
− d+ µTΣ−12 µ + log

|Σ2|
|Σ1|

]
.

Proof From the limit expression of equation (1), we have

∆K(P ||Q) = lim
r→1

Dr(P ||Q)

= lim
r→1

1

r − 1
log

∫
Rd

p(x)rq(x)1−rdx ,
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therefore, from Lemma 1,

∆K(P ||Q) = lim
r→1

r

2
µT (rΣ2 + (1− r)Σ1)

−1µ

−1

2
lim
r→1

1

r − 1
log

{
|rΣ2 + (1− r)Σ1|
|Σ1|1−r|Σ2|r

}
to give

∆K(P ||Q) =
1

2
µT (Σ2)

−1µ− 1

2
lim
r→1

1

r − 1
log

{
|rΣ2 + (1− r)Σ1|
|Σ1|1−r|Σ2|r

}
. (3)

We can solve the limit within equation (3) as follows. Let

a(r) = log

{
|rΣ2 + (1− r)Σ1|
|Σ1|1−r|Σ2|r

}
and consider ∂a(r)/∂r. This partial derivative can be solved through the use of the fact that

∂|A|
∂x

= |A|tr
(

A−1
∂A

∂x

)
for any invertible matrix A; consequently,

∂a(r)

∂r
= tr

(
(rΣ2 + (1− r)Σ1)

−1 (Σ2 −Σ1)
)
− log

|Σ2|
|Σ1|

.

Given that lim
r→1

a(r) = log 1 = 0, lim
r→1

r− 1 = 0 and ∂a(r)/∂r exists, we can determine the limit

within equation (3) via l’Hôpital’s rule:

lim
r→1

a(r)

r − 1
= lim

r→1

∂a(r)/∂r

∂(r − 1)/∂r

= lim
r→1

∂a(r)

∂r

= tr
(
Σ−12 (Σ2 −Σ1)

)
− log

|Σ2|
|Σ1|

= −tr
(
Σ−12 Σ1 − Id

)
− log

|Σ2|
|Σ1|

= −tr
(
Σ−12 Σ1

)
+ d− log

|Σ2|
|Σ1|

, (4)

therefore, upon substituting (4) into (3), we have

∆K(P ||Q) =
1

2

[
tr
(
Σ−12 Σ1

)
− d+ µTΣ−12 µ + log

|Σ2|
|Σ1|

]
. �
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Theorem 2:

If P and Q are multivariate normal distributions with parameters (µ1,Σ1) and (µ2,Σ2), re-

spectively, then

∆2
H(P ||Q) = 1− exp

{
−1

8
µT

(
Σ2 + Σ1

2

)−1
µ

}
×

 |Σ2 + Σ1

2
|√

|Σ1||Σ2|


−1/2

.

Proof We start with the definition of ∆2
H given by equation (2):

∆2
H(P ||Q) =

1

2

∫
Rd

(√
p(x)−

√
q(x)

)2
dx

=
1

2

(
2− 2

∫
Rd

√
p(x)

√
q(x)dx

)
= 1−

∫
Rd

√
p(x)

√
q(x)dx .

But, from Lemma 1, ∫
Rd

p(x)1/2q(x)1/2dx =
|1
2
Σ2 + 1

2
Σ1|−1/2

|Σ1|−1/4|Σ2|−1/4
×

exp

{
−1

8
µT

(
1

2
Σ2 +

1

2
Σ1

)−1
µ

}
,

therefore,

∆2
H(P ||Q) = 1− exp

{
−1

8
µT

(
Σ2 + Σ1

2

)−1
µ

}
×


∣∣∣∣Σ2 + Σ1

2

∣∣∣∣√
|Σ1||Σ2|


−1/2

. �

S1.3 Moment computation for radial and linear networks

Figures S1 and S2 show the calculation of the moments and computation time, respectively,

using either Gillespie simulations or the moments equation, for a range of different size experi-

ments (i.e., from 10 to 1000 simulations per experiment).
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Figure S1: Box plots of estimated moments from 100 simulated experiments using the two-

compartment birth-death-migration model (Figure 3a). For each experiment (of size 10, 50, 100,

250, 500 or 1000), the lower moments of variables N1 and N2 at time t = 6 were calculated from

Gillespie simulations (red boxes) or from the moments equations (”direct method”, blue boxes),

starting from Poisson-distributed initial conditions. The stated number of simulations per experi-

ments is equivalent to the total number of replicate observation (AiT at time point τi as per section

2.1).
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Figure S2: Box plots of computation time to evaluate the moments from 100 simulated experiments

of the two-compartment birth-death-migration model, as per Figure S1. The vertical axis shows the

logarithm in base 10 of running times in seconds.

Figures S3 and S4 show the calculation of the moments (and computation time) using either

Gillespie simulations or the moments equation, for a range of different size experiments (i.e.,

from 10 to 1000 simulations per experiment).
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Figure S3: Box plots of estimated moments and log computation time from 100 simulated exper-

iments of the radial network with four compartments, each of size 10, 50, 100, 250, 500 or 1000,

calculated from the simulations and from the moments equations using the initial conditions.
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Figure S4: Box plots of estimated moments from 100 simulated experiments of the linear network

with four compartments, each of size 10, 50, 100, 250, 500 or 1000, calculated from the simulations

and from the moments equations using the initial conditions.

S1.4 Comparison of Divergence Measure by Scenario

Figures S5, S6 and S7 show the averaged mean absolute relative error across each scenario

for the four different measures. The horizontal lines represent the mean for each measure,

and the error bars show ± one standard error (across the 100 simulations, at each observation

time).
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Figure S5: Mean Absolute Relative Error of parameter estimates of the simple model, for each

divergence measure across each scenario, averaged across each of the 100 simulations at each

observation time. The horizontal lines correspond to the average mean absolute relative error for

each method.
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Figure S6: Mean Absolute Relative Error of parameter estimates of the linear model, for each

divergence measure across each scenario, averaged across each of the 100 simulations at each

observation time. The horizontal lines correspond to the average mean absolute relative error for

each method.

10



0.5

1.0

1.5

1 2 3 4 5
Scenario

M
e

a
n

 A
b

s
o

lu
te

 R
e

la
ti
ve

 E
rr

o
r

Measure
Chi−Squared
Hellinger
Kullback−Leibler
Mahalanobis

Figure S7: Mean Absolute Relative Error of parameter estimates of the radial model, for each

divergence measure across each scenario, averaged across each of the 100 simulations at each

observation time. The horizontal lines correspond to the average mean absolute relative error for

each method.
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S1.5 Parameter estimates for model with two-way migration
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Figure S8: Distribution of estimates for the seven parameters of the two-way-migration model

described in Section 3.3. The boxplots in each panel shows the results of MDE applied to 100

datasets consisting of 100 simulations each. Panels are ordered by observation time (columns) and

parameter values (12 ”scenarios” along the rows). The target parameter values for each scenario

are shown by the red crosses.
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S1.6 Multiple Observations

It is often of interest to estimate parameters of a model combining information obtained at

multiple observation times. Here, we test minimising a different function of the divergences

arising from the different observation times. In particular, we consider the sum of divergences

at both times, the product of the divergences, the maximum of the two divergences, and each

of the two divergences individually.

As with the comparison of the four divergence measures in Section 3.2, we consider a range of

parameter values, and assess how well each function of the Kullback-Leibler divergence performs

inference with regards to the mean absolute relative error in the estimated parameter values.

Each simulation within each scenario is made up of 100 replicates (e.g., WITS). The initial

conditions for the first organ are randomly generated from a Poisson distribution with rate

parameter 200, and the other organ is set to zero.
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Figure S9: Mean Absolute Relative Error of parameter estimates for each divergence composition

function across each scenario. The error bars represent ± one standard error across the 100 simula-

tions under each scenario. The horizontal lines correspond to the overall mean for each composition

function.
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Figure S10: Box plots of the Mean Absolute Relative Error of parameter estimates for each

divergence summary.

Figures S9 and S10 demonstrate that the sum of the divergences corresponds to the smallest

mean absolute relative error in the parameter estimation, on average.

Note that the Kullback-Leibler divergence could be estimated in the other direction – that

is, from the observed data to the model, rather than from the model to the data as we have

considered thus far. We have considered the MDE tool with this alternate parameterisation

and the results were very similar, and thus, are omitted.

S1.7 Inference: Simulation Study

Parameter estimate results for all scenarios, across all observation times.
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Figure S11: Box plots of MDE estimates corresponding to simulated data at τ1 = 2, where the true parameter is denoted by the red cross.
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S1.8 Moments of Blood, Liver, Spleen System

The first two moments (M1 and M2, respectively), of the blood, liver, spleen system follow a

closed system of nine differential equations. With respect to the liver and spleen, denote the

rate at which bacteria: move from the blood (clearance) as cL and cS; move back into the blood

(emmigration) as eL and eS; replicate as rL and rS; and, are killed as kL and kS.

We can write the differential equations corresponding to the first moment in matrix form as

the following:

∂M1(t)

∂t
= A×M1(t), (5)

where,

M1(t) =


E [NB(t)]

E [NL(t)]

E [NS(t)]

 and A =


−(cL + cS) eL eS

cL rL − kL − eL 0

cS 0 rS − kS − eS

 . (6)

Similarly, we can write the second moments as:

∂M2(t)

∂t
= C ×M2(t) +B × exp(tA)×M1(0),

where M1(0) are the initial moments of the system,

B =



cL + cS eL eS

cL rL + kL + eL 0

cS 0 rS + kS + eS

−cL −eL 0

−cS 0 −eS

0 0 0


,
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and,

C =



−2κ 0 0 2eL 2eS 0

0 2∆L 0 2cL 0 0

0 0 2∆S 0 2cS 0

cL eL 0 ∆L − κ 0 eS

cS 0 eS 0 ∆S − κ eL

0 0 0 cL cS ∆L + ∆S


with ∆L = rL− kL− eL, ∆S = rS − kS − eS, and κ = cL + cS. The solutions to these equations

are given by equations (3) and (4) in the main text.
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